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Tangled magnetic fields and CMBR signal from reionization epoch
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We compute the secondary cosmic microwave background radiation (CMBR) anisotropy signal from
the reionization of the Universe in the presence of tangled magnetic fields. We consider the tangled-
magnetic-field-induced scalar, vector, and tensor modes for our analysis. The most interesting signal for
€ < 100 arises from tensor perturbations. In particular, we show that the enhancement observed by
Wilkinson microwave anisotropy probe (WMAP) in the TE cross-correlation signal for € < 10 could be
explained by tensor TE cross correlation from tangled magnetic fields generated during the inflationary
epoch for magnetic field strength By = 4.5 X 107° G and magnetic field power spectrum spectral index
n = —2.9. Alternatively, a mixture of tensor mode signal with primordial scalar modes gives weaker
bounds on the value of the optical depth to the reionization surface, 7Tion: Treion = 0-11 % 0.02. This
analysis can also be translated to a limit on magnetic field strength of =5 X 10~° G for wave numbers

=< 0.05 Mpc ™.
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I. INTRODUCTION

Coherent magnetic field of micro-Gauss strength are
observed in galaxies and clusters of galaxies ([1,2], for a
recent review see e.g. [3]). Observational evidence exists
for even larger scale magnetic fields [4]. The origin of
these observed magnetic fields however is not well under-
stood. The observed magnetic fields could have arisen from
dynamo amplification of small seed ( < 107%° G) mag-
netic fields (see e.g. [5,6]) which originated from various
astrophysical processes in the early Universe ([3,7-12]).
Alternatively the magnetic fields of nano-Gauss strength
could have originated from some early Universe process
like electroweak phase transition or during inflation (e.g.
[13,14], see [10,15] for reviews). In this scenario, the
observed micro-Gauss magnetic fields then result from
adiabatic compression of this primordial magnetic field.

The existence of primordial magnetic fields of nano-
Gauss strength can influence the large scale structure for-
mation in the Universe ([16—21]). Also these magnetic
fields could leave observable signatures in the CMBR
anisotropies ([22-28]).

In recent years, the study of CMBR anisotropies has
proved to be the best probe of the theories of structure
formation in the Universe (see e.g. [29] for a recent re-
view). The simplest model of scalar, adiabatic perturba-
tions, generated during the inflationary era, appear to be in
good agreement with both the CMBR anisotropy measure-
ments and the distribution of matter at the present epoch
(see e.g. [30,31]). Tensor perturbations could have been
sourced by primordial gravitational waves during the infla-
tionary epoch. There is no definitive evidence of the ex-
istence of tensor perturbations in the CMBR anisotropy
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data; the WMAP experiment, from temperature anisotropy
data, obtained upper limits on the amplitude of tensor
perturbations [30]. Vector perturbations are generally not
considered in the standard analysis as the primordial vector
perturbations would have decayed by the epoch of recom-
bination in the absence of a source. An indisputable signal
of vector and tensor modes is that unlike scalar modes
these perturbations generate B-type CMBR polarization
anisotropies (see e.g. [32] and references therein). At
present, only upper limits exist on this polarization mode
[33]. However, the ongoing CMBR probe WMAP and
the upcoming experiment Planck surveyor have the capa-
bility of unravelling the effects of vector and tensor
perturbations.

Recent WMAP results suggest that the Universe under-
went an epoch of reionization at z = 15; in particular,
WMAP analysis concluded that the optical depth to the
last reionization surface is 7., = 0.17 £0.04 [34];
which means that nearly 20% of CMBR photons rescat-
tered during the period of reionization. The secondary
anisotropies generated during this rescattering leave inter-
esting signatures especially in CMBR polarization anisot-
ropies (see e.g. [35]), as is evidenced by the recent WMAP
results [34].

Primordial magnetic fields source all three kinds of
perturbations. In this paper we study the secondary
CMBR anisotropies, generated during the epoch of reioni-
zation, from vector, tensor, and scalar modes, in the pres-
ence of primordial tangled magnetic fields. Recently,
Lewis [28] computed fully numerically CMBR vector
and tensor temperature and polarization anisotropies in
the presence of magnetic fields including the effects of
reionization. Seshadri and Subramanian [36] calculated the
secondary temperature anisotropies from vector modes
owing to reionization. Our approach is to compute the
secondary temperature and polarization anisotropies semi-
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analytically by identifying the main sources of anisotropies
in each case; we compute the anisotropies by using the
formalism of [32]. We also compute the tensor primary
signal to compare with the already existing analytical
results for tensor anisotropies [27].

In the next section, we set up the preliminaries by
discussing the models for primordial magnetic fields and
the process of reionization. In Section III, Section IV, and
Section V, we consider vector, tensor, and scalar modes. In
Section VI the detectability of the signal is discussed. In
Section VII, we present and summarize our conclusions.
While presenting numerical results in this paper, we use the
currently favored Friedmann-Robertson-Walker model:
spatially flat with Q,, = 0.3 and Q, = 0.7 ([30,37,38])
with Q,h% = 0.024 ([30,39]) and & = 0.7 ([40]).

