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Dimensional regularization is applied to the computation of the gravitational wave field generated by
compact binaries at the third post-Newtonian (3PN) approximation. We generalize the wave generation
formalism from isolated post-Newtonian matter systems to d spatial dimensions, and apply it to point
masses (without spins), modeled by delta-function singularities. We find that the quadrupole moment of
point-particle binaries in harmonic coordinates contains a pole when " � d� 3! 0 at the 3PN order. It is
proved that the pole can be renormalized away by means of the same shifts of the particle world lines as in
our recent derivation of the 3PN equations of motion. The resulting renormalized (finite when "! 0)
quadrupole moment leads to unique values for the ambiguity parameters �, �, and � , which were
introduced in previous computations using Hadamard’s regularization. Several checks of these values are
presented. These results complete the derivation of the gravitational waves emitted by inspiralling
compact binaries up to the 3.5PN level of accuracy which is needed for detection and analysis of the
signals in the gravitational wave antennas LIGO/VIRGO and LISA.
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I. INTRODUCTION

A compelling motivation for accurate computations of
the gravitational radiation field generated by compact bi-
nary systems (i.e., made of neutron stars and/or black
holes) is the need for accurate templates to be used in the
data analysis of the current and future generations of laser
interferometric gravitational wave detectors. It is indeed
recognized that the inspiral phase of the coalescence of
two compact objects represents an extremely important
source for the ground-based detectors LIGO/VIRGO, pro-
vided that their total mass does not exceed say 10 or 20M�

(this includes the interesting case of double neutron-star
systems), and for space-based detectors like LISA, in the
case of the coalescence of two galactic black holes, if the
masses are within the range between say 105 and 108M�.

For these sources the post-Newtonian (PN) approxima-
tion scheme has proved to be the appropriate theoretical
tool in order to construct the necessary templates. A pro-
gram was started long ago with the goal of obtaining these
templates with 3PN and even 3.5PN accuracy.1 Several
studies [1–10] have shown that such a high PN precision
is probably sufficient, not only for detecting the signals in
LIGO/VIRGO, but also for analyzing them and accurately
measuring the parameters of the binary (such high-
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the standard custom we use the qualifier nPN for a
ave form or (for instance) the energy flux which is
f 1=c2n relatively to the lowest-order Newtonian
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accuracy templates also will be of great value for detecting
massive black-hole mergers in LISA). The templates have
been first completed through 2.5PN order, for both the
phase [11–14] and wave amplitude [15,16]. The 3.5PN
accuracy for the templates (in the case where the compact
objects have negligible intrinsic spins) has been achieved
more recently, in essentially two steps.
(1) T
-1
he first step has been to compute all the terms, in
both the 3PN equations of motion, either in
Hamiltonian form [17–20] or using harmonic coor-
dinates [21–24], and the 3.5PN gravitational radia-
tion field, using a multipolar wave generation
formalism [25–28], by means of the Hadamard
self-field regularization [29–32], in short HR.
(The 3.5PN terms in the equations of motion have
been added in Refs. [33–35].) However, a few terms
were left undetermined by Hadamard’s regulariza-
tion, which corresponds to some incompleteness of
this regularization occurring at the 3PN order. These
terms could be parametrized by some unknown
numerical coefficients called ambiguity parameters.
(2) T
he second step has been to fix the values of the
ambiguity parameters by means of dimensional
regularization [36–38], henceforth abbreviated as
DR. Technically, DR is based on analytic continu-
ation in the dimension of space d � 3� ". The
ambiguity parameter � entering the 3PN equations
of motion has been computed in Refs. [39,40], with
result � � �1987=3080. (This result has also been
obtained with an alternative approach in Refs. [41–
43].) The three ambiguity parameters appearing in
the 3PN gravitational radiation field will be shown
in the present paper to have the following unique
 2005 The American Physical Society
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values

� � �
9871

9240
; � � 0; � � �

7

33
; (1.1)

as already announced in Ref. [44]. The method we
use for applying DR essentially consists in comput-
ing the difference between DR and some appropri-
ately defined Hadamard-type regularization called
below the pure-Hadamard-Schwartz (pHS)
regularization.
These results complete the determination of the 3.5PN-
accurate phase evolution as it suffices to insert into the
formulas of Ref. [27] the value for �, together with the
values given by (1.1). Actually, this phase evolution de-
pends only on � and on the following particular combina-
tion of parameters,

� � �� 2�� � � �
11 831

9240
: (1.2)

The present paper is devoted to the details of our DR
computation of the ambiguity parameters, item (2) above,
which has led to the values (1.1) and (1.2). We refer to [44]
for a summary of our method and a general discussion.

Let us emphasize that the values (1.1), which constitute
the end result of the application of DR, have all been
confirmed by alternative methods. Our first independent
check has been the confirmation of one particular combi-
nation of the ambiguity parameters, namely, �� �, which
was shown to follow from the requirement that the 3PN
mass-dipole moment of the binary, computed in [28] from
the multipolar wave generation formalism, should agree
with the 3PN center-of-mass position, known from the
conservative part of the 3PN equations of motion in har-
monic coordinates [23]. Second, we also have obtained the
value of � by considering the limiting physical situation of
a boosted Schwarzschild solution, corresponding to the
case where the mass of one of the particles is exactly
zero, and the other particle moves with uniform velocity
[45]. It can be argued from this calculation that the value of
� in Eq. (1.1) is a consequence of the global Poincaré
invariance of the multipolar wave generation formalism.
Third, in Sec. VII below, we shall be able to show that the
value of � is zero by a diagrammatic approach (where the
‘‘diagrams’’ are taken in the sense of [46]), showing that no
dangerously divergent diagrams contributing to � appear at
this order. These checks altogether provide a confirmation,
independent from DR, for all the parameters (1.1).

The plan of this paper is as follows: In Sec. II we
investigate the symmetric-trace-free (STF) multipole de-
composition in d dimensions for a scalar field with
compact-support source. In Sec. III we generalize to d
dimensions the known results for the multipole expansion
of the gravitational field and the definition of the source-
type multipole moments. Section IV is devoted to the
explicit expressions of the source terms in the latter source
multipole moments at the 3PN order in terms of a conve-
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nient set of retarded-like elementary potentials. Then, in
Sec. V, we obtain a general formula for the difference
between DR and HR (in the pHS variant of it). This
difference is nonzero at the 3PN order because of the
occurrence of poles in d dimensions (i.e., / 1="). In
Sec. VI we deduce the ambiguity parameters from the
DR regularization of the 3PN mass-quadrupole moment,
and we check that the 3PN mass dipole is in agreement
with the known center-of-mass position deduced from the
equations of motion. Section VII deals with a direct com-
putation of the pole part of the moments using diagrams,
their renormalization using shifts of the world lines, and
the check that � � 0. In Sec. VIII we present an alternative
derivation of the value of � based on considering the
physical situation of a single boosted point particle in d
dimensions (the result agrees with the recent computation
of the boosted Schwarzschild solution in [45]).
II. MULTIPOLE EXPANSION OF A SCALAR FIELD
IN d DIMENSIONS

A crucial input for the derivations we are going to
perform in the present article is the multipolar expansion
of solutions of flat space-time wave equations in D � d�
1 dimensions. We denote by � � ���@�@� the flat
d’Alembert operator, using the signature ‘‘mostly plus,’’
i.e., � � 
� c�2@2t , where @t � @=@t and 
 is the
Laplace operator. We first consider the case of a scalar
wave equation, say

�’	x; t
 � S	x; t
; (2.1)

and shall postpone to Sec. III the case of tensorial wave
equations. Note that, in the present work, we shall not
introduce any numerical factor in the ‘‘source’’ S on the
right-hand side (RHS) of the inhomogeneous scalar wave
Eq. (2.1). Similarly, we define the scalar Green functions as
the solutions of

�G	x; t
 � �	t
�	d
	x
; (2.2)

where �	d
	x
 is a d-dimensional Dirac distribution, such
that

R
ddx�	d
	x
f	x
 � f	0
. When d � 3, the retarded

Green function takes the simple form

G	3�1

Ret 	x; t
 � �

�	t� jxj=c

4�jxj

: (2.3)

Because of the presence of the factor �1=4� in (2.3), it
was convenient, when working in 3� 1 dimensions, to
introduce a factor �4� in front of the RHS’s of (2.1) and
(2.2). However, there is no analogous, universally simpli-
fying factor in D dimensions, so it is finally simpler to
introduce no factors at all in (2.1) and (2.2).

The D-dimensional retarded Green function has no sim-
ple expression in 	t;x
 space. However, starting from its
well-known Fourier-space expression, one can write the
following simple integral expression (see e.g. [47]),
-2



2We refer to the Appendix B of [40] for a compendium of
formulas for working in a space with d dimensions.

3Here the notation @ symbolizes any product of space or time
derivatives (so that, for instance, @ can involve any power of the
box operator � itself ).
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GRet	x; t
 � �
�	t


	2�
d=2

Z �1

0
dk

�
k
r

�
	d�2
=2


 sin	ckt
J	d�2
=2	kr
: (2.4)

Notice that this is in fact a function of t and r � jxj only:
say GRet	x; t
 � GRet	r; t
. Here �	t
 is the Heaviside step
function, and J	d�2
=2	kr
 the usual Bessel function.
Actually, we shall never need to use the explicit form
(2.4) of the Green function in D dimensions. Indeed, we
shall obtain the d-dimensional generalizations of the three-
dimensional relativistic multipole moments, obtained in
Refs. [48–50], by working directly with the source S of
the wave Eq. (2.1), or of its tensor generalizations. To do
this, we note first that the retarded solution of (2.1) reads

’	x; t
 �
Z
ddydsGRet	x� y; t� s
S	y; s
: (2.5)

In this section, we shall consider sources S	x; t
 having a
spatially compact support in d space dimensions: say
S	x; t
 � 0 when jxj> a, where a is the source’s radius.
We are interested in the multipolar expansion of the field
’	x; t
, i.e., its decomposition (when considered in the
external domain jxj> a) in d-dimensional spherical har-
monics. Traditionally, the multipolar expansion of ’	x; t
,
Eq. (2.5), is obtained by expanding the spatial kernel
GRet	x� y
 in powers of jyj ! 0. This introduces the
(reducible) multipole moments of the source, sayR
ddyyi1 � � � yi‘S	y
. A simpler, formally equivalent way

of proceeding is to replace the continuous source S	x
 by
its ‘‘distributional skeleton,’’ i.e., an expansion in increas-
ing derivatives of the d-dimensional Dirac distribution
�	x
. [For notational simplicity, we henceforth suppress
the superscript 	d
 on �	x
.] This skeletonized version of
the source S is equivalent to a continuous function S	x

with compact-support when (and only when) it is inte-
grated by a regular kernel K	x; y
, as in (2.5). It reads

SSkel	x; t
 �
X�1
‘�0

	�
‘

‘!
SL	t
@L�	x
; (2.6)

where the coefficients are the reducible multipole moments

SL	t
 �
Z
ddyyLS	y; t
: (2.7)

We recall our simplified notation: L denotes a multi-index
i1 � � � i‘ and we use the shorthands @L � @i1 � � � @i‘ , where
@i � @=@xi, and yL � yi1 � � � yi‘ , where yi � yi.

The skeleton expansion (2.6) does not yet give rise to a
multipole expansion because the various terms on the RHS
of (2.6) do not correspond to irreducible representations of
the d-dimensional rotation group O	d
. However, it is
relatively simple to transform the expansion (2.6) into
irreducible components. To do this, it is enough to decom-
pose the symmetric tensors SL into irreducible symmetric
and trace-free pieces, which is easily done by using the
124004
STF decomposition of yL in d dimensions, obtained by
recursively separating the traces, like in yij � ŷij �
1
d �ijjyj

2. Here we denote the STF projection by means of
a hat: ŷL � STF�yi1 � � � yi‘�, or sometimes by means of
brackets surrounding the indices: ŷL � yhLi. The general
formula defined by this recursion has already been given in
Ref. [40]2 and reads

yL �
X�‘=2�
k�0

ak‘�fi1i2 � � ��i2k�1i2k ŷL�2Kgjyj2k; (2.8a)

with ak‘ �
1

2k
�	d2� ‘� 2k


�	d2� ‘� k

: (2.8b)

Here, �ij is the Kronecker symbol, �‘2� denotes the integer
part of ‘

2 , L� 2K is a multi-index with ‘� 2k indices,
and � is the usual Eulerian function. The curly brackets
surrounding the indices refer to the (unnormalized, mini-
mal) sum of the permutations of the indices which keep the
object fully symmetric in L, for instance �fijVkg � �ijVk �
�ikVj � �jkVi (for convenience we do not normalize the
latter sum).

We replace the STF decomposition (2.8) into (2.7) and
insert the resulting moments back into Eq. (2.6). After
some simple manipulations we arrive at

SSkel	x; t
 �
X�1
‘�0

	�
‘

‘!

X�1
k�0

)k‘


 
k@L

�
�	x


Z
ddyŷLjyj2kS	y; t


�
; (2.9a)

where )k‘ �
1

22kk!

