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The most prestigious award for mathematics

is the Fields Medal which is awarded once in

four years to three or four young mathe-

maticians for their outstanding contributions.

They receive the medal during the

International Congress of Mathematicians

held once in four years.

In the most recent International Congress of

Mathematicians held in Berlin, Germany

during August 18–August 27, 1998, the

following four mathematicians were awarded

the Fields Medals: Richard E Borcherds,

W Timothy Gowers, Maxim Kontsevich and

Curtis T McMullen.

The subject Functional Analysis started

around the beginning of this century, inspired

by a desire to have a unified framework in

which the two notions of continuity and

linearity that arise in diverse contexts could

be discussed abstractly. The basic objects of

study in this subject are Banach spaces and

the spaces of bounded (continuous) linear

operators on them; the space C[a, b] of

continuous functions on an interval [a, b]

with the supremum norm, the Lp spaces

arising in the theory of integration, the

sequence spaces l p, the Sobolev spaces arising

in differential equations, are some of the

well-known examples of Banach spaces. Thus

there are many concrete examples of the

spaces, enabling application of the theory to

a variety of problems.

It is generally agreed that finite-dimensional

spaces are well understood and thus the main

interest lies in infinite-dimensional spaces.

A Banach space is separable if it has a countable

dense subset in it. From now on we will talk

only of separable Banach spaces; the nonsepa-

rable Banach spaces are too unwieldy.

The simplest examples of infinite-

dimensional Banach spaces are the sequence

spaces l p, 1 ≤  p < ∞ consisting of sequences

x = (x1, x2, ...) for which is finite; the pth

root of the latter is taken as the norm of x.

These spaces are separable. The space of all

bounded sequences, equipped with the

supremum norm, is called l ∞ . It is not

separable, but contains in it the space c0

consisting of all convergent sequences, which

is separable. The following was an open

question for a long time: does every Banach

space contain in it a subspace that is isomor-

phic to either c0 or some l p, 1 ≤  p < ∞ ? It

was answered in the negative by B. Tsirelson

in 1974.
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It may be recalled that in the theory of finite-

dimensional vector spaces bases play an

important role. A Schauder basis (or a

topological basis) for a Banach space X is a

sequence (en} in X such that every vector in

X has a unique expansion where the infinite

series is understood to converge in norm.

Unlike in the finite-dimensional case, in

general this notion depends on the order in

which {en} is enumerated. We say a Schauder

basis {en} is an unconditional basis if {ep (n)} is

a Schauder basis for every permutation p of

natural numbers.

It is easy to see that if a Banach space has a

Schauder basis, then it is separable. There

was a famous problem as to whether every

separable Banach space has a Schauder basis.

P  Enflo showed in 1973 that the answer is no.

It had been shown quite early by S Mazur

that every (infinite-dimensional) Banach

space has an (infinite-dimensional) subspace

with a Schauder basis. (The spaces l p, 1 ≤
p < ∞ and c0 do have Schauder bases.)

One of the major results proved by

W T Gowers, and independently by B Maurey,

in 1991 is that there exist Banach spaces that

do not have any infinite-dimensional

subspace with an unconditional basis.

In many contexts the interest lies more in

operators on a Banach space than the space

itself. Many of the everyday examples of

Banach spaces do have lots of interesting

operators defined on them. But it is not clear

whether every Banach space has nontrivial

operators acting on it. If the Banach space

has a Schauder basis one can construct

examples of operators by defining their action

on the basis vectors. Shift operators that act

by shifting the basis vectors to the left or the

right have a very rich structure. Another

interesting family of operators is the projec-

tions. In a Hilbert space every subspace has

an orthogonal complement. So, there are lots

of orthogonal decompositions and lots of

projections that have infinite rank and

corank. In an arbitrary Banach space it is not

necessary that any infinite-dimensional

subspace must have a complementary

subspace. Thus one is not able to construct

nontrivial projections in an obvious way.

The construction of Gowers and Maurey was

later modified to show that there exists a

Banach space X in which every continuous

projection has finite rank or corank, and

further every subspace of X has the same

property. This is equivalent to saying that no

subspace Y of X can be written as a direct

sum W ⊕  Z of two infinite-dimensional

subspaces. A space with this property is called

hereditarily indecomposable. In 1993 Gowers

and Maurey showed that such a space cannot

be isomorphic to any of its proper subspaces.

This is in striking contrast to the fact that an

infinite-dimensional Hilbert space is

isomorphic to each of its infinite-dimensional

subspaces (all of them are isomorphic to l 2).