II. PRIMORDIAL MAGNETIC FIELDS,
REIONIZATION, AND CMBR ANISOTROPIES

Assuming that the tangled magnetic fields are generated
by some process in the early Universe, e.g. during infla-
tionary epoch, magnetic fields at large scales ( = 0.1 Mpc)
are not affected appreciably by different processes in either
the prerecombination or the post-recombination Universe
([18,21,41]). In this regime, the magnetic field decays as
1/a? from the expansion of the Universe. This allows us to
express: B(x, ) = B(x)/a?; here x is the comoving co-
ordinate. We further assume tangled magnetic fields B,
present in the early Universe, to be an isotropic, homoge-
neous, and Gaussian random process. This allows one to
write, in Fourier space (see .e.g. [42]):

<Bi(Q)Bj(k)> = 5%)((1 - k)(5ij - kikj/kz)M(k)- (1

Here M(k) is the magnetic field power spectrum and k =
|Kk| is the comoving wave number. We assume a power-law
magnetic field power spectrum here: M(k) = Ak". We
consider the range of scales between k., taken to be
zero here and small scale cutoff at k = k. ,; kpax 1S
determined by the effects of damping by radiative viscosity
before recombination. Following Jedamzik et al. [41],
kmax = 60 Mpc™!(By/(3 X 1077 G); By is the rms of mag-
netic field fluctuations at the present epoch. A can be
calculated by fixing the value of the rms of the magnetic
field By, smoothed at a given scale k.. Using a sharp
k-space filter, we get

(3 + n)
We take k. = 1 Mpc~! throughout this paper. For n =~ —3,
the spectral indices of interest in this paper, the rms filtered
at any scale has weak dependence on the scale of filtering.

Recent WMAP observations showed that the Universe
might have got ionized at redshifts z = 15. However the
details of the ionization history of the Universe during the
reionization era are still unknown; for instance the

PHYSICAL REVIEW D 72, 103003 (2005)

Universe might have gotten reionized at z = 15 and re-
mained fully ionized till the present or the Universe might
have gotten partially reionized with ionized fraction x, =
0.3 at z =~ 30 and became fully ionized for z < 10. Both
these ionization histories are compatible with the WMAP
results [34]. Given this lack of knowledge we model the
reionization history by assuming the following visibility
function, which gives the normalized probability that the
photon last scattered between epoch n and 7 + dn, to
model the period of reionization:

g(m, mo) =texp(—7)

_ (1 - exp(_Treion))
ﬁA Tlreion

CXP[_(TI - nreion)z/A T]?eion]'

3)
Here (7, mo) = [} n.odt is the optical depth from
Thompson scattering; 7., 1S the optical depth to the
epoch of reionization; for compatibility with WMAP re-
sults, we use Tpjon = 0.17 throughout. 7eion and A7 cion
are the epoch of reionization and the width of reionization
phase, respectively; we take 7., corresponding to
Zreion = 15 and Aneion = 0.257cion. Notice that the visi-
bility function is normalized to T o, fOr Tpeion << 1.

ITI. CMBR ANISOTROPIES FROM VECTOR
MODES

From a given wave number k of vector perturbations, the
contribution to CMBR temperature and polarization an-
isotropies to a given angular mode ¢ can be expressed as
(see e.g. [32]):

0% (mo. k) (o o \Eafav D)
= L dn exp(—[+v} — V))

x [ Ko — )]+ (#Pn) + L3w>

.
X jk(n, — n)]} @)
‘5’(2;(7201;‘) =~ [ anexpl=nP () eilktn - )
(5)

(CM , 0 .
bl — 6 [ dnexpl—)z itk ~ L

(6)

Here vy and V are the line-of-sight components of the
vortical component of the baryon velocity and the vector
metric perturbation. PY(n) = 1/10[@}, — +/60},] and
the Bessel functions j,, €;, and B, that give radial projec-
tion for a given mode are given in Appendix A ([32]). The
evolution of vector metric perturbations V;(k, n) is deter-
mined from Einstein’s equations (e.g. [27,32]):
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167wGa*S;(k, n)

v,+2%v, = - , 7
a k

—k*V, = 167TGazz(pj + pj)(v}’j - V). 8)
J

Here S, the source of vector perturbations, is determined
by primordial tangled magnetic field in this paper. The
index j corresponds to baryonic, photons, and dark matter
vortical component of velocities. For tangled magnetic
fields, the vortical velocity component of the dark matter
does not couple to the source of vector perturbations to
linear order and Q; = v} — V; decays as 1/a for dark
matter (see e.g. [27]); and hence the dark matter contribu-
tion can be dropped from the Einstein’s equations. The
photons couple to baryons through Thompson scattering.
In the prerecombination epoch, the photons are tightly
coupled to the baryons as the time scale of Thompson
scattering is short as compared to the expansion rate; be-
sides the photon density is comparable to baryon density at
the epoch of recombination. In the reionized models we
consider here, neither the photons are tightly coupled to
baryons nor are they dynamically important. Therefore
photon contribution can also be dropped from Eq. (8).
Equation (8) then simplifies to:

—k*V; = 167Ga’ppQ} 9)

with Q} = (vy — V;). The quantity of interest is the angu-
lar power spectrum of the CMBR anisotropies which is
obtained from squaring Eqgs. (4), (5), and (6), taking en-
semble average, and integrating over all k:

4 C) (k, mo) 2
_a 2| O1EBC 0
Corpp =— fdkk [ S } . (10)

This expression is valid for both vector and tensor pertur-
bations; for scalar perturbation the prefactor is 2/ 7.

For primordial magnetic field, the source S;(k, i) of
vector perturbation (Eq. (7)) is the vortical component of
the Lorentz force:

1
a*4m

S.(k, m) = —— IXET[BE)x(VxBX)] = Si(k)%.

Y

It can be checked that this Newtonian expression for S; is
the same as the more rigorously defined IT} in Appendix A
(Eq. (A2)).

A. Temperature anisotropies from vector modes

As seen from Eq. (4), there are three sources of tem-
perature anisotropies. The most important contribution
comes from vorticity )}. For the reionized models, using
Egs. (7) and (8), it can be expressed as:

Qy(k, ) = 57, (12
appo
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Here p,q is the baryon density at the present epoch. The
other major contribution is from temperature quadrupole
©%,. For reionized models, the quadrupole at the epoch of
reionization is dominated by the free streaming of the
dipole from the last scattering surface (see discussion
below, Eq. (15)). This contribution is generally small but
in this case can be comparable to the vorticity effects at
small values of €. This is owing to the fact that the vorticity
is decaying and therefore during reionization epoch its
contribution is smaller as compared to the epoch of recom-
bination. The quadrupole term on the other hand gets its
contribution from the vorticity computed at the epoch of
recombination (Eq. (15)). This, as we shall discuss below,
is not the case for scalar and tensor anisotropies, as the
dominant source of anisotropy is either constant (metric
perturbations for tensor perturbations) or is increasing
(compressional velocity mode for scalar perturbation) as
the Universe evolves. The third source of temperature
anisotropies is metric vector perturbation V; this term
can be comparable to the other terms only at superhorizon
scales. We drop this term in this paper.