�	d2� ‘


�	d2� ‘� k

: (2.9b)

At this point let us notice that any term in the skeletonized
source SSkel	x; t
 which is in the form of a d’Alembert
operator � acting on spatial gradients or time derivatives
of the delta function, say ��@�	x
�,3 will give no contri-
bution to the multipole expansion of’	x; t
. Indeed, a term
in the source of the form �i�1�f	t
@L�	x
�, with i � 0,
‘ � 0, will yield a contribution to the solution of the form
��1

Ret	�
i�1�f	t
@L�	x
�
 � �i�f	t
@L�	x
�. Such a contri-

bution is localized at the spatial origin x � 0 and thus
vanishes outside of the world tube r � a containing the
source.

We now transform the Laplacians in (2.9) into
d’Alembertians using
-3
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k �

�
��

1

c2
@2t

�
k
�

Xk
j�0

k!
j!	k� j
!

�j
�
1

c2
@2t

�
k�j
:

(2.10)

We then arrive at an irreducible (STF) decomposition of
the skeletonized source S, which is of the type

SSkel	x; t
 �
X�1
‘�0

	�
‘

‘!
ŜL	t
@L�	x
 �O	�@�
: (2.11)

Here the last term, symbolically denoted O	�@�
, is an
(infinite) sum of terms of the form �i�1�f	t
@L�	x
� with
i � 0, ‘ � 0. As we just said, these terms will not contrib-
ute to the multipole expansion of the field ’	x; t
, i.e.,
considered in the external domain r > a.

The most useful result for our purpose is the explicit
expression of the STF moments in Eq. (2.11) which we find
to be

Ŝ L	t
 �
Z
ddyŷLS‘	y; t
; (2.12)

where we have introduced a convenient ‘-dependent
weighted time average given by the formal infinite PN
series

S ‘	y; t
 �
X�1
k�0

)k‘

�
jyj
c
@
@t

�
2k
S	y; t
: (2.13)

The coefficients )k‘ are those which have been introduced
in Eq. (2.9b). When written out explicitly, the ‘‘effective’’
source S‘	y; t
 reads,

S‘	y;t
�S	y;t
�
1

2	2‘�d


�
jyj
c
@
@t

�
2
S	y;t
����

�
1

	2k
!!	2‘�d
	2‘�d�2
���	2‘�d�2k�2





�
jyj
c
@
@t

�
2k
S	y;t
���� ; (2.14)

where 	2k
!! � 	2k
	2k� 2
 � � � 	2
.
Note that the result (2.12), (2.13), and (2.14) for the

scalar relativistic multipoles in d dimensions is a remark-
ably simple generalization of the three-dimensional result
obtained in [51]: It is enough to replace the explicit 3’s, 5’s,
etc. appearing in Eq. (B.14b) of [51] by d, d� 2, etc.,
without changing anything else. In [51] it also was shown
that the expansion (2.14) was in three dimensions the PN
expansion of the exact result

S	d�3

‘ 	y; t
 �

Z 1

�1
dz�	0
‘ 	z
S	y; t� zjyj=c
; (2.15a)

with �	0
‘ 	z
 �
�
�
‘� 3

2

�

�
�
1
2

�
�	‘� 1


	1� z2
‘;

Z 1

�1
dz�	0
‘ 	z
 � 1: (2.15b)
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The ratio of Gamma functions appearing in Eq. (2.15b) is
equal to 	2‘� 1
!!=	2‘�1‘!
. Note that since the expansion
is purely ‘‘even’’ (i.e., with only even powers of c�1), the
time argument t� zjyj=c in (2.15a) can be equivalently
changed into t� zjyj=c.

Correspondingly, one can check that the d-dimensional
result (2.13) and (2.14) is the PN expansion of the follow-
ing simple generalization of the three-dimensional case:

S 	"
‘ 	y; t
 �
Z 1

�1
dz�	"
‘ 	z
S	y; t� zjyj=c
; (2.16)

where we introduced " � d� 3, and

�	"
‘ 	z
 �
�
�
‘� 3

2�
"
2

�

�
�
1
2

�
�
�
‘� 1� "

2

� 	1� z2
‘�	"=2
;

Z 1

�1
dz�	"
‘ 	z
 � 1:

(2.17)

Consistently with what happened in Eq. (2.14), the kernel
�	"
‘ 	z
 is simply obtained from its three-dimensional limit
by replacing everywhere ‘ by ‘� "

2 (i.e., 2‘ by 2‘� d�
3):

�	"
‘ 	z
 � �	0
‘�	"=2
	z
: (2.18)

Let us mention in passing that the ‘‘exact’’ resummed
expression (2.16) can also be directly derived from the
Fourier-space expression of the d-dimensional Green’s
function.

Finally, having obtained the STF decomposition of the
source term SSkel in the form (2.11), we obtain the corre-
sponding expression of the scalar field ’	x; t
. As we
pointed out above, the remainder term in Eq. (2.11) does
not contribute to the multipolar expansion of the field.
Henceforth we shall denote by M	’
 the multipolar ex-
pansion of ’, which is therefore given by

M 	’
	x; t
 �
X�1
‘�0

	�
‘

‘!
��1

Ret�ŜL	t
@L�	x
�; (2.19)

since the terms ��1
RetO	�@�
 give zero when considered

outside the compact support of the source. In terms of the
retarded Green’s function the latter formula becomes

M 	’
	x; t
 �
X�1
‘�0

	�
‘

‘!
@L

�Z �1

�1
dsŜL	s
GRet	x; t� s


�
:

(2.20)

Note that, in view of the retarded nature of the Green
function GRet	x; t� s
, the integral is limited to s < t,
and even to s < t� r=c with r � jxj. Equation (2.20)
generalizes what was the basic result for the multipolar
expansion of a three-dimensional inhomogeneous wave
equation �	d�3
’ � S, namely,
-4
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M 	’
	d�3
	x; t
 � �
1

4�

X�1
‘�0

	�
‘

‘!
@L

�
Ŝ	d�3

L 	t� r=c


r

�
:

(2.21)

A common feature of the result (2.21) and its
d-dimensional generalization (2.20) is that each ‘‘multi-
polar wave’’ of degree ‘ is obtained by an ‘-tuple differ-
entiation, with respect to the spatial coordinates, of an
elementary spherically symmetric (i.e., monopolar) re-
tarded solution; indeed, as mentioned above GRet	x; t�
s
 depends only on r and t� s. In three dimensions the
elementary spherically symmetric retarded solutions admit
a simple expression in terms of the multipole moments,
namely, Ŝ	d�3


L 	t� r=c
=r. By contrast, the d-dimensional
analogue of each elementary spherically symmetric solu-
tion is a more complicated nonlocal functional of ŜL	s
,
which involves an integral over its time argument:R
t�r=c
�1 dsŜL	s
GRet	r; t� s
. This nonlocality in time in

the expression of ’ in terms of ŜL comes in addition to
the nonlocality in time entering the exact definition (2.16)
of the effective source term S	"
‘ 	y; t
. The former non-
locality is evidently related to the fact that the ‘‘Huygens
principle’’ holds only in d � 3; 5; 7; � � � dimensions. In
these special dimensions, the support of the retarded
Green function GRet	r; t� s
 is concentrated on the past
light cone s � t� r=c. On the other hand, in other dimen-
sions (and notably in dimensionally continued complex
ones) the support of the retarded Green functionGRet	r; t�
s
 extends over the interior of the past light cone: s � t�
r=c.

III. MULTIPOLE DECOMPOSITION OF THE
GRAVITATIONAL FIELD

A. d-dimensional generalization of the multipolar
post-Minkowskian formalism

The calculations of the 3.5PN templates, Refs. [25–28],
applied the general expressions of the relativistic multipole
moments of Refs. [48–50], which are themselves to be
inserted into the (three-dimensional) multipolar post-
Minkowskian (MPM) formalism of Ref. [52]. Let us sketch
how one can, in principle, generalize this MPM formalism
to arbitrary dimensions d. The basic building blocks of the
MPM formalism are
(i) t
he parametrization of a general solution of the
linearized vacuum Einstein equations in harmonic
coordinates, say h��, by means of several sequen-
ces of irreducible multipole moments;
(ii) t
he definition of an integral operator, called
FP��1

Ret, which produces, when it is applied to the
nonlinear effective MPM source N��

n �
N��
n 	h1; h2; . . . ; hn�1
 appearing at the nth nonlin-

ear iteration, a particular nonlinear solution, p��n ,
of the inhomogeneous wave equation �p��n �
N��
n ;
124004
(iii) t
-5
he definition of a complementary homogen-
eous solution q��n (�q��n � 0) such that h��n �
p��n � q��n satisfies the harmonicity condition
@�h

��
n � 0.
Given these building blocks, the MPM formalism gener-
ates, by iteration, a general solution of the nonlinear vac-
uum Einstein equations as a formal power series,�������
�g

p
g�� � ��� �Gh��1 � � � � �Gnh��n � � � � , this so-

lution being parametrized by the arbitrary ‘‘seed’’ multi-
pole moments entering the definition of the first
approximation h��1 . We briefly indicate how the various
building blocks can be generalized to arbitrary dimensions
d. We have in mind here an extension to generic integer
dimensions d > 3, before defining a formal continuation to
complex dimensions. (We consider mainly larger dimen-
sions d > 3 because they exhibit generic d-dependent fea-
tures, while lower integer dimensions, d � 1; 2, exhibit
special phenomena.)

In the previous section we have discussed the multipole
expansion of scalar fields, �’ � S, in arbitrary d. We have
seen that the general (retarded) solution outside the source
S could be parametrized, in any d, by a set of symmetric
trace-free time-dependent tensors ŜL	t
. The situation is
somewhat more complicated for other fields, notably the
spin-2 field h�� relevant for gravity in any d. As we shall
discuss in the next subsection, the multipole moments
needed in a generic d > 3 to parametrize a general gravi-
tational field are more complicated than what can be used
in d � 3. In d � 3, one can use two independent sets of
STF tensors, say ML (the ‘‘mass multipole moments’’) and
SL (the ‘‘spin’’ or ‘‘current’’ multipole moments). In a
generic d > 3, one has still the analogue of the mass multi-
pole moments, i.e., STF tensors ML corresponding to a
Young tableau made of ‘ horizontal boxes ( • • • ). The
spin multipole moments must be described by a mixed
Young tableau having one vertical column of two boxes
and ‘� 1 complementary horizontal ones—so that there
are ‘ boxes on the upper horizontal row ( • • • ). In
addition, one must introduce a third type of irreducible
representation of the d-dimensional rotation group O	d
,
namely, a mixed Young tableau having two vertical col-
umns of two boxes and ‘� 2 complementary horizontal
ones ( • • • ). For instance, when ‘ � 2, this new irre-
ducible representation has the symmetry of a Weyl tensor
in d dimensions: . As is well known, this representation
does not occur in d � 3. However, all these technical
complications will have little impact on what we will
need to calculate here. Indeed, as discussed below, it will
be enough for our purpose of unambiguously computing
the 3PN-level gravitational radiation emission to deal with
the simpler mass multipole moments ML, which admit a
uniform treatment in any dimension d (actually we shall
use a specific definition for what we call the source-type
mass multipole moments and denote them by IL instead of
ML).
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Let us turn to the generalization of the integral operator
FP��1

Ret. In d � 3, the precise definition of this operator
was the following. Consider a typical nonlinear source
generated by the MPM iteration, e.g. N2 � N2	h1; h1
 �
	@h1


2 � h1@
2h1, in which h1 is represented by its multi-

pole expansion. One formally assumes that the multipole
expansion of h1 �

P
@�ML	t� r=c
=r� contains a finite

number of multipoles. This ensures that the nonlinear
source N2	h1
 is a finite sum of terms of the form n̂KF	t�
r=c
=rq, with angular factor n̂K � STF	ni1 � � � nik
, ni �
xi=r. We can further expand F	t� r=c
 in powers of r=c
and get N2	h1
 as a sum of terms�n̂KF	t
=rp. Though this
multipole expansion of N2	h1
 is only physically relevant
in the region outside the source, say r > a, in the MPM
formalism we always mathematically extend its definition
(by real, analytic continuation in r) down to r � 0. Then
this formal construction, hMPM � Gh1 �G2h2 � � � � ,
valid by real analytic continuation for any r > 0, is iden-
tified with the multipolar expansion, say M	h
, of the
physical field h. While the physical h takes different
expressions inside (r < a) and outside (r > a) the source,
the object M	h
 � hMPM is mathematically defined every-
where (except at r � 0) by the same formal expression but
is physically correct only when r > a (see [49] for the
notation and further discussion).