A Banach space with this latter property is

called homogeneous.
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In 1996 Gowers proved a dichotomy theorem

showing that every Banach space X contains

either a subspace with an unconditional basis

or a hereditarily indecomposable subspace.

A corollary of this is that every homogeneous

space must have an unconditional basis.

Combined with another recent result of

R Komorowsky and N Tomczak–Jaegermann

this leads to another remarkable result: every

homogeneous space is isomorphic to l 2.

Another natural question to which Gowers

has found a surprising answer is the

Schroeder–Bernstein problem for Banach

spaces. If X and Y are two Banach spaces, and

each is isomorphic to a subspace of the other,

then must they be isomorphic? The answer

to this question has long been known to be

no. A stronger condition on X and Y would

be that each is a complemented subspace of the

other. (A subspace is complemented if there

is a continuous projection onto it; we noted

earlier that not every subspace has this

property.) Gowers has shown that even under

this condition, X and Y need not be

isomorphic. Furthermore, he showed this by

constructing a space Z that is isomorphic to

Z ⊕  Z ⊕ Z but not to Z ⊕  Z.

All these arcane constructions are not easy to

describe. In fact, the norms for these Banach

spaces are not given by any explicit formula,

they are defined by indirect inductive

procedures. All this suggests a potential new

development in Functional Analysis. The

concept of a Banach space has encompassed

many interesting concrete spaces mentioned

at the beginning. However, it might be too

general since it also admits such strange

objects. It is being wondered now whether

there is a new theory of spaces whose norms

are easy to describe. These spaces may have a

richer operator theory that general Banach

spaces are unable to carry.

In his work Gowers has used techniques from

many areas, specially from combinatorics

whose methods and concerns are generally

far away from those of Functional Analysis.

For example, one of his proofs uses the idea

of two-person games involving sequences of

vectors and Ramsey Theory. Not just that, he

has also made several important contributions

to combinatorial analysis. We end this

summary with an example of such a

contribution.

A famous theorem of E. Szemeredi (which

solved an old problem of P Erdos)  states that

for every natural number k and positive real

number d there exists N such that every

subset of {1, 2, …  , N} of size d N contains

an arithmetic progression of length k. Gowers

has found a new proof of this theorem based

on Fourier analysis. This proof gives

additional important information that the

original proof, and some others that followed,

could not. It leads to interesting bounds for

N in terms of k and d .

Rajendra Bhatia, Indian Statistical Institute, New

Delhi 110 016, India
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The 1998 Physics Nobel
Prize

Electrons Behave as if Split into
Three!

R Nityananda

The 1998 Nobel Prize for Physics was
awarded to D C Tsui, H L Störmer, and
R B Laughlin, all from the USA for the
experimental discovery and theoretical
understanding of radically new behaviour in
a layer of electrons confined by a strong
mangetic field at low temperatures.  We first
go over some background, starting with the
work of E Hall in 1879.  A magnetic field B
was applied normal to a rectangular gold
plate, carrying current I along its length
Figure 1.  A ‘Hall voltage’ VH was detected
across the width of the plate. The simple
explanation is that the charge carriers (say
electrons) feel a sideways force due to B, but
are unable to flow in a circuit in the transverse
direction. They therefore accumulate at one

edge and build up a potential VΗ which
cancels the magnetic force qv|| B. We thus
are able to learn the sign of the charge carriers
and the velocity with which they move.
Notice that for a given current, the velocity
of each carrier is inversely proportional to the
number available per unit area in our layer
(Box 1). Of course, in Hall’s experiments,
this number was determined by the properties
of the material which were scarcely affected
by the weak magnetic fields applied.

In the late seventies, Aoki and Ando in Japan
realised that the situation could become very
different at high magnetic fields and low
temperatures in the kind of semiconductor
layers used in integrated circuits. The classi-
cal orbits are circles. Quantum mechanics
replaces the orbit by a wave function. For the
lowest state, this wave function gets squeezed
into a smaller and smaller area as the field is
increased. Since each electron needs its own
state, the total number n which can be
accomodated in the lowest state goes up
proportionally to the magnetic field B, as
explained in more detail in  Box 1.