In Fig. 1 we show the secondary temperature anisotro-
pies generated during the epoch of reionization from vector
modes. It is seen that the quadrupole term has significant
contribution only for £ < 20. The dominant contribution at
larger € is from the vorticity during reionization. The
vorticity source contribution can be approximated as:

0.1

[ee+1)/(2m)C,] (uk?)
107*% 107 0.01

1075
T

1078
T

1000

1077

vl PR
10*

FIG. 1. The secondary temperature angular power spectrum
from vector modes is shown. The solid and the dashed lines
correspond to the contribution from vorticity and the total signal,
respectively (see text for details). The power spectrum is plotted
for By =3 X 107% and n = —2.9 (Eq. (2)).
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Oy (no b _ SK)
(2€ + 1) 47pr0 Tlreion

J'Ez“)[k(ﬂo - nreion)]Treion
(13)
for € = 20 and

Oy (mo k) _S(K) 1
2¢+1) k 8mpuo

ngg(no — €/k, no)\/g (14)

Mreion

for € = 50. The temperature angular power spectrum from
vorticity increases roughly as €>* for € = 50, with the
signal reaching a value roughly 0.3uk at € =~ 10*. This is
in agreement with the results of [36].

B. Polarization anisotropies from vector modes

The main source of the polarization anisotropies is the
temperature quadrupole ®Y,. One contribution to the tem-
perature quadrupole at the epoch of reionization is from the
free streaming of the dipole from the last scattering sur-
face. The dipole at the last scattering surface can be
obtained from the tight-coupling solutions to the tempera-
ture anisotropies [27]. The quadrupole from the free
streaming of the dipole at the epoch of recombination is:

0%, (k, 1) = 5Q(K, M) k(g — Mee)). (15)

Here 7). corresponds to the epoch of recombination. As is
the case for scalar perturbation-induced polarization in the
reionized model (e.g. [35]) this quadrupole does not suffer
the suppression as the quadrupole prior to the epoch of
recombination when the photons and baryons are tightly
coupled. The structure of anisotropies generated by the
quadrupole is determined by j(zll)(kn) around the epoch
of reionization. This typically gives a peak in anisotropies
at € = 274/ Myeion- This source dominates the contribution
to polarization anisotropies for € < 10. Another contribu-
tion to the temperature quadrupole at the epoch of reioni-
zation comes from the secondary temperature anisotropies
generated at the epoch of reionization. The approximate
value of this quadrupole can be gotten from retaining the
first term in Eq. (4):

@Y, (m, k I |
% - ﬁ:’ dn'g(n, n)Q4(n") 5 V[k(n — 1))
(16)

This contribution is generically smaller than the first con-
tribution. First, this depends on the vorticity evaluated
close to the epoch of reionization as opposed to the first
contribution which is proportional to the vorticity at the
epoch of recombination. As the vorticity decays as a /2 in
the matter-dominated era (Eq. (12)), the latter contribution
is suppressed by nearly a factor of 100 in the angular power
spectrum. Second, as only a small fraction of photons
rescatter (nearly 20%), this contribution is further sup-
pressed by a factor of 72, . However, this contribution is

not suppressed at small angular scales and, therefore,
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FIG. 2. The secondary polarization angular power spectrum
from vector modes is shown. The solid and the dot-dashed lines
correspond, respectively, to the B- and E-mode contribution
from the free-streaming quadrupole (Eq. (15)). The dotted and
dashed curves B- and E-mode signals that arise from the source
term given by Eq. (16). The power spectra are plotted for B, =
3% 107% and n = —2.9 (Eq. (2)).

might dominate the polarization anisotropies at large val-
ues of {.

In Fig. 2, we show the E and B polarization angular
power spectrum from the sources given by Egs. (15) and
(16). As discussed above, the secondary polarization an-
isotropies are dominated by the quadrupole generated by
free streaming of dipole at the last scattering surface. As
expected for vector modes ([32]), the B-mode signal is
larger than the E-mode signal; the signal strength reaches
~ 103 uk at €~ 10 in both cases. This dominates the
primary signal for € < 10 as also seen in the numerical
results of Lewis [28]. The contribution from the quadru-
pole generated at the epoch of reionization is seen to be
completely subdominant

IV. CMBR ANISOTROPIES FROM TENSOR
MODES

The energy-momentum tensor for magnetic fields has a
nonvanishing, traceless, transverse component which
sources the corresponding tensor metric perturbation.
This in turn affects the propagation of radiation from the
last scattering surface to the present and hence gets man-
ifested as additional anisotropies. In this section we calcu-
late the effect of reionization on the resultant anisotropies.
For the temperature anisotropies, we study this effect, by
calculating the power spectra separately for the standard
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recombination (no-reionization) and reionized scenario
whereas for the polarization anisotropies we compute the
secondary anisotropies by using the visibility function
given by Eq. (3).