To deal with the singular behavior near r � 0 of the
nonlinear MPM source terms, e.g. N2	h1
 � n̂KF	t
=r

p,
one introduces a complex number B and considers the
action of the retarded Green operator onto the product of
the source by a ‘‘regularization’’ factor 	r=r0
B, say

F	d�3

2 	B
 � ��1

Ret

��
r
r0

�
B
N2	h1


�
: (3.1)

The length scale r0 represents an arbitrary dimensionful
parameter serving the purpose of adimensionalizing the
above regularization factor. It was shown in Ref. [52]
that the integral F2	B
, Eq. (3.1), is convergent when the
real part of B is large enough, and that F2	B
, considered as
a function of the complex number B, is a meromorphic
function of B, which has in general (simple) poles at
B � 0,4 coming from the singular behavior of the inte-
grand N2	h1
 near r � 0. (One formally assumes that the
multipole moments are time independent before some in-
stant �T , and at the end of the calculation the limit T !
�1 is taken.) Therefore, the Laurent expansion of F2	B
,
near B � 0, is of the form

F	d�3

2 	B
 �

C�1	x; t

B

� C0	x; t
 � C1	x; t
B�O	B2
:

(3.2)

One then defines, when d � 3, the finite part (FP) at B � 0
4Actually, it was shown in [53,54] that F2	B
 happens to have
no pole when B! 0, due to the particular structure of the
quadratic-order interaction.
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of ��1
RetN2	h1
, denoted FP��1

RetN2	h1
, as the term C0	x; t

in the Laurent expansion of F2	B
. One proves that C0	x; t

satisfies the equation �C0 � N2	h1
 and uses it as the
‘‘particular’’ second-order contribution p��2 to the
second-order metric h��2 . Let us not spend time on the
construction of the additional homogeneous contribution
q��2 necessary to satisfy the harmonicity condition
@�	p

��
2 � q��2 
 � 0 [an example of construction of such

contribution will be given in (3.41) below]. Having
so constructed (in d � 3) the second-order term in
the MPM expansion of the external metric, h��2 � p��2 �
q��2 , one continues the iteration by considering the next
order inhomogeneous equation �h3 � N3	h1; h2
 and in-
troducing F3	B
 � ��1

Ret�	r=r0

BN3	h1; h2
�. The singular

behavior near r � 0 of N3 is more complicated (it contains
logarithms of r), and, as a consequence, one finds that
though F3	B
 is still meromorphic in the complex B plane,
it will contain double poles at B � 0. Again, one defines
p3 � FP��1

RetN3 as the coefficient of the zeroth power of B
in the Laurent expansion of F3	B
 when B! 0.

Having recalled the definition and properties of the
operation FP��1

Ret in the three-dimensional MPM formal-
ism, let us sketch what changes when working in d dimen-
sions. Let us start with the seed linearized metric h��1 . As
we see in Eq. (2.19), and will see below with more details
for the tensorial analogue of the scalar multipole expan-
sion, the multipole expansion h1 is of the form h1 �P
@��1

Ret�ML	t
�	x
�. Though one cannot write, in arbi-
trary d, a simple, closed-form expression for the object
��1

Ret�ML	t
�	x
�, it is enough to write down its expansion
when r! 0 (which is in fact the same as its PN expan-
sion). Modulo regular terms near the origin, this expansion
is obtained as

��1
Ret�ML	t
�	x
� �

�

�1 �

1

c2
@2t
�2 �

1

c4
@4t
�3 � � � �

�


 �ML	t
�	x
� � regular terms: (3.3)

Using 
�1�	x
 / r2�d, 
�2�	x
 / r4�d etc. we see that
the three-dimensional form of the expansion of h1 near r �
0 (after taking into account the expansion of the retardation
r=c), takes in d dimensions the form

h1 �
X n̂KF	t


rp�"
; (3.4)

where n̂K � STF�ni1 � � � nik�, p is a (relative) integer, and
" � d� 3. Inserting this expansion in the second-order
source N2	h1
 � @h1@h1 � h1@

2h1 yields

N2	h1
 �
X n̂KF	t


rp�2" : (3.5)

At this stage, one could consider ��1
RetN2, without inserting

a factor 	r=r0
B, by using the analytic continuation in d.
However, to ensure continuity with what was done in three
dimensions, it is better to insert this factor and to consider
-6



5As mentioned above, these terms actually cancel among
themselves because of the particular structure of N2. However,
similar terms appear at higher iteration orders, and their general
structure is simpler to describe if we start our induction reason-
ing at the quadratically nonlinear level.
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F	d
2 	B
 � ��1
Ret

��
r
r0

�
B
N2	h1


�
: (3.6)

The main difference between (3.6) and its three-
dimensional analogue (3.1) concerns the meromorphic
structure of F2	B
. Indeed, in view of the shift by �2" of
the integer exponent p in (3.5), and of the presence of r" in
the d-dimensional volume element ddx � r2�"drd�2�",
one easily sees that the (simple) poles in F2	B
 that were
located at B � 0 when d � 3 are no longer located at B �
0 when d � 3 but are shifted at B � 2"� " � ".
Alternatively, this can be explicitly verified by using the
expansion ��1

Ret � 
�1 � c�2@2t
�2 � � � � (plus a regular
kernel), and the formula 
�1r) � r)�2=�	)� 2
	)� d
�
where the pole at ) � �d is the only one which comes
from the ultraviolet (UV) behavior r! 0. As a conse-
quence, the expansion (3.2) is now modified to

F	d
2 	B
 �
C	d
�1	x; t

B� "

� C	d
0 	x; t
 � C	d
1 	x; t
B�O	B2
:

(3.7)

This expansion, and its analogues considered below, is
considered for " and B both small (so that the expansion
in powers of B makes sense), but without assuming any
relative ordering between the smallness of B and that of ".
One should neither reexpand 	B� "
�1 in powers of B="
nor in powers of "=B.

Having in hand the above structure, one then defines the
d-dimensional generalization of the finite part of N2	h1
 as
the coefficient of B0 in Eq. (3.7), namely, C	d
0 . We denote
such a finite part by

FP
B

��1
Ret�~r

BN2	h1
� � C	d
0 	x; t
; (3.8a)

where ~r �
r
r0
; (3.8b)

or, more simply, by

FP��1
RetN2	h1
 � FPF	d
2 � C	d
0 	x; t
: (3.9)

Note the subtlety that the expansion (3.7) is neither a
Laurent expansion in powers of B� " nor a Laurent
expansion in powers of B. After subtracting the shifted
pole terms / 	B� "
�1, one expands the remainder in a
regular Taylor series in powers of B. The interest of this
specific definition is the fact that it ensures that C	d
0 	x; t
 is
an exact solution of the equation we initially wanted to
solve, namely,

�	d
C	d
0 � N2	h1
: (3.10)

Indeed, by its mere definition (3.6), one has �F	d
2 	B
 �
	r=r0


BN2	h1
. Comparing this result (which has no pole)
to the application of � to (3.7), we first see that the pole
part must be a homogeneous solution, �C	d
�1 � 0. Then,
identifying the successive powers of B (using ~rB �
124004
eB ln~r � 1� B ln~r� � � � ), yields �C	d
0 � N2, �C	d
1 �
ln	r=r0
N2, and so on. Another useful property of the
d-modified definition (3.8) is that it automatically ensures
the continuity between d! 3 and d � 3. Indeed, the shift
in the location of the pole in (3.7) was made to ‘‘follow’’
the pole that existed at B � 0 when d � 3. Therefore we
have limd!3C

	d

�1 � C�1, and similarly limd!3C

	d

0 � C0,

etc., where the RHSs are those defined in Eq. (3.2) when
d � 3.

The extension of the iteration to higher nonlinear orders
introduces a new subtlety. Indeed, let us look more pre-
cisely at the structure of the second-order contribution to
the metric, h2 � p2 � q2 where, as we said, the particular
solution p2 is defined by the modified FP process: p2 �
FP��1

RetN2	h1
, and where q2 is a complementary homoge-
neous solution. Most of the terms in the integrand N2

introduce no poles, and, for them, we simply find a struc-
ture of the type p	no pole
2 �

P
r�p�2" (for simplicity, we

henceforth suppress angular factors). Let us now consider
the terms in N2 that generate poles / 	B� "
�1 in F2	B
.

5

We know that such terms introduce, when d � 3, some
logarithms of the radial variable r. When d � 3, they no
longer introduce logarithms but they introduce a further
technical complication. Indeed, let us look at a typical
example, namely, a dangerous term in F2	B
 of the form
F	pole
2 	B
 � 
�1	rB�3�2"
. Suppressing for simplicity a
factor 	B� 1� 2"
�1 which is jointly analytic in B and
" near B � 0 and " � 0 respectively and therefore creates
no problem, we have essentially F	pole
2 	B
 � 	B�
"
�1rB�1�2". According to Eq. (3.7) the pole part of
F	pole
2 that we must subtract is, for instance, obtained by
multiplying by B� " and then taking the limit B! " (and
not B! 0). This pole part is therefore given by 	B�
"
�1r�1�". The finite part of F	pole
2 	B
 is then obtained
by subtracting the pole part and taking the limit B! 0; this
yields

p	pole
2 � FPF	pole
2 �
1

"
�r�1�" � r�1�2"�: (3.11)

The subtlety is that poles in "�1 seem to appear. However,
the residue of the pole vanishes, since the limit "! 0 of
(3.11) is finite and generates the logarithm that we know to
exist in d � 3, p	pole
2 � lnr=r. If we do not take the limit
"! 0, we must keep the structure (3.11) and see what it
generates at the next, cubic, order of iteration. In addition,
we must also add the complementary solution q2 needed to
satisfy the harmonicity condition @�	p

��
2 � q��2 
 � 0. As

the calculation of q2 could be done in d � 3 without
-7
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encountering poles (see Ref. [52]), it clearly will not create
problems in d � 3 apart from the fact that q2, being a
homogeneous solution �q2 � 0, will behave near r � 0
essentially like h1, i.e., q2 �

P
r�p�" (which differs from

most of the terms of p2 which were
P
r�p�2").

Summarizing so far, the second-order MPM iteration h2
has a structure, near r � 0, of the symbolic form

h2 �
X
c1	"
r

�p�" � c2	"
r
�p�2"

�
c3	"

"

�r�p�" � r�p�2"�; (3.12)

where the ci	"
’s are analytic at " � 0, and where we
explicitly separated the semisingular structure in ".
When inserting the structure (3.12) into N3	h1; h2
, one
finds that the singular behavior of N3 near r � 0 can
generate several types of singularities in B and ". There
are simple poles / 	B� "
�1 and simple poles /
	B� 2"
�1, which are natural generalizations of the struc-
tures that generated simple poles in F2	B
. When looking
at the effect of the more complicated structure given by the
third term on the RHS of (3.12), one finds that it is best
described as generating some ‘‘quasidouble poles,’’
namely, terms / 	B� "
�1	B� 2"
�1. The point is that
if one were to expand this term in simple poles with respect
to B, namely,

1

	B� "
	B� 2"

�

1

"	B� 2"

�

1

"	B� "

; (3.13)

it would seem to involve poles in 1=". However, all such
poles are ‘‘spurious’’ because the source of the trouble
which is the last term in (3.12) had a finite limit as "!
0, and because one can easily see that, in our above-defined
MPM algorithm, source terms having a finite limit as "!
0 generate solutions having also a finite limit as "! 0.

Finally we find, by induction, that at each iteration order
n one has the structure

hn �
X
d1	"
r�p�" � d2	"
r�p�2" � � � �

� dn	"
r
�p�n"; (3.14)

where the coefficients di	"
 might individually have (sim-
ple or multiple) poles in ", e.g. di	"
 � ci	"
="

j, but which
always compensate each other in the complete sum hn.
Then we obtain that the integral

F	d
n 	B
 � ��1
Ret�~r

BNn	h1; � � � ; hn�1
� (3.15)

will have an expansion, near B � 0, of the generic form6
6Our notation is a little bit oversimplified since the coefficients
C	d
�k depend in fact on a set of integers fq1; � � � ; qkg. Also we do
not indicate the obvious dependence of the coefficients on the
iteration order n.
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F	d
n 	B
 �
X C	d
�k	x; t

	B� q1"
	B� q2"
 � � � 	B� qk"


� C	d
0 	x; t
 � C	d
1 	x; t
B�O	B2
: (3.16)

The ‘‘quasi-multiple poles’’ which constitute the first term
on the RHS have k � n� 1 and 1 � qi � n� 1. As we
have seen in (3.12) and (3.14), the poles in 1=" are in fact
spurious, as they have a residue which is always zero. (We
assume here that the seed multipole moments are regular as
"! 0.) So, when writing the result in the form of (3.16),
we note that the coefficients C	d
�k, C

	d

0 , etc., are all regular

when d! 3. One then defines the d-dimensional general-
ization of the finite part of F	d
n as being the coefficient of
B0 in the expansion (3.16):

pn � FPF	d
n � C	d
0 	x; t
: (3.17)

This coefficient is regular when " � d� 3! 0, though it
contains apparently singular terms of the type of the last
term on the RHS of (3.12). Moreover, using the same
reasoning as above, one finds that it satisfies the needed
result: �pn � Nn. Note finally that, when "! 0, the
quasimultiple poles in (3.16) merge together to form the
multiple poles / B�k, with k � n� 1, that were found to
exist in d � 3 [52]. On the other hand, when " � 0, the
poles form a ‘‘line’’ of simple poles located at B � ", B �
2", � � � , B � 	n� 1
". However, it is better not to decom-
pose the product of simple poles entering (3.16) in sum of
separate simple poles, because this decomposition would,
as in Eq. (3.13), introduce spurious singularities / "�j.