We have just seen that the ratio RH= VH /I
(called ‘Hall resistance’) is proportional to
B/ne. Thus, the expectation was that B would
cancel and the Hall resistance would have a
universal value h/e2=25,813Ω. At that time,
this result was regarded as a rough approxi-
mation.  Crystal structure, impurities, and
the Coulomb replusion between the electrons
were all neglected in the simple model. But
very care-ful measurements by von Klitzing
in Germany and colleagues in 1980 showed

Figure 1. Schematic illustration of the Hall

Effect.
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precise integer sub-multiples of this value.
The integer was clearly the number of levels
filled, but the precision was a great surprise,
now exploited all over the world to maintain
standards and establish units. Klitzing
received the Nobel Prize for Physics in 1985,
for discovering this ‘Integer Quantum Hall
Effect’. The modern theoretical understand-
ing of the IQH is due to Laughlin.  His
reasoning was based on a beautiful symmetry
argument which is however too advanced to
describe here.  It uses a principle called ‘gauge
invariance’.

Meanwhile, A C Gossard at Bell Laboratories
prepared some of the best samples of another
semiconductor. Ga As–GaAl As, in which
electrons could be confined to two space
dimensions and cooled to very low tempera-
tures in a high magnetic field.  D C Tsui and

H L Störmer carried out experiments on the
Hall effect. They were actually looking for a
state of matter conjectured to exist by
E P Wigner in 1937, viz electrons avoiding
each other and forming a crystalline
arrangement. They did not find this. In the
course of their experiments, they did find the
integer Hall effect but also (for a lower
magnetic field) a Hall resistance RH three
times larger. It was as if there was a new,
stable configuration when the lowest level
was just 1/3 filled. Subsequently, other
fractions mainly with odd denominators were
found (see Figure 2 for a modern data set).
Again, Laughlin was first off the mark with a
theoretical explanation. An essential point
in his work is that the Coulomb repulsion
between the electrons plays a vital role.
Normally, when we describe electrons in
solids, we can think of each as a wave in three

Box 1.

Let the sample have a unit width, and n particles of charge q per unit area. The current I along the length

(longitudinal current) is nqv, where v is the velocity. The Lorentz force qvB has to be balanced by the Hall

electric force qVH (for unit width) in the transverse direction. Thus VH = vB = IB/nq, RH = VH/I = B/nq. Thus

Hall resistance is proportional to B/n and sensitive to the sign of q as stated in the text.

To understand the B/n ratio for a two dimensional electron gas, we recall that a classical charge q in a field

B moving at a speed ν  describes a circle of radius r, with mv2/r = qBv. The angular frequency ωc = ν /r =

qB/m.

The Russian physicist Landau showed that when we apply quantum mechanics to this problem, we get energy

levels equally spaced by h ωc, with the lowest at 1/2 ωc The lowest Landau level corresponds to a classical

orbit of energy 1/2 ωc= mv2/2 = mωc
2 r2/2, hence r2 = /mωc = h/2πqB.

We thus see that the area occupied by each orbit is inversely proportional to B. The precise result from

Landau’s treatment is that the maximum number of electrons which can be accomodated in the lowest level

in a unit area =  hB/q. One should remember that in the lowest energy state, the electron spin magnetic

moment points parallel to the field and the other spin state is higher in energy.
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dimensional space, seeing only the average
effect of all the others. But in this special
situation (FQH), one cannot speak of the
wavelike behaviour of one electron without
reference to that of the others. One speaks of
a ‘correlation’ between the electrons.
Laughlins inspired guess about the nature of
this correlation (which is too mathematical
to describe at the level of this article) was
confirmed by later work.  In particular, he
showed that the correlations would create
excited states in which the total charge in a
localised region wa a fraction (like 1/3) of the
electronic charge. (The total charge is of
course an integer, the difference residing at
the boundaries.) This was tested in Israel
and France in 1997. Because the electron is

Figure 2. Emergence of the FQH state  n=

5/2 at 25mK. The Hall conductivity plateau

is seen at 5/2 e2/h and a pronounced dip

in the longitudinal resistivity is also seen

at the same magnetic field.

the basic unit of charge, even a dc current
has fluctuations superposed on it known
as ‘shot noise’. This is similar to the
noise emitted by individual raindrops
falling on a roof. The new experiments
showed under very special conditions
that the FQH state produces shot noise
which can be attributed to fractional
charge of  e/3! This strange result was
expected from the theory.

Interestingly, the chemistry Nobel Prize
for 1998 recognized work on the
quantitative consequences of electrons
being correlated in atoms, molecules,

and solids. In the same year, the Physics
prize honours work revealing qualitatively new
behaviour emerging from correlated electron
motion. A good earlier example is the
phenomenon of superconductivity also
earning Nobel Prizes both for the experi-
mental discovery (Kammerlingh Onnes,
1913) and the theory half a century later
(Bardeen, Cooper, Schrieffer, 1972).
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