A. Tensor temperature anisotropies

The line-of-sight integral solution for temperature an-
isotropies, for tensor perturbations is given by ([32]):

or (k, R -
Ozt m) — (™ gne=3p® — 1P K(ny = )
2¢+1

a7)

Here, PT(n) = 1/1'0[@)¥2 —+/60%,] is the tensor polar-
ization source and /4 is the gravitational wave contribution
whose evolution is detailed in Appendix B. The polariza-
tion source is modulated by the visibility function and
hence is localized to the last scattering surface. In the
tight-coupling limit before recombination, P” =~ —//(3+)
([27]); for a more detailed derivation of P” in the tight-
coupling regime see Appendix B. In the postrecombination
epoch, PT is determined by the free streaming of quadru-
pole generated at the last scattering surface. However, the
visibility function is very small at epochs prior to reioniza-
tion. Therefore the main contribution of this term comes
only from epochs prior to recombination. The gravitational
wave source on the other hand being modulated by the
cumulative visibility exp(—7) contributes at all epochs. As
a result, the PT contributes negligibly to temperature an-
isotropies at all multipoles for the case of standard recom-
bination. In the reionized model, this term gets additional
contribution from epochs close to reionization redshift but
continues to be subdominant to the other term. We have
also checked this numerically. Hence we can neglect the
first term in the above solution and using the matter-
dominated solution for 4 (Appendix B) we arrive at the
following expression for the angular power spectrum:

=2 (5,) G ) [ wemiw

X (f" drexp(—r) 2% MY. (18)

Xq X (XO - x)z

Here, x = k7, xg = k7, and x; = kmn,... The above ex-
pression is evaluated numerically for the two different
ionization histories: standard recombination with and with-
out reionization which are essentially characterized by the
different behavior of the cumulative visibility exp(—7).
The temperature power spectra are shown in Fig. 3. As
seen in the figure, the temperature power spectrum in both
cases shows similar behavior. The power is nearly flat up to
€ = 100 after which the amplitude falls rapidly. This be-
havior is identical to that obtained for primordial gravita-
tional waves. This is expected because the tensor metric
perturbation is sourced by the magnetic field only up to the
neutrino-decoupling epoch thereby imprinting an initial
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FIG. 3. The contribution of tensor modes to the temperature
power spectrum is shown. The solid and dashed lines give,
respectively, the power spectra without and with reionization.
The thick solid line, shown here for comparison, corresponds to
the temperature power spectrum from scalar modes, for the best-
fit parameters from WMAP ([30]). The power spectra are plotted
for By=3X107% n=—29 (Eq. (2)), and n,/7n;, = 10'8
(Eq. (B10)).

nearly scale-invariant spectrum after which the evolution
is source free. The effect of reionization is to reduce the
cumulative visibility between recombination (z = 1100)
and reionization (z = 15) epochs. This is why the signal
is suppressed for the reionized model. Approximate ana-
lytic expressions to primary C7,. were derived in ([27]).
However these give the correct qualitative behavior C{TT o
€%2 only for € < 100. This is because in their analytic
results, the lower limit for the time integral is taken to be
zero in Eq. (18) whereas the correct lower limit is 7).
since the cumulative visibility is zero for n < 7,.. We
have not neglected this lower limit in our numerical cal-
culation and hence we obtain the damping behavior for
€ = 100; Lewis [28] also obtains this damping behavior.
Our results are in reasonable agreement with the results of
[28] in the entire range of €; these results also agree to
within factors with the results of [27] for £ =< 75 when the
different convention we use for defining B, is taken into
account. Our results are quantitatively accurate to better
than 10% for the lower multipoles € < 75 but begin to
differ appreciably from the results of numerical studies for
larger € or in the damping regime [43]. This is because we
have not treated the transition regime from radiation domi-
nated to matter dominated for the gravitational wave evo-
lution accurately. As described in Appendix B, we have
assumed instantaneous transition. This however does not
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affect the qualitative description of modes whose wave-
length is greater than the transition width k < ngql which
in turn corresponds to multipoles € =< 300.

B. Polarization anisotropies from tensor modes

The line-of-sight solution for the E- and B-mode polar-
ization is given as:

M = —\/Efno dntexp(—7)PT BIk(ny — )],
21+ 1 0
(19)

T 0
Outkm) — /5 f " dn exp(—7)PT el Tk(my — 1))
20+ 1 0

(20)

Here, B and €/, the tensor polarization radial functions
are given in Appendix A ([32]). The tensor polarization
source P’ (7) in this case will contribute significantly to the
above integral only close to the reionization epoch. There
are two contributions to the polarization at 7,,,: one due
to the quadrupole generated at the reionization surface and
the other due to the free-streaming primary quadrupole.
However, as in the case of vector perturbations, the free-
streaming primary quadrupole will give the dominant con-
tribution. We thus have

1
PT(k’ 77) = E®;2(k’ 77)

1

n .
=5 [ dnhifTkCn - mlexp(-7)

2

To simplify the calculations we make the following ap-
proximation. Since the visibility function is strongly
peaked at 7,0, We take PT outside the integral by eval-
uating it at the visibility peak 7..,. We have verified that
this approximation works extremely well for the lower
multipoles where the power is significant. We thus get
the following expressions for the polarization angular
power spectra:

6
CZ;B = ; fdkk2n%(k)[PT(77reion)]2

X ( " dnie” "B} [k(no — n)]>2, (22)

Mrec

6

Cly = [ ARG WP (P
o 2, — T T 2

X dnte Te[k(no —m]). (23)
As seen in the above expressions, the polarization power
spectrum is modulated by the visibility function itself
instead of the cumulative visibility in the case of tempera-
ture power spectrum. As a result, both E- as well as
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B-mode anisotropies peak close to the multipole corre-
sponding to the horizon scale at reionization. Physically
this can be understood as follows: the modes which are
superhorizon at reionization experience negligible inte-
grated Sachs-Wolfe effect before 7)., and hence very
small polarization is generated for such modes.
Maximum polarization is generated for modes that just
enter the horizon at 7;,,.- For subhorizon modes, the
amplitude of the gravitational wave falls and then sets
itself into oscillations which is reflected as a drop in power
for higher multipoles.