The main practical outcome of the present subsection is
the modified definition of the operation FP��1

Ret when
working in d � 3, namely, as the coefficient of B0 in an
expansion of the type (3.16) where, after separating the
shifted poles at B� ", � � � , B� 	n� 1
", one expands the
remainder in a Taylor series in powers of B. Note that a
simple consequence of this definition is that, for instance, a
term of the form B=	B� q"
 in ��1

Ret�~r
BNn� gives rise to a

finite part equal to 1. Indeed,

FP
�

B
B� q"

�
� FP

�
B� q"� q"
B� q"

�

� FP
�

q"
B� q"

� 1
�
� 1: (3.18)

One might have been afraid that a term of this type,
B=	B� q"
, could have been ambiguous because, ulti-
mately, we are sending both B and " towards zero without
fixing an ordering between the two limits. However, in the
present d-dimensional generalization of the MPM formal-
ism, everything is precisely defined and unambiguous.
-8
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B. Multipolar decomposition of the gravitational field
in d dimensions

We now sketch the d-dimensional generalization of the
results concerning the matching between the MPM exterior
metric and the inner field of a general post-Newtonian
matter system. To start with, we consider the case of a
smooth matter distribution, and will later allow the matter
stress-energy tensor to tend to a distribution localized on
some world lines. The next subsection will be devoted to
the d-dimensional definition of the source multipole mo-
ments. The investigations of this and the next subsection
are based on the works [48–50] which derived the expres-
sions of the source multipole moments of a general PN
source, up to any PN order (in three dimensions). Early
derivations of the relativistic moments, valid up to 1PN
order, can be found in Refs. [51,55].

We look for a solution, in the form of a PN expansion, of
the d-dimensional Einstein field equations. As before we
choose some harmonic coordinates, which means that
@�h

�� � 0 where the so-called ‘‘gothic’’ metric deviation
reads h�� �

�������
�g

p
g�� � ���, where g is the determinant

and g�� the inverse of the usual covariant metric g67. Then
the Einstein field equations, relaxed by the harmonic co-
ordinate conditions, take the form of some ‘‘scalar’’ wave
equations, similar to (2.1), for each of the components of
h��,

�h�� �
16�G

c4
8��; (3.19)

where � denotes the d-dimensional flat space-time wave
operator, and G is the d-dimensional Newton constant
related to the usual Newton constant GN in three dimen-
sions by Eq. (4.5) below. The main contribution we shall
add in the present subsection, with respect to our inves-
tigation of the scalar wave equation in Sec. II, is how to
deal with the crucial nonlinear gravitational source term in
the Einstein field equations, which makes the RHS of
Eq. (3.19) to have a support which is spatially noncompact.
The RHS of (3.19) involves what can be called the total
stress-energy pseudo tensor of the nongravitational and
gravitational fields, given by

8�� � jgjT�� �
c4

16�G
%��	h; @h; @2h
; (3.20)

where T�� is the matter stress-energy tensor, and the
second term represents the gravitational stress-energy dis-
tribution, which can be expanded into nonlinearities ac-
cording to7

%�� � %��
2 	h; h
 �%��

3 	h; h; h
 � � � � ; (3.21)
7In the MPM formalism of Sec. III A, we used N2	h1
 �
%2	h1; h1
, N3	h1;h2
�%3	h1;h1;h1
�%2	h1;h2
�%2	h2;h1
,
and so on.
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where the quadratic, cubic, etc., pieces admit symbolic
structures such as %2 � h@2h� @h@h and %3 � h@h@h.

The solution h�� of the field equations we consider in
this subsection will be smooth and valid everywhere, inside
as well as outside the matter source localized in the domain
r � a. Inside the source, or more generally inside the
source’s near-zone (r� �, where � is the wavelength of
the emitted radiation), h�� will admit a PN expansion,
denoted here as h��. On the other hand, in the exterior of
the source, r > a, h�� will admit a multipolar expansion,
solution of the vacuum field equations outside the source,
and decomposed into (d-dimensional) irreducible spherical
harmonics. As usual, the definition of the multipole expan-
sion is extended by real analytic continuation in r to any
value r > 0. It will be necessary to introduce the special
notation M	h��
 to mean the multipole expansion of h��.
As we already mentioned, the multipole expansion in the
present formalism is given by the MPM metric of
Sec. III A, which is therefore in the form of a formal
infinite post-Minkowskian series up to any order n,

M 	h��
 � h��MPM: (3.22)

As mentioned above, though the identification (3.22) is
only physically meaningful in the exterior domain r > a,
it can be mathematically extended down to any r > 0 by
real analytic continuation in r.

In this subsection we shall show how to relate in d
dimensions the multipolar expansion (3.22) to the proper-
ties of the matter source, in the case of a PN source (i.e.,
one which is located deep inside its own near-zone, a�
�). Actually, the derivation below will be a simple
d-dimensional adaptation of the proof given in the case
of three dimensions in Ref. [49] (see notably Appendix A
there).

The heart of the method is to show that one can deal with
the presence of noncompact-support source terms on the
RHS of the field equation (3.19), by considering a certain
quantity 
�� which satisfies a wave equation whose source
does have a compact support, and thus, whose multipolar
expansion can be computed by using the results of Sec. II
(for each space-time component ��). This quantity is
defined by


�� � h�� � FP
B

��1
Ret�~r

BM	%��
�: (3.23)

The second term in (3.23), that we thus subtract from h��

in order to define this quantity, involves the finite part
operation FP in d dimensions which has been defined in
the previous subsection (III A). It contains the regulariza-
tion factor ~rB � 	r=r0


B. The use of the operator FP��1
Ret is

consistent with Sec. III A because it acts on the multipole
expansion of the nonlinear source term M	%��
, which is
in fact identical to the formal post-Minkowskian infinite
series %��

MPM, cf. Eq. (3.22). The meaning of the last term
on the RHS of (3.23) is that FP��1

Ret is to be applied to each
-9
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term of the MPM expansion of ~rBM	%��
, and that we
then consider the formal summation of this MPM series.

Equation (3.23) appears to be the difference8 between
the solution of the field Eq. (3.19) and the contribution
coming only from the nonlinear terms in the exterior of the
compact-support source (and then analytically continued
down to r � 0). Since h�� is the retarded integral of the
pseudo tensor 8��, and since the multipole expansion of
the matter tensor is formally zero: M	T��
 � 0 (because
T�� has a compact support), we can rewrite (3.23) as


�� �
16�G

c4
f��1

Ret8
�� � FP

B
��1

Ret�~r
BM	8��
�g: (3.24)

Next, we remark that the first term in (3.24) is regular
within the source (for r � a), and that we can therefore
add to it the same FP procedure as in the second term,
without changing its value—because for regular sources,
the operator FP��1

Ret simply gives back the usual retarded
integral. Thus,


�� �
16�G

c4
FP
B

��1
Ret�~r

B	8�� �M	8��

�: (3.25)

As we said, the multipole-moment formalism we are using
is defined for general smooth matter distributions [say
T�� 2 C1	Rd
] with compact support. Hence, 8�� is regu-
lar inside the source, and ��1

Ret8
�� is a perfectly well-

defined object. Only when general formulas for the multi-
pole moments are in hand shall we apply them to point
particles (in Sec. V), and then shall we need a self-field
regularization scheme to cure the divergencies induced by
the point-particle model. Of course the FP procedure used
here should be carefully distinguished from the self-field
regularization.

The point is that 
��, in the form given by Eq. (3.25),
appears now as the retarded integral of a source with
compact support (limited to r � a). This follows from
the fact that 8�� agrees numerically with its own multipole
expansion M	8��
 in the exterior of the source, for r > a.
Hence we are allowed to use the end results of Sec. II
which applied to compact-support sources (and those re-
sults can evidently be ‘‘uniformly’’ applied to all the
components of 
��). From (2.20) and (2.12) to (2.16) we
obtain

M	
��
 �
16�G

c4
X�1
‘�0

	�
‘

‘!


 @L

�Z �1

�1
dsF̂ ��

L 	s
GRet	x; t� s

�
; (3.26)

where the multipole-moment functions read
8This ‘‘difference’’ has of course nothing to do with the
difference between the dimensional and Hadamard regulariza-
tions that we consider in Sec. V.
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F̂ ��
L 	t
 � FP

B

Z
ddyj~yjBŷL

Z 1

�1
dz�	"
‘ 	z



 �8�� �M	8��
�	y; t� zjyj=c
: (3.27)

A difference with the multipole moments considered in
Sec. II is the presence of the FP process with regularization
factor j~yjB � jy=r0jB. We shall see later the crucial role
played by this FP process.

Now we deal with the integrand 8�� �M	8��
 appear-
ing in the multipole moments (3.27), following the same
argument as in Ref. [49]. Such an integrand has a compact
support limited to r � a, so we see that in the case of a PN
source, for which a� �, we can replace it with its formal
PN expansion, because precisely the PN source is confined
within the source’s near-zone. Hence the PN-expanded
moments will be generated by the PN-expanded integrand
8�� �M	8��
, where we denote the formal PN expansion
with an overline.

Let us now show that the second term M	8��
 gives no
contribution to the PN moments. We know that the struc-
ture of this term (in d � 3� " dimensions) reads

M	8��
 �
X n̂KF	t


rp�q"
; (3.28)

where p and q are relative integers. This follows from
Eq. (3.14) above. The argument showing the vanishing of
the term involving M	8��
 is that any term of the type
(3.28) in the moment will ultimately give [after taking the
PN expansion like in (2.14)] a spatial integral of the typeR
ddxn̂KrB�p

0�q0" say (times some function of time),
which we know to be exactly zero by analytic continuation
in B. Therefore, following this argument, which is in fact
the same in d dimensions as in three dimensions, we are led
in fine to a PN multipole moment which is simply gener-
ated by the PN expansion of the (noncompact-support)
pseudo tensor 8��. Hence, we write our result as

F̂
��
L 	t
 � FP

B

Z
ddyj~yjBŷL8

��
�‘� 	y; t
; (3.29)

where the ‘-dependent integrand takes the form of the
following PN expansion,

8 ��
�‘� 	y; t
 �

Z 1

�1
dz�	"
‘ 	z
8

��	y; t� zjyj=c


�
X�1
k�0

)k‘

�
jyj
c
@
@t

�
2k
8��	y; t
: (3.30)

The PN coefficients )k‘ have been given in (2.9b). Note that
the final result in (3.30) combines two separate PN expan-
sions: (i) a PN expansion of the type (2.13) (already
indicated by an overline notation), and (ii) the usual PN
expansion of 8��. The presence of these PN expansions is
crucial to the meaning and validity of the final expression
in (3.30). Finally, note that our use (in the proof above) of
the vanishing of the spatial integrals

R
ddxn̂KrB�p

0�q0"
-10
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implies that we have transformed the role of the factor j~yjB

from that of regularizing integrals that are singular at r �
0, into that of regularizing integrals that are singular at r �
1. Thereby, in the final result (3.30), the FP procedure is
used as a regularization of the boundary at infinity of the
integral, which would otherwise be divergent because of
the multipolar factor ŷL � jyj‘ multiplying the
noncompact-support (and PN-expanded) 8��.

C. Symmetric-trace-free source multipole moments
in d dimensions

In Eq. (3.26) we have represented the quantity 
��,
Eq. (3.23), in the form of an infinite superposition of scalar
multipolar waves, say @L ~F

��
L where we associate to any

function of time F̂ ��
L 	t
 a corresponding spherically sym-

metric retarded wave denoted9

~F
��
L 	r; t
 � �4�

Z �1

�1
dsF̂ ��

L 	s
GRet	x; t� s
; (3.31)

in which the tensor indices �� play the role of simple
‘‘spectators.’’ This expansion is not yet a genuine irreduc-
ible tensorial multipole expansion. To transform Eq. (3.26)
in a tensor multipole expansion, we need to decompose
each ‘‘elementary wave’’ ~F ��

L in irreducible representa-
tions of the d-dimensional rotation group O	d
. As each
(undifferentiated) elementary wave ~F ��

L 	r; t
, Eq. (3.31), is
spherically symmetric, the problem of decomposing
~F ��
L 	r; t
 in irreducible components is reduced to the

purely algebraic problem of decomposing its source
F̂ ��

L 	t
, whose expression is given by Eqs. (3.29) and
(3.30), in irreducible representations of O	d
.