The polarization power spectra are shown in Fig. 4. As
seen in the figure, the E-mode power peaks at € ~ 8
whereas the B-mode power peaks at € ~7. The corre-
sponding signal strengths at the peaks are ~0.2uK in
both cases. As expected, the E-mode power is marginally
greater than the B-mode power mainly because of the
slightly different behavior of the radial projection factors

[et+1)/(2m)C,] (uk?)

FIG. 4. The tensor secondary and primary polarization power
spectra are shown along with the expected signals from primor-
dial scalar and tensor modes. The dot-dot-dot-dashed and thin
dotted lines correspond to the secondary E- and B-mode power
spectra, respectively. The dot-dashed and dashed lines give the
primary E- and B-mode power spectra. The two top solid lines,
shown here for comparison, correspond to the E- and B-mode
power spectra from primordial scalar modes, for the best-fit
parameters from WMAP ([30]). For B-mode signal we assume
the ratio of tensor to scalar quadrupole 7/S = 0.7 and the tensor
spectral index n, = 0. The bottom solid lines show the B-mode
signal expected from gravitational lensing. The thick dashed line
shows the 1-o errors expected from the future CMBR experi-
ment Planck surveyor for one year of integration (Eq. (26)). The
power spectra are plotted for By =3X107°, n=—29
(Eq. (2). and ../ m;, = 10'® (Eq. (B10)).
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[32]. The primary anisotropies for both the polarization
modes is subdominant on these scales. This enhancement
in the net (primary + secondary) signal was also seen in
the numerical calculations of Ref. [28].

We also show the primary CMBR polarization anisotro-
pies from tensor modes in Fig. 4. For computing these
anisotropies we use the tight-coupling quadrupole PT(n)
as derived in Appendix B (Eq. (A12)). The primary power
spectra are also computed from Egs. (22) and (23) with
lower limit of the time integral replaced by zero. Our
results are in agreement with the numerical results of
[28] when we take into account the fact that we use differ-
ent value of 7,/m;, (Eq. (B10)): we use 1,/n;, = 108,
which gives the epoch of generation of the tangled mag-
netic field close to inflationary epoch. While presenting
numerical results, Lewis [28] uses 7,/%;, = 10°, which
puts the epoch of generation of magnetic field close to the
epoch of electroweak phase transition. Therefore our signal
is roughly an order of magnitude larger than the results of
[28].

In Fig. 5 we show the expected TE cross correlation
from tensor modes, computed using Eqgs. (17), (20), and
(21), including the effect of reionization. The effect of
reionization is seen as the peak in the TE cross correlation
for € < 10. The signal is dominated by the primary signal

e+ 1)/ (2m)C,] (uk?)

0.1

2 5 10 20 50 100

¢

0.01

FIG. 5. The tensor TE cross correlation power spectra are
shown along with the expected signal from primordial scalar
modes. The dot-dashed line shows the TE cross correlation
(secondary plus primary) from tangled magnetic fields. The thick
solid line, shown here for comparison, corresponds to the (ab-
solute value of) TE cross correlation power spectrum from
primordial scalar modes, for the best-fit parameters from
WMAP ([30]). The power spectrum is plotted for By = 3 X
1079, n = —2.9 (Eq. (2)), and 74 /n;, = 10'® (Eq. (B10)).
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for large multipoles. Note that the TE cross correlation is
positive in the entire range £ < 150 as was also pointed out
by Ref. [27] for the primary tensor TE cross correlation
(for details of sign of TE cross correlation for various
modes see [32]). In the next section we compare this signal
with the WMAP observation of TE cross correlation.

V. SECONDARY CMBR ANISOTROPIES FROM
SCALAR MODES

In addition to the vortical component of the velocity
field, the tangled magnetic fields also generate compres-
sional velocity fields which seed density perturbations.
These density perturbations have interesting consequences
for the formation of structures in the Universe ([16-21]).
The compressional velocity field also gives rise to second-
ary anisotropies during the epoch of reionization. We
compute this anisotropy here. The line-of-sight solution
to the temperature anisotropies from these velocity pertur-
bations is:

03 (k, mo) / (R (10)
Zeo M) — dne Tivs(k, k(n, — n)] (24
T , dne Ty (k, ) j,  [k(ng — n)] (24)

Here v} is the line-of-sight component of the compres-

sional velocity field. j'9 is defined in Appendix A ([32]).
The growing mode of compressional velocity can be ex-
pressed as ([16], [20]):
v(k, ) = —KET[BOX(VxB(x)) = v)(k) 7.
TPmo

(25)

Here p,,q is the matter density (baryons and the cold dark
matter) at the present epoch. The compressional velocity
field, unlike the vortical mode, has a growing mode. Also
unlike the vortical mode (Eq. (12)), the compressional
mode of baryonic velocity couples to the dark matter
([20,21]). The power spectrum of compressional velocity
modes is related to the density power spectrum using the
continuity equation: vj(k, n) = —ian.k,/k*. The den-
sity power spectrum for magnetic field power spectrum
index n = — 1.5 is « k*"*7 (see e.g. [20]).

In Fig. 6 we show the angular power spectrum of the
secondary temperature anisotropies generated by the com-
pressional velocity mode. The signal has a peak at
roughly the angular scale that corresponds to the width of
the visibility function during reionization (see e.g.
[44]). This behavior is generic to the compressional
velocity source which is « n.v} « n.k = wk for compres-
sional modes. As shown in [44], this leads to a sup-
pression of the secondary anisotropies by a factor
~ yexp(— (kA nion)?), and therefore the contribution
from modes with k = 1/A 7o, 18 negligible. Interesting
secondary signal at much smaller angular scales is possible
in the second order in perturbation theory (Vishniac effect
[45]), as the second order sources can give appreciable
contribution for u = 0. The same is true of the vector
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FIG. 6. The secondary temperature power spectrum from sca-
lar mode perturbations, seeded by tangled magnetic fields, is
shown. The power spectrum is plotted for By = 3 X 107 and
n = —29 (Eq. (2)).

modes secondary anisotropies, as is seen in Fig. 1. As seen
in Fig. 6, the amplitude of the compressional velocity-
induced secondary anisotropies is several orders of magni-
tude smaller than the observed temperature anisotropies
and it is unlikely that this signal could be detected.

VI. DETECTABILITY

It follows from Fig. 1 to 5, that the most important signal
at small multipoles arises from tensor polarization anisot-
ropies. In particular, the yet undetected B-mode signal
holds the promise of unravelling the presence of primordial
magnetic fields, as also noted by other authors (e.g. [28]).
In Fig. 4, we show the expected errors on the detection of
polarization signal from the future CMBR mission, Planck
surveyor. The expected 1o error, valid for € < 100, is (e.g.
[46,47]):

2

ACe = ((26 T Df gy

)(cg +owh), (26)

for Planck surveyor fgy, =1 and w = 1.7 X 10'¢ for one-
year integration. In Fig. 4, we use the primordial tensor
B-mode signal for calculating the expected 1o error from
Eq. (26). Figure 4 shows that the signal from magnetic
fields with strength = 3 X 107° G is detectable by this
future mission. However, it is likely that, except for the B
mode signal, the magnetic field signal will be buried in a
larger signal. However, owing to the non-Gaussianity of
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the magnetic field signal it might still be possible to extract
this component of the signal (e.g. [28]).

In Fig. 5 we show the TE cross correlation signal from
tensor modes along with the expected signal from primor-
dial scalar modes with 7.;,, = 0.17, which is in good
agreement with the WMAP data of TE cross correlation
[34]. It could be asked if the TE cross correlation observed
by WMAP for € < 100 could be explained as the tensor
signal. From Fig. 5 it is seen that the tensor signal at small
multipoles is roughly a factor of 5 smaller than the scalar
signal. And therefore, as the power spectrum from tangled
magnetic fields « Bg, much of the enhancement observed
in the TE cross correlation for € < 10 could be explainable
in terms of the tensor signal from primordial magnetic field
for By ~ 4.5 X 107° G. We quantify this notion by com-
puting the y? for € =< 15 for both the best-fit model from
WMAP and the tensor model with By ~4.5X 107° G
against the detected WMAP signal’ [34]; the y? per degree
of freedom in the two cases is = 1.7 and =~ 1.8, respectively.
Therefore the enhancement can entirely be interpreted in
terms of the secondary signal from primordial magnetic
fields.

A more realistic possibility is that both primordial scalar
and tensor modes gave comparable contribution to the
observed signal. As the strength of both these signals for
€ < 15 is roughly = 72, (for details of secondary scalar
signal see e.g. [35]), and assuming that there is roughly
equal contribution from both, the inferred value of 7 g,
from the analysis of the signal could be smaller by a factor
of 2. To quantify this statement, we did a x> test to
estimate 7., by adding the tensor signal with By = 4.5 X
107° G and the primordial scalar signal with the best-fit
cosmological parameters from WMAP. From this analysis
we obtain 7., = 0.11 = 0.02 (10) with o determined by
dx*> = 1. A possible test of this hypothesis is non-
Gaussianity of the signal at small multipoles, as the mag-
netic field sourced tensor signal is not Gaussian.

The tensor signal (primary plus secondary) could be
appreciable for £ < 100. In the range 15 < € =< 100, the
tensor and primordial scalar signals are nearly independent
of the value of 7,;,,. While the primordial scalar TE signal
anticorrelates for € = 40, the tensor signal shows positive
cross correlation in the range € < 100, as seen in Fig. 5.
The present WMAP data shows tentative detection of TE
anticorrelation for € < 100 [48]. From x? analysis in the
range 15 < ¢ =< 100, we notice that the tensor signal alone
is a poor fit to the data (x> per degree of freedom of =~ 2.1
as opposed to a value of 1.6 for the primordial scalar
model). However a sum of these two signals with B =
4.5 X 107° G is a reasonable fit, as it is dominated by the
primordial scalar signal.

It should be noted that for By =~ 4.5 X 10~° G, the tensor
temperature signal is comparable to the primordial scalar

"For details of WMAP data products http://map.gsfc.nasa.gov.
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signal (Fig. 3). WMAP analysis obtained an upper limit of
=~ ().7 on the ratio of tensor to scalar signal ([30]). While
this limit is rather weak, a more detailed analysis of the
temperature signal including the effect of tensor mode
signal sourced by primordial magnetic fields might give
independent constraints on the strength of primordial mag-
netic fields.

In our x? analysis we use only the diagonal components
of the Fisher matrix. However, owing to incomplete sky,
the signal is correlated, especially for small multipoles,
across neighboring multipoles. However, a more compre-
hensive analysis taking into this correlation is likely to
yield similar conclusions for the reasons stated above.

Our conclusions are not too sensitive to the value of
small scale cutoff k,,,, or the scale of the filter k. used to
define the normalization (Eq. (2)) for magnetic field power
spectrum index n = —2.9 we use throughout the paper. For
kpax = k. = 0.05 Mpc ™!, the foregoing discussion related
to tensor mode anisotropies would be valid for By =5 X
10™° G. Therefore, the results for TE cross correlation
from tensor perturbations can be interpreted to put bounds
on magnetic fields for only large scales k < 0.05 Mpc™!.