Let us consider in turn the various components of
F̂ ��

L 	t
. The time-time component F̂ 00
L is already put in

irreducible form because it is STF with respect to the
multi-index L. In the language of Young tableaux for
O	d
 [56], the STF-‘ representation carried by F̂ 00

L is
denoted by ‘ horizontal boxes • • • . The time-space

component F̂ 0i
L is, algebraically, the product of an irreduc-

ible vector representation Vi and of an irreducible STF-‘
one TL. In Young tableaux terms, this corresponds to the
product • • •× . In any dimension d, this product
gives rise to three irreducible representations: the
STF-	‘� 1
 one • • • , the STF-	‘� 1
 one

• • • , and a mixed-Young-tableau representation
• • • . The first two representations are easily under-

stood as corresponding to the STF projection VhiTLi of the
product ViTL and the contraction VaTaL�1. It is more
intricate to write explicitly the mixed-Young-tableau rep-
resentation contained in ViTL. When d � 3, it was conve-
9In three dimensions we recover ~F��
L 	r; t
 � F̂��

L 	t� r=c
=r.
Recall that in any dimension the Green function GRet	x; t
 is in
fact a function of r � jxj and t.
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nient to use the Levi-Civita antisymmetric tensor "ijk to
dualize the two antisymmetric indices in the mixed Young
tableau (i.e., the two vertical boxes) and replace them by a
single vector index. However, when considering a generic
value for the dimension d (initially taken as an integer and
then formally continued to arbitrary complex values), one
is not allowed to use the specifically three-dimensional
tensor "ijk. When further considering the space-space

component F̂ ij
L’, one is facing the algebraic problem of

decomposing the product • • •×( × )sym . Again the
irreducible decomposition of this product contains both
relatively simple symmetric representations, such as

• • • , and more involved mixed-Young-tableau
ones of the ‘‘spin’’ • • • or ‘‘Weyl’’ • • • type.10

It is quite possible to write this decomposition in any
(integer) dimension d by using mixed-Young-tableau pro-
jectors instead of the "ijk duality operations used in d � 3.
However, for the present work we can simplify our task and
simply ignore all the mixed tableaux that appear in the
irreducible decomposition of F̂ 0i

L and F̂ ij
L .

Indeed, because of their irreducible character the sym-
metric Young tableaux • • • never mingle with the
mixed-symmetry ones when doing linear operations, as is
done when working with a linearized solution of Einstein’s
equations. (This is easily checked when looking, for in-
stance, at the derivation of the multipolar expansion of
linearized gravity given in [57].) Moreover, when consid-
ering the gauge-invariant content of h�� (i.e., modulo a
linearized gauge transformation), the symmetric represen-
tations will finally give rise to the so-called mass-type
multipole moments, say IL, while the mixed one will
correspond to what are called (in d � 3) the spin-type or
current-type multipole moments, say JL. The aim of the
present work is to cure the ambiguities, linked to logarith-
mic divergencies of integrals calculated in Hadamard’s
regularization, which appeared at 3PN order in the calcu-
lations of Refs. [26–28]. However, the works [26–28]
found that the only multipole moment which introduce
ambiguities (in d � 3) at the 3PN order is the mass-
quadrupole moment Iij. Therefore, for our purpose, it is
enough to derive general d-dependent formulas for the
mass multipole moments IL (besides the quadrupole Iij
we shall also need to consider below the mass-dipole mo-
ment Ii). We do not need to consider the definition of the
current moments JL outside of d � 3. In view of what we
said above, it is therefore enough to consider only the
symmetric ( • • • ) pieces in the irreducible decompo-

sition of F̂ 0j
L and F̂ ij

L . We then write
Note in passing that in the irreducible decompositions of F L
and F̂ ij

L in three dimensions, the Levi-Civita tensors always
appear in pairs, and that the products "" which appear can
always be entirely expressed in terms of Kronecker deltas:
"abc"

ijk / �ijkabc � ��ia�
j
b�

k�
c .

-11



11The result (3.35) and (3.36) is easily checked once we
remember from Eq. (2.18) that the kernel function �	"
‘ 	z
 in d
dimensions is equal to �	0
‘�	"=2
	z
. So, the same method as in
three dimensions [49] applies with the simple replacement ‘!
‘� "

2 . In particular one uses in this derivation
d
dz
��	"
‘�1	z
� � �	2‘� "� 3
z�	"
‘ 	z
;

d2

dz2
��	"
‘�1	z
� � �	2‘� "� 3
	2‘� "� 1
��	"
‘ 	z
 � �	"
‘�1	z
�:
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F̂ 00
L � RL; (3.32a)

F̂ i0
L � T	�
iL � �ihi‘T

	�

L�1i � mixed tableaux; (3.32b)

F̂ ij
L � U	�2


ijL � STF
L

STF
ij
��ii‘U

	0

jL�1 � �ii‘�ji‘�1

U	�2

L�2�

� �ijVL � mixed tableaux; (3.32c)

where the angular brackets surrounding indices refer to the
STF projection, and where the tensors RL, T	�
L�1, T	�
L�1,
U	�2

L�2 ,U	0
L ,U	�2


L�2 , VL are all STF in their indices (recall our
notation for multi-indices: L � i1 � � � i‘, L� 1 �
i1 � � � i‘�1, etc.). Furthermore, we shall need below the
inverse of Eqs. (3.32), i.e., the expressions of these tensors
in terms of the F̂ ’s. These are

RL � F̂ 00
L ; (3.33a)

T	�
L�1 � F̂ 0hi‘�1

Li ; (3.33b)

T	�
L�1 �
‘	2‘� d� 4


	‘� d� 3
	2‘� d� 2

F̂ a0

aL�1; (3.33c)

U	�2

L�2 � F̂ hi‘�2i‘�1

Li ; (3.33d)

U	0
L �
2d‘	2‘� d� 4


	d� 2
	‘� d� 2
	2‘� d

STF
L

F̂ hai‘i
aL�1; (3.33e)

U	�2

L�2 �

‘	‘� 1
	2‘� d� 6


	‘� d� 3
	‘� d� 4
	2‘� d� 2



 F̂ habi
abL�2; (3.33f)

VL �
1

d
F̂ aa

L : (3.33g)

The next step towards the definition of the STF source
moments is to take into account the effect of the harmon-
icity conditions (@�h�� � 0) on the multipolar expansion
(3.26), which we henceforth write with the help of the
shorthand notation (3.31) as

M 	
��
 � �
4G

c4
X�1
‘�0

	�
‘

‘!
@L ~F

��
L : (3.34)

The latter tensor M	
��
 is not divergence free in the full
nonlinear theory. Indeed, by using the same method as the
one employed in three dimensions and which resulted in
Eqs. (4.5)–(4.6) of [49], i.e., by using the explicit expres-
sions (3.29) and (3.30) of the multipole moments, we can
derive the following relation

_̂
F

�0
L � ‘F̂ �hi‘

L�1i �
1

2‘� d
'̂
F

a�
aL � Ĝ�

L ; (3.35)

where the dots mean the time differentiation, and where the
new ‘‘multipole-moment’’ function Ĝ�

L is given by

Ĝ
�
L 	t
 � FP

B

Z
ddyBj~yjBŷL

ya
jyj2

8�a
�‘� 	y; t
: (3.36)
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Recall that 8�a
�‘� 	y; t
 is defined by Eq. (3.30) above.11

Notice that Ĝ�
L 	t
, Eq. (3.36), involves an explicit factor

B in its integrand. Hence, by the properties of the analytic
continuation in B, Ĝ�

L 	t
 depends in fact only on the
behavior at the boundary of the integral at infinity, jyj !
�1 [for instance, there is no analog of Ĝ�

L 	t
 in linearized
gravity]. The consequence of Eqs. (3.35) and (3.36) is that
the harmonicity conditions can be expressed by saying that
the divergence of the multipole expansion M	
��
 reads

@�M	
��
��
4G

c4
X�1
‘�0

	�
‘

‘!
@L ~G

�
L ; (3.37a)

where ~G�
L 	r;t
��4�

Z �1

�1
dsĜ�

L 	s
GRet	x;t�s
: (3.37b)

Next we decompose the components of the function Ĝ�
L in

STF guise, which means

Ĝ0
L � PL; (3.38a)

Ĝi
L � Q	�
iL � �ihi‘Q

	�

L�1i � mixed tableaux; (3.38b)

where the tensorsPL,Q	�
L�1, andQ	�
L�1 are all STF, together
with the inverse formulas

PL � Ĝ0
L; (3.39a)

Q	�
L�1 � Ĝhi‘�1

Li ; (3.39b)

Q	�
L�1 �
‘	2‘� d� 4


	‘� d� 3
	2‘� d� 2

Ĝa
aL�1: (3.39c)

The relations (3.37) can then be restated as the following
constraint equations linking the STF tensors (to simplify,
we set c � 1 for a while),

_RL � PL � ‘T	�
L �
d� ‘� 2

	‘� 1
	d� 2‘� 2

'T	�
L ; (3.40a)

_T	�
L � Q	�
L � 	‘� 1
U	�2

L

�
	d� 2
	d� ‘� 2
	d� 2‘

2‘d	d� 2‘� 4
	d� 2‘� 2


'U	0
L

�
1

d� 2‘
'VL; (3.40b)

_T	�
L � Q	�
L �
	d� 2
	‘� 1


2d
U	0
L

�
d� ‘� 1

	‘� 2
	d� 2‘

'U	�2

L � 	‘� 1
VL: (3.40c)
-12
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Our aim is now to obtain the linearized multipolar solution, which is at once solution of the source-free equations and
divergenceless, and which will be exactly equal to the linearized metric h��1 of the MPM formalism. To this end, we
introduce the object q��1 , given by the following multipole expansion in d dimensions [recall our notation (3.31)],

q001 � �4G
�
�

Z
~P� @i

�Z
~Pi �

ZZ
~Q	�
i �

3d� 1

2d
~Q	�
i

��
; (3.41a)

qi01 � �4G
�
�

Z
~Q	�
i �

3d� 1

2d
_~Q
	�

i �

X
‘�2

	�
‘

‘!
@L�1

~PiL�1

�
; (3.41b)

qij1 � �4G
�
�ij ~Q

	�
 �
X
‘�2

	�
‘

‘!

�
2�ij@L�1

~Q	�
L�1 � 6@L�2	i
~Q	�
j
L�2

� @L�2

�
_~PijL�2 � ‘ ~Q	�
ijL�2 �

7‘� 3d� 6

	‘� 1
	2‘� d� 2

'~Q
	�

ijL�2

���
: (3.41c)
Here the integral signs refer to a time antiderivative,
e.g.

R
~P	r; t
 �

R
t
�1 d8 ~P	r; 8
,

RR
~Q	r;t
�

R
t
�1d8
R

8
�1d8

0 ~Q	r;80
. The object q��1 , which is given here mod-
ulo the mixed tableaux corresponding notably to the spin-
type contributions, exactly corresponds to the so-called
‘‘harmonicity algorithm’’ of Ref. [52] (in the slightly
modified version of it proposed in Eq. (2.12) of [54]; notice
that the latter equations are valid in any d). The properties
of q��1 are that �q��1 � 0 and @��M	
��
 � q��1 � � 0, as
one can easily verify by direct calculation.12 One now
introduces the object
h��1 �M	
��
 � q��1 : (3.42)
As in [49] one easily checks that h��1 defines a linearized
multipolar metric (in harmonic coordinates), which gener-
ates, by MPM iteration, the full metric M	h��
. The
source multipole moments are then defined as those which
parametrize h��1 . The ‘‘main’’ multipole moments will be
those which parametrize a specific piece of the linearized
metric sometimes referred to as the ‘‘canonical’’ metric
and which was introduced long ago in Ref. [58]. The
canonical metric, say h��can1, is separately divergenceless,
and differs from h��1 by a linearized gauge transformation,
with gauge vector say  �1 ,
h��1 � h��can1 � @� �1 � @� �1 � ���@6 
6
1 : (3.43)
It explicitly reads (still consistently omitting the mixed
tableaux)
12Remember the presence of time antiderivatives in (3.41). In
the present formalism the metric is past-stationary, and from this
one can show that the functions involved which need to be time
integrated are in fact zero in the past, before the instant �T , so
that there is no problem in defining these antiderivatives.
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h00can1 � �4G
X�1
‘�0

	�
‘

‘!
@L~IL; (3.44a)

hi0can1 � 4G
X�1
‘�1

	�
‘

‘!
@L�1

_~IiL�1; (3.44b)

hijcan1 � �4G
X�1
‘�2

	�
‘

‘!
@L�2

'~IijL�2; (3.44c)

where the tilde over the objects IL means, as in (3.31),

~I L	r; t
 � �4�
Z �1

�1
dsIL	s
GRet	x; t� s
: (3.45)

Such expressions clearly yield a precise definition of the
mass-type STF multipole moments IL	t
 in d dimensions
(and the mixed tableaux could be used to define some
other, ‘‘spin-type’’ and ‘‘Weyl-type,’’ moments). We need
now to relate the moments IL entering (3.44) to the STF
tensors which were used in the STF decomposition (3.32)
of the function F̂ ��

L 	t
.
To this end it is most convenient to consider the gauge-

invariant linearized curvature (in d dimensions) associated
with the metric deviation h��1 , in order to eliminate the
irrelevant linearized gauge transformation in Eq. (3.43).
The component 0i0j of the curvature, in terms of the gothic
metric deviation, reads

2Rlin
0i0j�h1� �

1

d� 1
�	d� 2
@i@jh

00
1 � @i@jh

kk
1 � �ij@

2
0h

00
1

� �ij@20h
kk
1 � � 2@0@	ih

j
0
1 � @20h

ij
1 : (3.46)

Since h��1 and h��can1 differ by a gauge transformation,
Eq. (3.43), we necessarily have Rlin

0i0j�h1 � hcan1� � 0,
which immediately gives us (looking at the particular
term proportional to the double gradient @i@j) the expres-
sion of the moment IL we are seeking:
-13
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IL � RL �
d

d� 2
VL �

2	d� 1


c	‘� 1
	d� 2

_T	�
L

�
d� 1

c2	‘� 1
	‘� 2
	d� 2

'U	�2

L

�
2	d� 3


	‘� 1
	d� 2

Q	�
L ; (3.47)

where the explicit powers of c have now been restored. We
find that IL is given in terms of the STF tensors parame-
trizing our original multipole-moment function F̂ ��

L 	t
 and
defined by Eqs. (3.32), and also, in the last term of
Eq. (3.47), of the ‘‘harmonicity’’ function Ĝ�

L 	t
 given by
(3.36). Note that the last term of Eq. (3.47) involves a factor
	d� 3
 and therefore is absent in the three-dimensional
formalism of [49]. Since Ĝ�

L involves also a factor B in its
integrand, we see that the contribution induced in the mo-
ments by this term will be proportional to B	d� 3
; we
shall see that such a contribution is actually zero.

Once we have obtained the moment IL	t
, it is better to
express it back in terms of the original function F̂ ��

L 	t
,
since we know its relation to the pseudo tensor of the
source, given by Eqs. (3.29) and (3.30). Using the inverse
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relations (3.33) and (3.39) we get

IL �
d� 1

2	d� 2




2

c2	d� 1

�	d� 2
F̂ 00

L � F̂ ii
L�

�
4	d� 2‘� 2


c3	d� ‘� 2
	d� 2‘

_̂
F
i0
iL

�
2	d� 2‘� 2


c4	d� ‘� 1
	d� ‘� 2
	d� 2‘� 2

'̂
F
hiji
ijL

�
4	d� 3
	d� 2‘� 2


c2	d� 1
	d� ‘� 2
	d� 2‘

Ĝi
iL

�
: (3.48)

If we further introduce the following ‘‘source-rooted’’
quantities

* �
2

d� 1

	d� 2
800 � 8ii

c2
; (3.49a)

*i �
8i0

c
; (3.49b)

*ij � 8ij; (3.49c)

we can then write the moment in the following more
explicit form
IL	t
 �
d� 1

2	d� 2

FP
B

Z
ddyj~yjB



ŷL*�‘�	y; t
 �

4	d� 2‘� 2


c2	d� ‘� 2
	d� 2‘

ŷiL

_
*i�‘�1�	y; t


�
2	d� 2‘� 2


c4	d� ‘� 1
	d� ‘� 2
	d� 2‘� 2

ŷijL

'
*ij�‘�2�	y; t


�
4	d� 3
	d� 2‘� 2


c2	d� 1
	d� ‘� 2
	d� 2‘

BŷiL

yj
jyj2

*ij�‘�1�	y; t

�
; (3.50)
in which we denote the relevant infinite PN series of the
source terms [following our earlier notation (3.30)] by

* �‘�	y; t
 �
Z 1

�1
dz�	"
‘ 	z
*	y; t� zjyj=c


�
X�1
k�0

)k‘

�
jyj
c
@
@t

�
2k
*	y; t
: (3.51)

The numerical coefficients )k‘ are given by Eq. (2.9b), or
more explicitly

)k‘ �
1

	2k
!!	2‘� d
	2‘� d� 2
 � � � 	2‘� d� 2k� 2

:

(3.52)

Notice that with our conventions the Newtonian limit,
when c! �1, of the above-defined relativistic moment
IL takes the standard Newtonian expression in any dimen-
sion d, i.e., it does not contain any d-dependent factors in
this limit:

IL �
Z
ddy6ŷL �O	c�2
; (3.53)
where the ‘‘Newtonian’’ density of the fluid is 6 � T00=c2.
This is clear from the fact that the factor d�1

2	d�2
 � f�1

which appears in front of the expression of the multipole
moment (3.50), cancels out precisely the d-dependent fac-
tor in the Newtonian approximation for *, Eq. (3.49a),
which is given by * � f6�O	c�2
.

Finally, note that the last term in (3.48) or (3.50) is
proportional to both B and " � d� 3. To show that this
term does not contribute to IL, we can first decompose the
integral over ddy in two parts: (i) an integral I1 over a
compact domain r <R containing the two particles, plus
(ii) an integral I2 over the outer domain r >R. Even if the
integration near the particles introduces some UV poles /
1=", I1 will be at worst proportional to "B=" � B, and
will [by the definition of the FP process, Eq. (3.17)] give a
vanishing finite part at B � 0. Concerning I2, we shall
prove in Sec. V B below that, even if it contains infrared
(IR)-type poles, its value is a continuous function of d.
Now, because of the factor 	d� 3
, the value in three
dimensions is zero, hence this term does not contribute to
the moments and can be ignored in the present work (this
term was neglected in Ref. [44]).
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IV. SOURCE TERMS FOR THE 3PN MOMENTS IN
d DIMENSIONS

In our 3PN calculations of the gravitational wave field,
we will need the expressions of the sources *, *i, and *ij,
defined in Eqs. (3.49) above, up to orders 1=c6, 1=c4, and
1=c2, respectively. The quickest method to obtain them
consists in using the results of our previous work [40], in
which the 3PN metric g�� was expanded in terms of nine
retarded potentials, introduced in [21] when d � 3 and
generalized to d dimensions in [40]. Starting from the
matter source densities

7 �
2

d� 1

	d� 2
T00 � Tii

c2
; 7i �

T0i

c
;

7ij � Tij;

(4.1)

we first defined the ‘‘linear’’ potentials

V � ��1
Ret	�4�G7
; Vi � ��1

Ret	�4�G7i
: (4.2)

These linear potentials were then used to construct higher
‘‘nonlinear’’ potentials, such as

Ŵij � ��1
Ret

�
�4�G

�
7ij � �ij

7kk
d� 2

�

�
1

2

�
d� 1

d� 2

�
@iV@jV

�
; (4.3)

and six other ones (denotedK, R̂i, X̂, Ẑij, Ŷi, T̂) whose field
equations are explicitly given in Eqs. (2.12) of Ref. [40].
We computed all of them for a binary system of point
masses, in spatial dimension d � 3� " close to 3, at any
field point in the case of linear potentials such as (4.2), and,
for the more difficult nonlinear ones like (4.3), in the
vicinity of the particles as Laurent-type expansions in
powers of the radial distances to them. The retardations
in these potentials were also systematically expanded to
the required PN order.

For our present calculation of the 3PN gravitational
wave field, only the expressions of the first seven potentials
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(V, Vi, K, Ŵij, R̂i, X̂, Ẑij) will actually be necessary. From
Eqs. (3.19) and (3.49) above, the sources *, *i, and *ij

may be expressed in terms of the gothic metric g�� ��������
�g

p
g�� � ��� � h�� as

* �
c2

8�G
�

�
	d� 2
h00 � hii

d� 1

�
; (4.4a)

*i �
c3

16�G
�h0i; (4.4b)

*ij �
c4

16�G
�hij; (4.4c)

where G denotes by definition the gravitational constant
entering the 	d� 1
-dimensional Einstein Eqs. (3.19). As
underlined in Ref. [40], it is related to the usual Newton
constant (in 3 spatial dimensions) GN by

G � GN‘
d�3
0 ; (4.5)

where ‘0 is an arbitrary length scale, which will enter our
dimensionally regularized calculation below but will drop
out of the final physical observables.

To identify the sources (4.4), it thus suffices to write Ein-
stein’s equations R���	8�G=c4
�T���T��g��=	d�1
�
in harmonic gauge and in terms of the gothic metric g��.
A possible method would be to use the expression of the
Ricci tensor in terms of g�� that we gave in Eq. (A9) of
Ref. [40], for any dimension d. It is however quicker to use
directly the full 3PN form of g�� that we obtained in this
reference, which can be translated in terms of g�� thanks to
Eqs. (A3) and (A8) of [40]. The result not only depends on
the nine introduced potentials (V, Vi, K, Ŵij, R̂i, X̂, Ẑij, Ŷi,
T̂), but the 1=c8 order in g00 actually depends also on the
4PN (1=c8) contribution to the spatial metric gij, that was
not computed in [40]. However, the combination entering
Eq. (4.4a) above precisely cancels this uncomputed con-
tribution, and one gets straightforwardly
	d� 2
h00 � hii

d� 1
� �

2

c2
V �

1

c4

�
2
�
d� 1

d� 2

�
V2 � 4

�
d� 3

d� 2

�
K
�
�

1

c6

�
8X̂� 4VŴ �

4

3

�
d� 1

d� 2

�
2
V3 � 8

�
d� 3

d� 1

�
ViVi

�
8	d� 1
	d� 3


	d� 2
2
KV

�
�

1

c8

�
32T̂ � 16

�
d� 1

d� 2

�
VX̂� 16VẐ� 4

�
d� 1

d� 2

�
V2Ŵ �

8

d� 1
ŴijŴij

�
4

d� 1
Ŵ2 �

2

3

�
d� 1

d� 2

�
3
V4 �

8	d� 1
	d� 3
2

	d� 2
3
K2 � 32

�
d� 3

d� 1

�
R̂iVi �

8	d� 1
2	d� 3


	d� 2
3
KV2

� 8
�
d� 3

d� 2

�
KŴ � 16

�
d� 3

d� 2

�
VViVi

�
�O

�
1

c10

�
; (4.6a)

h0i � �
4

c3
Vi �

1

c5

�
8R̂i � 4

�
d� 1

d� 2

�
VVi

�
�

1

c7

�
16Ŷi � 8ŴijVj � 8ŴVi � 8

�
d� 1

d� 2

�
VR̂i

� 4
�
d� 1

d� 2

�
2
V2Vi �

8	d� 1
	d� 3


	d� 2
2
KVi

�
�O

�
1

c9

�
; (4.6b)

hij � �
4

c4

�
Ŵij �

1

2
�ijŴ

�
�

16

c6

�
Ẑij �

1

2
�ijẐ

�
�O

�
1

c8

�
; (4.6c)
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where Ŵ � Ŵii and Ẑ � Ẑii denote the traces of the corresponding potentials. Equations (2.12) of Ref. [40] then allow us
to compute the d’Alembertian of these metric coefficients in terms of the first seven potentials, and one gets the following
explicit form for the sources:

* � 7�
2

c2

�
d� 3

d� 2

�
7V �

1

4�Gc2

�
d� 1

d� 2

�

	V2
 �

1

�Gc4

�
4�G
d� 2

7iiV � 8�G
�
d� 3

d� 1

�
7iVi � 4�G

�
d� 3

d� 2

�
2


 7
�
V2

2
� K

�
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	4� d
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2
	@tV
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1
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�
2
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2
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�
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d� 1

	ViVi
 �

	d� 1
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	d� 2
2
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�
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�
16�G
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7ViVi � 4�G
5� d

	d� 2
2
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d� 1

7ijŴij
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�
d� 3

d� 2

�
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4

3
�G
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d� 2

�
3
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�
d� 3

d� 2

�
3
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	d� 3
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	d� 2

7iViV
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�
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�
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1

2
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1
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1

2
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2
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; (4.7a)
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*ij � 7ij �
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8�G

�
d� 1

d� 2

��
@iV@jV �

1

2
�ij@kV@kV

�
�

1

�Gc2



4�G
d� 2

7ijV �
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: (4.7c)

Note that although we did use the full 3PN expression of the metric in the intermediate steps of this calculation, the sources
*, *i, and *ij actually depend only on the 2PN metric and on the potential Ẑ (entering the trace of the 3PN spatial metric
gij). The mass-type moment IL can now be obtained by inserting the above expressions into Eqs. (3.50) and (3.51), thereby
generalizing to d dimensions the three-dimensional results (3.4)–(3.6) of Ref. [28].
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The above method to derive Eqs. (4.7) not only avoids
redoing some of the calculations of Ref. [40], but it also
yields the results in a useful form. Indeed, the Laplacians
of product of potentials, say 
	AB
, are easier to compute
than their expanded form B
A� A
B� 2@kA@kB (where

A and 
B may be replaced by their corresponding
sources). In particular, when computing the contributions
of such Laplacians to the moment IL, Eq. (3.50), their
lowest-order terms (k � 0) in Eq. (3.51) do not contribute
to the difference between the dimensional and pure-
Hadamard-Schwartz regularizations; see Eq. (4.23) of
Ref. [28] and Sec. V B below. However, the retardation
corrections (k � 1) entering Eq. (3.51) do contribute to this
difference.

To ease the reading, we classified the various terms of
Eqs. (4.7) in different sets, at each successive PN order:
first the compact-support terms (proportional to 7, 7i, or
7ij), which do not contribute to the difference between the
dimensional and pHS regularizations below; second the
main noncompact contributions, which are crucial for this
difference; and finally the noncompact terms proportional
to the Laplacian of a product of potentials, which do not
contribute to the difference at lowest order. In each set of
terms, we also gathered at the end those which are propor-
tional to 	d� 3
. These terms are absent in d � 3, and
notably all those which involve the potential K. Note
finally that in expression (4.7c), none of the terms propor-
tional to �ij contributes to our present calculation, since
*ij is multiplied by the trace-free tensor ŷijL in Eq. (3.50).
We nevertheless quote these terms for completeness, as
they may be useful for future works.