The strongest bound on primordial magnetic fields arises
from tensor perturbations in the prerecombination era [49].
These bounds are weakest for nearly scale-invariant (n =
—3) magnetic fields power spectrum (Eq. (33) of [49]) and
largely motivated the choice of the power spectral index we
consider here. For n = —2.9, the bound obtained by [49] is
considerably weaker than By = 4.5 X 102 G, the values
of interest to us in this paper. Vector modes might leave
observable signature in the temperature and polarization
signal for € = 2000; the current observations give weak
bound of B, = 8 X 107° G [28]. Tangled magnetic field
sourced primary scalar temperature signal gives even
weaker bounds [50]. More recently, Chen et al. [51] ob-
tained, from WMAP data analysis, a limit of = 107% G on
the primordial magnetic field strength for nearly scale-
invariant spectra we consider here; [51] consider vector-
mode temperature signal in their analysis and study pos-
sible non-Gaussianity in the WMAP data. Another strong
constraint on large scale tangled magnetic fields comes
from Faraday rotation of high redshift radio sources (see
e.g [3]); this constraint is also weaker than the value of
magnetic field required to explain the enhancement of the
TE cross -correlation signal as seen by WMAP [19].
Another interesting bound on the strength of tangled mag-
netic fields during the reionization epoch arises from the
Zeeman splitting of 21 cm radiation from the epoch of
reionization [52]; this results in a bound on the magnetic
field strength of = 100uG coherent over megaparsec
scales. Therefore, the value of B, required to give appre-
ciable contribution to the TE signal is well within the upper
limits on B from other considerations.

It should be noted that the entire foregoing discussion on
the tangled magnetic field tensor signal can be mapped to

PHYSICAL REVIEW D 72, 103003 (2005)

primordial tensor modes. The reason for this assertion is
that magnetic fields source tensor modes only prior to the
epoch of neutrino decoupling, and the subsequent evolu-
tion is source free, which is similar to the primordial tensor
modes which are generated only during the inflationary
epoch and evolve without sources at subsequent times.
Therefore, an analysis similar to ours could be used to
put constraints on the relative strength of the tensor to
scalar mode contribution (for a fixed scale) and the tensor
spectral index of the primordial modes. The main obser-
vational difference between such an interpretation and the
one given here is that tensor signal sourced by magnetic
fields will not obey Gaussian statistics as opposed to the
primordial tensor modes.

VII. SUMMARY AND CONCLUSIONS

We have computed the secondary anisotropies from the
reionization of the Universe in the presence of tangled
primordial magnetic fields. Throughout our analysis we
use the nearly scale-invariant magnetic field power spec-
trum with n = —2.9. For vector modes, we compute the
secondary temperature and E- and B-mode polarization
autocorrelation signal. For scalar modes, the results for
secondary temperature angular power spectrum from com-
pressional velocity modes are presented. For tensor modes,
in addition to the secondary temperature and polarization
angular power spectra, we compute the TE cross correla-
tion signal and compare it with the existing WMAP data;
we also recompute the primary signal for tensor modes.
Whenever possible we compare our results with the results
existing in the literature. In particular, Lewis [28] recently
computed fully numerically the vector and tensor primary
and secondary temperature and polarization power spectra.
We compare our semianalytic results with this analysis and
find good agreement. Seshadri and Subramanian [36] com-
puted the secondary temperature anisotropies from vector
modes. Our results are in good agreement with their con-
clusion. Mack et al. [27] computed primary signal from
vector and tensor modes using the formalism we adopt in
this paper. Our results are in disagreement with their results
for € = 75, and we have given reasons for our disagree-
ment in the discussion above. In addition to comparison
with existing literature, we also give new results for sec-
ondary TE cross correlation from tensor modes and sec-
ondary temperature angular power spectrum from scalar
modes.

We discuss below the details of expected signal from
each of the perturbation mode:

Vector modes: The secondary temperature and polariza-
tion signals from the vector modes is shown in Fig. 1 and 2.
The secondary temperature signal increases « €>* for £ =
50 and reaches a value =~ 0.1(uk)? for € =~ 10, in agree-
ment with the analysis of [36]. For small € the signal is
very small ( = 10~*#(uk)?) and for large € the secondary
signal is smaller than the primary signal (e.g. [28]) and
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therefore it is unlikely that the signature of reionization
could be detected in the vector-mode temperature anisot-
ropies. The polarization signal, shown in Fig. 2, is sourced
by the free streaming of dipole at the epoch of recombina-
tion. This signal dominates the primary signal for € < 10,
but is several orders of magnitude smaller than the ex-
pected signal from tensor modes.

Scalar modes: We only compute the secondary tempera-
ture anisotropies from compressional velocity modes in
this case. As seen in Fig. 6, this contribution is several
orders of magnitude smaller than the already-detected
primary signal and therefore its effects are unlikely to be
detectable.

Tensor modes: As seen from Figs. 4 and 5, the most
interesting CMBR anisotropy signal for € < 100 is from
these modes. The secondary B-mode signal from tensor
modes is detectable by future CMBR mission Planck sur-
veyor for By =~ 3 X 107° G . The tensor TE cross correla-
tion from primordial magnetic fields can explain the
observed enhancement of the observed signal for € < 10
by WMAP for By = 4.5 X 107 G if the primordial mag-
netic fields are generated during the epoch of inflation.
Assuming that tensor modes make a significant contribu-
tion to the observed enhancement, the bounds on the
optical depth to the surface of reionization 7;,, are weaker
by roughly a factor of +/2. This hypothesis can be borne/
ruled out by testing the Gaussianity of the signal for € <
10.
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APPENDIX A

In this section, we briefly discuss the terminology and
present the complete expressions for the vector and tensor
power spectra I1V(k) and II7(k) [27]. The energy-
momentum tensor for magnetic fields for a single Fourier
mode is a convolution of different Fourier modes and is
given by:

T¢m=f [Bmwa<q> 305 @B,, (k — m}
(Al)

The energy-momentum tensor has nonvanishing scalar,
vector, and tensor components. The vector and tensor
components, in Fourier space, are defined as:

Y = Pk, T, (A2)
1
n? = (P,pqu 2P,,PM>T (A3)

Here P;; = 6;; — Igilgj. The vector and tensor anisotropic
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stress are then defined as the two-point correlations of the
above components as:

(I} (0T} (k) = 2[TV (k) *8(k + k), (A4)

(I (k)) = 4D K)8(k + K'). (AS)

By evaluating the above correlations as also given in [27],
we can arrive at the following approximate expression for
the power spectra for n < —3/2,

AZ
2 _ 2n+3
2A2
(2= —"""_ j2n+3 A7
0P = oo (A7)

Here, A is the normalization of the magnetic power spec-
trum given in Eq. (2).