V. DIFFERENCE BETWEEN DIMENSIONAL AND
PHS REGULARIZATIONS

Let us first recall that the general strategy we are follow-
ing, in order to obtain the complete 3PN wave generation
from two point masses, consists of two main steps. They
have been devised at the occasion of the application of
dimensional regularization (DR) to the problem of the 3PN
equations of motion [39,40], and are
(i) T
o obtain the expression of the 3PN mass-
quadrupole moment in the case of two point masses,
using for the required self-field regularization the
so-called pure-Hadamard-Schwartz regularization;
(ii) T
o add to the pHS result the difference between DR
and the pHS regularization, which, as we shall see,
is exclusively due to the presence of poles in d
dimensions (proportional to 1=").
13The mass-quadrupole moment is the only one needed to be
computed with full 3PN accuracy, thus it contains most of the
difficult nonlinear integrals, and all the ambiguities associated
with Hadamard’s regularization.
Step (i) has already been achieved in our previous papers
devoted to Hadamard-regularization computations of the
multipole moments [26,28]; the present paper deals with
step (ii) of this general method and constitutes the central
part of our application of dimensional regularization in the
problem. We refer to [40] for a precise definition of the
124004
pHS regularization, and to [44] for a summary and dis-
cussion of the overall method. Note that, in order to apply
step (ii) we transformed a few terms in the expression
obtained by inserting the effective sources (4.7) into the
multipole moments IL so as to exactly parallel the form
used in [28]. This is notably the case for terms that will be
discussed in Sec. VII below.

A well-known result (see Refs. [17,18,21,22]) is that
at the 3PN order, Hadamard’s regularization, and in fact
any of its variants like the pHS one, permits the computa-
tion of most of the terms (both in the equations of motion
and in the radiation field at infinity), except for a few terms
which are ‘‘ambiguous’’ in the sense that this particular
regularization gives different results for certain divergent
integrals, depending on how one performs the integration
(e.g., by integrating by parts or not). In fact, the ambiguous
integrals are those which exhibit some logarithmic diver-
gencies, corresponding to the occurrence of poles in d
dimensions. As it turns out, the structure of the ambiguous
terms is always of a simple and limited type and can
therefore be parametrized by means of a few arbitrary
unknown numerical constants called the ‘‘ambiguity pa-
rameters.’’ It was shown in Refs. [26,28] that the
Hadamard regularization of the 3PN mass-quadrupole mo-
ment Iij of point-particle binaries13 is complete up to three
and only three ambiguity parameters, which were denoted
by �, �, and � .

The regularization used in the first work [26] was a
certain variant of the Hadamard regularization called ‘‘hy-
brid,’’ and the ambiguity parameters �, �, and � were
originally defined with respect to that hybrid regulariza-
tion. The next calculation, performed in [28], has been
based on the pHS regularization [step (i)], and therefore
we had to perform some numerical shifts of the values of �,
�, and � , in order to take into account the different refer-
ence points for their definition (hybrid regularization in
[26], pHS one in [28]). An important and nontrivial check
of these computations has been precisely the very existence
of a unique numerical shift for each of the ambiguity
parameters, such that the results of both the computations
[26,28] are in complete agreement. Indeed, as we said,
these two computations differ in the adopted regulariza-
tions, but they also differ by many details concerning their
technical implementations, like the use of different ‘‘ele-
mentary’’ potentials. Indeed, in [26] some instantaneous
Poisson-like versions of the elementary potentials, say U,
Ui, � � � , were adopted. However, in Ref. [28] we preferred
to use the retarded elementary potentials V, Vi, � � � , which
are the same as in the work on the equations of motion
[22,40], and also the same as those we employ in the
present paper (see Sec. IV).
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A. Difference for d-dimensional spatial integrals

In this section we derive a general formula for the
difference between DR and the pure-Hadamard-Schwartz
regularization. We shall not review the meaning and pre-
cise definition of the pHS regularization, and simply refer
to Sec. III of [40] and Sec. IV of [28] for full details. The
difference investigated here concerns the typical
(noncompact-support) terms occurring in the multipole
moments, which are in the form of some spatial integrals
over R3 or Rd. Our investigation parallels the one of
Sec. IV B in [40], which dealt with the difference for the
case of Poisson and Poisson-like potentials, appropriate to
the equations of motion. However, because the Poisson
potentials depend not only on time t but also on the field
point x, while the integrals we consider here for the multi-
pole moments are functions of time t only, the derivation of
the end formula will be substantially simpler than in the
case of the equations of motion, so we shall give only the
main result.

In three dimensions the generic functions we have to
deal with, say F	x
, are smooth on R3 except at two
singular points y1 and y2, around which they admit
Laurent-type expansions in powers (and inverse powers)
of r1 � jx� y1j and r2 � jx� y2j.

14 When r1 ! 0 we
have (for any N 2 N)

F	x
 �
X

p0�p�N

rp1f
1
p	n1
 � o	rN1 
: (5.1)

The Landau symbol o takes its usual meaning; the coef-
ficients f1p	n1
 depend on the unit vector n1 �

jx� y1j=r1. Since the powers p can be positive as well
as negative integers, the expansion (5.1) is singular, but
there is a maximal order of divergency, p0 2 Z.

In d dimensions, there is an analogue of the function F,
which results from the same detailed PN iteration process
as the one leading to F but performed in d dimensions (see
the discussion in [40]); let us call this d-dimensional
function F	d
	x
, where x 2 Rd. When r1 ! 0 this func-
tion admits a singular expansion which is more compli-
cated than in three dimensions, and reads

F	d
	x
 �
X

p0�p�N
q0�q�q1

rp�q"1 f
1

	"

p;q	n1
 � o	rN1 
; (5.2)

with dimension-dependent coefficients f
1

	"

p;q	n1
 (recall that

" � d� 3), and where p and q are relative integers whose
values are limited by some p0, q0, and q1 as indicated. We
will be interested here in integrands F	d
	x
 which have no
poles as "! 0 (the poles in IL being generated by inte-
grating these integrands), since this will always be the case
14The function F	x
 depends also on time t, through for
instance their dependence on the velocities v1	t
 and v2	t
, but
the (coordinate) time t is purely ‘‘spectator’’ in the regularization
process, and thus will not be indicated.
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at 3PN order. Therefore, we deduce from the fact that
F	d
	x
 is continuous at d � 3, i.e., limd!3F	d
 � F, the
constraint

Xq1
q�q0

f	"�0


1
p;q 	n1
 � f

1
p	n1
: (5.3)

In the present paper we are interested in spatial integralsR
ddxF	d
	x
 representing generic terms in the multipole

moments. Here, F	d
	x
 is a noncompact-support term in
the integrand of the multipole moments, which follows
from Eqs. (4.7) in Sec. IV above. We do not consider the
compact support terms (proportional to 7, 7i, and 7ij)
since their contribution to the moments has already been
computed in Ref. [28] and they give no contribution in the
difference between the dimensional and pHS regulariza-
tions. Furthermore, we assume in the definition of the
function F	d
 that the derivatives of the elementary poten-
tials therein are taken in the ordinary, nondistributional
sense (we further comment below on how the distributional
parts of the derivatives have been taken into account in the
formalism). Furthermore we do not need to consider here
the noncompact-support terms in the multipole moments
which have a form such that their spatial integral depends
solely on the boundary at infinity, jxj ! �1. These terms
have been discussed in Sec. IV D of [28]; they provide a
crucial contribution to the multipole moments in three
dimensions computed in [26,28]. However, we shall
show in Sec. V B below that, thanks to the d-dimensional
generalization of the finite part process FPB defined in
Sec. III A above, these terms do not contribute to the
difference ‘‘DR� HR’’ in which we are interested.

Finally, we take for F	d
 a generic noncompact-support
term, whose integral cannot be expressed as an integral at
infinity, i.e., not of the form which is discussed in Sec. IV D
of [28]. The general structure of such F	d
 is that of a
multipolar factor x̂L times some multilinear functional,
say P , of the elementary potentials (in d dimensions)
and their derivatives,

F	d
	x
 � x̂LP �V; Vi; Ŵij; � � � ; @iV; � � ��: (5.4)

For the present calculation, the derivatives of potentials in
this definition, @iV; � � � , are ordinary derivatives. Many
terms of Eqs. (4.7) are made of a spatial integral applied
to some partial time derivative of a function of the type
F	d
. For these terms we always put the time derivatives
outside the integral and perform first the spatial integral
using the regularization, and only then apply the (total)
time derivative.

Since we shall prove in Sec. V B that the difference
between the integrals involving F	d
 and F	3
 does not
involve any contribution coming from divergencies ‘‘at
infinity,’’ we limit ourselves to spatial integrals which
extend over a finite volume in the d-dimensional space,
say the spherical ball B	R
 defined by jxj<R, where R
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denotes some arbitrary constant radius. The results we
shall derive below will not depend on R. In Hadamard’s
regularization, and particularly in the pHS variant of it, the
three-dimensional spatial integral is defined by the so-
called partie-finie prescription, depending on two arbitrary
constants s1 and s2, say

H � Pf
s1;s2

Z
B	R


d3xF	x
: (5.5)

Of courseH is in fact a function of time but we do not need
to indicate this. By definition, Hadamard’s partie-finie
integral is given by the following limit when the radius s
of two ‘‘regularizing volumes’’ surrounding the singular-
ities tends to zero, say

H � lim
s!0


Z
B	R
nB1	s
[B2	s


d3xF	x
 � 4�
X�4

p�p0

sp�3

p� 3
hf
1
pi

� 4� ln
�
s
s1

�
hf
1
�3i � 1$ 2

�
: (5.6)

The symbol 1$ 2 means the same terms but with the
singularities’ labels 1 and 2 exchanged. The first term
represents an ordinary integral extending over the region
obtained from B	R
 by excising two spherical balls B1	s

and B2	s
 centered on the two singularities, each having
the same radius s (evidently we can always assume
s�R).15 The extra terms in (5.6), which are such that
they cancel out the singular part of the first term when s!
0 (so that the partie finie exists by definition), involve the
usual (two-dimensional) spherical average

hfi �
Z d�	n1


4�
f	n1
; (5.7)

where d�	n1
 is the solid angle element around n1. The
length scales s1 and s2 (one for each particle) are intro-
duced in Eq. (5.6) in order to adimensionalize the radius s
in the logarithmic terms. They play a key role at 3PN order,
since their appearance signals the presence of logarithmic
divergences which correspond to poles / 1=" in d dimen-
sions. A way to interpret these constants is to say that they
reflect an arbitrariness in the original choice of the two
regularizing volumes B1	s
 and B2	s
.

In dimensional regularization the situation is much sim-
pler, since the integral will be (so to speak) ‘‘automati-
cally’’ regularized by means of the analytic continuation of
the d-dimensional volume element. Thus, we simply have

H	d
 �
Z
B	d
	R


ddxF	d
	x
; (5.8)

where B	d
	R
 is the d-dimensional ball with radius R.
Given the results of the two regularizations, (5.5) and (5.8),
we consider what we call the difference, which is what we
15Two balls with different radii could be used as well, without
changing the results.
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shall have to add to the pHS result in order to obtain the DR
result, namely,

DH � H	d
 �H: (5.9)

We shall compute DH in the limit where "! 0, keeping
the pole part / "�1 (at 3PN order only simple poles will
occur) and the finite term / "0, but neglecting O	"
. Using
the same method as in [39,40], DH can be obtained by
splitting the d-dimensional integral (5.8) into three vol-
umes, two spherical balls B	d


1 	s
 and B	d

2 	s
 of radius s,

which are the d-dimensional analogues of B1	s
 and B2	s
,
and the complementary volume in B	d
	R
, say B	d
	R
 n

B	d

1 	s
 [B	d


2 	s
. It is clear that the integral over the latter
complementary volume reduces, when "! 0 (with fixed
s), to the integral over B	R
 nB1	s
 [B2	s
, which is the
first term in the definition (5.6) of Hadamard’s partie finie,
and does not contribute to the difference modulo some
negligible terms O	"
. Consequently, what remain are the
‘‘local’’ contributions of the two volumes B	d


1 	s
 and
B	d


2 	s
, which can be straightforwardly computed by in-
serting into them the local singular expansions given by
(5.2) and 1$ 2. We then can connect the result to the
corresponding result in three dimensions by using the
constraint (5.3). Finally, we obtain for the difference DH
the following expression:

DH �
�2�"

"

Xq1
q�q0

�
1

q� 1
� " lns1

�
hf	"

1
�3;qi2�"

� 1$ 2�O	"
; (5.10)

where the spherical average performed in d dimensions is
defined by

hfid�1 �
Z d�d�1	n1


�d�1
f	n1
: (5.11)

The volume of the 	d� 1
-dimensional sphere, embedded
into d-dimensional space, is given by �d�1 � 2�d=2=�	d2
;
for instance, �2 � 4�. Actually, we can see that the
�d�1’s cancel out between (5.10) and (5.11).