1. Bessel functions

We give below a list of all the relevant spherical Bessel
functions we have used in the foregoing text. These are
taken from Ref. [32]. For the vector-mode temperature
anisotropies, the relevant spherical Bessel functions are:

(11) _ €€+ 1) jolx)
Je 2 x

en _ B+ 1) d (j(x)
i = V2 E( x )

For vector-induced polarization anisotropies, the spherical
Bessel functions of interest are:

(A8)

(A9)

€l = %,/(6 D + 2)[“()“) j/eix)} (A10)
By =% -1+ 2)”()‘) (A11)

Here prime denotes a derivative with respect to x. For
tensor-induced temperature and polarization anisotropies,
the relevant Bessel functions are:

@) _ BE+2)!j(x)
T BE -2 2 (Al2)
I, 2je(x)
BT = E[Jg(x) + J‘;x } (A13)
1 2j 47 (x)
€ = Z|: Jex) + ji(x) + ])igx) + Jfo} (A14)

For scalar modes, the Bessel function of interest for
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velocity-induced perturbations is:

A0 = (). (A15)

APPENDIX B

Gravitational waves correspond to transverse, traceless
perturbations to the metric: 8g;; = 2a*(n)h;; with h;; =
lgih,» 7 = 0. Since h;; is a stochastic variable we can define
its power spectrum as:

(hij(k, Mhij(k', m)) = 4lh(k, p)I?8(k + k). (BI)

The evolution of #;; then follows from the tensor Einstein
equation (see e.g. [32])

ﬁ+2gh+kwr=8wcﬁkn) (B2)
The source on the right-hand side (RHS) is the tensor
anisotropic stress of the plasma which is defined as:
S(k, n) = I17(k)/a* (Eq. (A5)). We assume that the pri-
mordial magnetic fields are generated by some mechanism
at a very early epoch 7;,. It was recently shown by Lewis
[28] that after the neutrino-decoupling epoch 7, the neu-
trino start free streaming and develop significant aniso-
tropic stress which cancel the anisotropic stress of the
primordial magnetic fields to the leading order for super-
horizon modes, resulting in negligible net anisotropic
stress in the plasma. We can thus assume that for n >
Ny S(k, ) =0 and for n K n,, Sk, n) = 7(k)/d>
where I17(k) is the magnetic tensor anisotropic stress as
defined in Eq. (AS5). We now derive the solutions to
Eq. (B2) in various regimes. The evolution of the scale
factor a(n) is given by the Friedmann equation:

a?=H{(Q,a+Q,+Q, +Qa*). (B3)
Here, Q,, , , o are the fractional densities in matter, radia-
tion, neutrinos, and cosmological constant, respectively.
Approximate solutions in the radiation-dominated and

0,70,

matter-dominated epoch are a(n) =2 Q—% and

a(n) = (%)2, respectively. Using the above form for the
scale factor we can rewrite Eq. (B2) for n;, < 1 < 14 as:

L2 3R, II7 (k) 1
h+=h+kh=""T—+ ()—2. (B4)
n Py n

Here, R, = Q,/(Q, + Q,) =0.6. p, is the CMBR en-
ergy density. Equation (B4) can be solved exactly using the
Green’s function technique to give [27]:

3R,II7(k) sin[k(n — 7')]

h(k, n) = dn’ (BS)

py Nin

For superhorizon modes k1 < 1, the above form can be
simplified to give:
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3R 117 (k k(n —n'
bl ) ~ 2R 0 g K =)
Py i knn
3R 117 (k
=“/—()1n<i> (B6)
Py Min

For n > 7),, the evolution of & is given by the homoge-
neous solutions in the radiation and matter-dominated
regimes:

heaa(k, m) = Ay jo(km),

Jikn)
hmat(k’ 77) = A2 lk .
n
The coefficients A; and A, are determined by matching the
superhorizon solutions at the two transitions 7, and 7,,.

We thus get
Ay, =3A, =

(B7)

(B8)

9RYIVY@1n<n*>

— (B9)
Py

Min
Thus, the full expression for the matter-dominated solution
can be written as:

R (M, k) = (B10)

R, I1" (k) 1n<&> J2(kn)

y Tin
This solution is used for solving tensor temperature and
polarization primary and secondary anisotropies. Few as-
sumptions have been made in deriving the above expres-
sion. First, the transition between radiation-dominated to
matter-dominated region has been assumed to be instanta-
neous. This however does not affect the evolution of modes
with wavelength greater than the width of transition
kneq = 1. Moreover, only superhorizon solutions have
been used to match the solutions for 4 at different transi-
tions. These simplifications however do not affect the
results quotes for small multipoles as discussed in the
main section.

1. Tight-coupling tensor quadrupole

In the tight-coupling regime z = 1100 to lowest order in
mean-free path, we have PT = —//(37) [27]. We however
use the expression accurate to the second order in mean-
free path as is done for the scalar modes in [53]. Using the
Boltzmann equation for the evolution of tensor modes we
get the following equation for PT(k,7) in the tight-
coupling limit:

.3 h
P+—7P=——.
10 10
The lowest order solution to this equation is obtained by
neglecting the P in the equation, which gives P =
—h/(37). The above equation however can be solved ex-
actly to give:

P(n) = fﬂ dn' he=G/10L(n")=7(n)],
0

(B11)

(B12)

We use the standard recombination history for computing
T.
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