Let us now comment on the inclusion in the present
formalism of derivatives in a distributional sense. An
important feature of the pHS regularization is the system-
atic use of distributional derivatives à la Schwartz [30]. It
has been shown both in the contexts of the equations of
motion [17,22] and of the radiation field [26,28] that the
purely distributional parts of derivatives yield a crucial
physical contribution to the results at the 3PN order. In
Hadamard’s regularization, various prescriptions are pos-
sible for the distributional derivatives. For instance, some
generalized distributional derivatives, defined in the ex-
tended Hadamard regularization [32], were used for the
3PN equations of motion in [21,22]. Using different pre-
scriptions yields different results, which however differ at
the 3PN order by some terms having the form of the
-19
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ambiguous terms, and therefore which merely change the
values of the ambiguity parameters (�, �, and � in the
radiation field). Now we showed [40] that in DR the correct
prescription for the derivatives is the one of the standard
distribution theory [30]. This is why we have included
Schwartz derivatives in the definition of the pHS regulari-
zation, which constitutes in some sense the ‘‘core’’ part of
DR, by which we mean the part which computes all the
difficult nonlinear integrals but leaves unspecified a few
terms corresponding exclusively to the ambiguous loga-
rithmic divergences. Of course, since different variants of
Hadamard’s regularization differ precisely in different
definitions for the ambiguity parameters, all of them could
be regarded as the core of DR. However, the point is that
the pHS regularization is the only one for which the final
result of DR is to be obtained by adding exactly the
difference in the way we have computed it in Eq. (5.10).
To summarize, Eq. (5.10) as its stands is simply to be added
to the pHS result, since the latter already includes the
distributional derivatives à la Schwartz, whose contribu-
tions have been computed in Ref. [28].

B. Proof that the outer near-zone divergencies do not
contribute to the difference

Let us recall the logic that led us to introducing and
using the specific, d-dimensionally generalized, finite part
process. Initially, in the MPM construction of the multipole
expansion of the external metric, when iteratively solving
Einstein’s equations, we were faced with some integrands
Nn that had a singular behavior at the origin of the spatial
coordinates, i.e., as r! 0. One then defined the FP of the
retarded integral of Nn by first introducing a factor ~rB �
	r=r0


B in the integrand, and then subtracting the ‘‘quasi-
multiple’’ shifted poles C	d
�k	B� q1"


�1 � � � 	B� qk"

�1

[first term on the RHS of Eq. (3.16)], before taking the
continuation down to B � 0. At this stage, the integrand
was, in principle, defined as a post-Minkowskian expan-
sion, with good convergence properties at r! 1, so that
the poles / 	B� q1"
�1 � � � 	B� qk"
�1 came only from
the region where r! 0. Later, the external MPM construc-
tion was combined with a straightforward post-Newtonian
iteration of Einstein’s equations, which took into account
the interior region containing the material source T��.
With a generalization of the argument used in [49], one
could formally relate the source multipole moments, used
in the MPM formalism to parametrize the source, to inte-
grals over the PN expansion of the effective stress-energy
pseudo tensor 8�� � jgjT�� � nonlinear terms.

This led to what was the starting point of our investiga-
tion, namely, to formal expressions for the source multi-
pole moments (of the mass type) of the symbolic form

IL � FP
Z
ddx~rBx̂LfgT �%	h
g; (5.12)

where we recall that the overline denotes a PN (or near-
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zone) expansion. Note that the presence of this PN expan-
sion process in Eq. (5.12) is crucial to its validity. Indeed,
the argument used to derive (5.12) was based on trans-
forming MPM-expanded integrands singular when r! 0
into PN-expanded ones diverging when r! 1. (As dis-
cussed in [45] the formal limit r! 1, taken within a PN-
expanded integrand, physically corresponds to the ‘‘outer
near-zone’’ a� r� �, and should not be confused with a
far zone expansion r� �, in the sense of spatial infinity
I0.) Technically, the transformation between the two types
of singular integrals was based on the analytic continuation
with respect to B of the integrals, using the fact thatR
1
0 drr

B�p�q" � 0. In this reshuffling from the UV (r!
0) to the IR (r! 1) it was essential to keep the same
meaning of the symbol FP in front of (5.12). Indeed,
one sees easily, by separating

R
1
0 drr

B�p�q" intoR
R
0 drr

B�p�q" and
R
1
R drrB�p�q" that the MPM poles /

	B� q"
�1 generated near r � 0 (when p � 1) become
transformed in the same (modulo a sign) poles, generated
near r � 1 by the singular behavior of the PN integrand.
In addition to the poles / 	B� q1"
�1 � � � 	B� qk"
�1

present in the integral (5.12), and generated by the behavior
of the PN-expanded nonlinear terms %	h
 at r!1, there
are also poles / "�1 associated to the singular behavior of
%	h
 near x � y1 and x � y2. But clearly, if we split the
integral

R
ddx in a part r <R enclosing the two mass

points, and a complementary part r >R, the latter integral
will have no singularities associated to x � y1 or x � y2,
and therefore will have no genuine poles "�1.

The conclusion is that the restriction of the integral
(5.12) to the outer near-zone r >R (corresponding to
the IR), say

IIRL 	B; "
 �
Z
r>R

ddx~rBx̂LfgT �%	h
g; (5.13)

is a meromorphic function of the complex variables B and
" which will have, when B and " are both near zero, the
same structure of quasi-multiple shifted poles as the MPM
quantity F	d
n 	B
 of Eq. (3.16), say

IIR	B; "
 �
X C	d
�k
	B� q1"
	B� q2"
 � � � 	B� qk"


� C	d
0 � C	d
1 B�O	B2
: (5.14)

The important point is that, when the expansion is written
in the form (5.14), the various coefficients C	d
�k, C

	d

0 , etc.,

are regular functions of d, which are continuous at d � 3.
The structure (5.14) proves the result we wanted,

namely, the fact that the IR parts of the integrals in d
dimensions,

IIR	"
 � FP
B
�IIR	B; "
�; (5.15)

admits when "! 0 the same value as the one given in
three dimensions by the original definition of the finite part
-20
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FP (in three dimensions). That is to say, the two operations
of taking the FP and the limit "! 0 commute. Indeed, the
definition (3.17) of the d-dimensional FP operation yields

IIR	"
 � C	d
0 ; (5.16)

so that

lim
"!0

IIR	"
 � C	3
0 : (5.17)

On the other hand, if we interchange the order of the two
operations, we must first consider the limit when "! 0 of
(5.14), namely,

lim
"!0

IIR	B; "
 �
XC	3
�k

Bk
� C	3
0 � C	3
1 B�O	B2
; (5.18)

and then, by applying the usual FP operation in three
dimensions, we must discard the poles B�k and evaluate
the remainder at B � 0, thus

FP
B
�lim
"!0

IIR	B; "
� � C	3
0 ; (5.19)

which is the same result as found in (5.17). This shows that
all the IR terms, formally depending on the boundary of the
integral at infinity, notably all those discussed in Sec. IV D
of [28], give exactly zero in the difference between DR and
the pHS regularization. Their contribution to the multipole
moments has already been taken into account in Ref. [28].
This shows also that the outer-zone part of the last term in
the expression of the moment, Eq. (3.50), which is propor-
tional to B", is actually zero in the present formalism since
it is zero in three dimensions.
16The hybrid regularization mainly differs from the pHS regu-
larization in the way the ‘‘contact’’ (compact-support) terms are
computed. Indeed, the hybrid regularization takes into account
the so-called ‘‘nondistributivity’’ of Hadamard’s regularization,
which is the fact that 	FG
1 � 	F
1	G
1 in general, where 	F
1 is
the partie finie of a singular function F at the point y1. (In this
respect, the hybrid regularization is like the extended Hadamard
regularization defined in [32].) This also introduces some dif-
ferences in the case of noncompact-support integrals—between
the ‘‘case-by-case’’ integration followed in [26] and the system-
atic pHS regularization of these integrals adopted in [28].
VI. COMPUTATION OF THE AMBIGUITY
PARAMETERS

As we have discussed in Sec. VA, the end result of the
dimensional regularization is simply given by the sum of
the pure-Hadamard-Schwartz regularization and the ‘‘dif-
ference’’ that we have investigated in the general analysis
of Sec. V. Now the pHS regularization of the 3PN mass
dipole and quadrupole moments of point particles binaries
has already been computed in our previous work [28], in
which the end result of the Hadamard regularization was
obtained as the sum of the pHS result and of some specific
ambiguity part parametrized by three ambiguity parame-
ters. In the present section we construct the DR result and
impose that it is physically equivalent to the HR one given
in [28]. As we shall show, this requirement will permit us to
uniquely determine the ambiguity parameters.

A. The 3PN mass-quadrupole moment

Let us first state the end result of [28] concerning the
3PN mass-quadrupole moment as computed with HR. We
denote it by I	HR
ij ; see Eqs. (5.9)–(5.10) in [28] for its
complete expression in the center-of-mass frame. In the
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present paper we shall not need the explicit formula for the
moment (which includes many complicated coefficients),
but simply its structure, made of the sum of the pHS
moment and some quite simple ambiguous contribution
containing three and only three ambiguity parameters. The
ambiguous part reads


Iij��̂; �̂; �̂��
44

3

G2
Nm

3
1

c6

��
�̂� �̂

m1�m2

m1

�
yhi1a

ji
1 � �̂v

hi
1v

ji
1

�

�1$2; (6.1)

where m1 andm2 are the two masses, yi1, v
i
1, and ai1 are the

position, coordinate velocity, and coordinate acceleration
of the particle 1 (1$ 2 denotes the same for the particle 2),
and where the angular brackets surrounding indices mean
the STF projection. All the quantities in (6.1) are defined in
three dimensions; GN is Newton’s constant, related to G in
d dimensions by Eq. (4.5). Obviously, since (6.1) is already
of order 3PN (cf. the factor 1=c6), the acceleration ai1 is
simply given by the usual Newtonian value (in three
dimensions).

The expression (6.1) contains three ambiguity parame-
ters f�̂; �̂; �̂g. These are the ones which would be defined
with respect to the pHS regularization. However, the am-
biguity parameters were in fact defined earlier in Ref. [26],
which had adopted a different Hadamard-type regulariza-
tion, called ‘‘hybrid,’’ instead of the pHS one.16

Accordingly, the pHS ambiguity parameters f�̂; �̂; �̂g differ
from their hybrid counterparts in [26], which were denoted
there f�; �; �g. The result, which constituted a powerful
check of the computations of [26,28], is that

�̂ � ��
1

22
; (6.2a)

�̂ � �; (6.2b)

�̂ � � �
9

110
: (6.2c)

In the present paper we prefer to stick to the original
definition of the parameters f�; �; �g, since these have al-
ready been used in the computation of the 3PN binary
orbital phasing [27] and in the discussion of the efficiency
of the 3PN templates (see e.g. [8]). Hence the final out-
come from HR for the 3PN mass-quadrupole moment of
the binary (moving on a general, not necessarily circular,
-21
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orbit) is written as

I	HR
ij �r01; r
0
2; r0;�; �; �� � I	pHS
ij �r01; r

0
2; r0�

� 
Iij

�
��

1

22
; �; � �

9

110

�
:

(6.3)

The pHS part, first term on the RHS, is free of the ambi-
guities �, �, and � , but depends on the three regularization
scales r01, r

0
2, and r0. First, r0 is merely the scale we have

introduced in the general MPM formalism, see (3.8b) in
Sec. III A, and which then appears in the definition of the
source multipole moments in Sec. III C. This scale will
disappear when we relate the asymptotic waveform to the
local matter distribution for general extended sources. The
other scales r01 and r02 are specific to the application to the
case of systems of point particles and come from regula-
rizing self-field effects. By definition of the ambiguity
parameters these scales are taken to be the same as the
two scales that appear in the final expression of the 3PN
equations of motion in harmonic coordinates computed in
Refs. [21,22].17 They came from the regularization of
Poisson-type integrals in the equations of motion, where
they can be interpreted as some infinitesimal radial dis-
tances used as cutoffs when the field point tends to the
singularities. It should be noted that r01 and r02 are ‘‘un-
physical,’’ in the sense that they can be arbitrarily modified
(though they can never be removed) by a coordinate trans-
formation of the ‘‘bulk’’ metric outside the particles [22],
or, more consistently when we consider the renormaliza-
tion which follows the regularization, by suitable shifts of
the particles’ world lines [40].

To get the DR result we must augment the pHS result
I	HR
ij �s1; s2; r0;�; �; �� computed for any choice of
Hadamard-regularization scales s1; s2 entering Eq. (5.6),
by the corresponding difference DIij�s1; s2; "; ‘0�, which
is made of the sum of all the contributions DH, Eq. (5.10),
computed for all the individual noncompact-support terms
in the 3PN expression of the source quadrupole moment
deduced from the explicit formulas given in Sec. IV. Hence
this difference reads

D Iij�s1; s2; "; ‘0� �
X

non�compact
terms in Iij

DH�s1; s2; "; ‘0�: (6.4)

The sum in the RHS runs over all the noncompact-support
terms excluding those which are in a form such that they
depend only on the IR behavior of the integral; indeed
these terms do not contribute to the difference (see
Sec. V B). We recall also that in the calculation of the
difference we do not have to take into account the
compact-support terms, nor the distributional parts of the
derivatives since they are already included in the pHS
17Actually only the ambiguity parameters � and � depend on
this choice; see [26,28] for discussions.
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result. In (6.4) we indicated that the difference depends
both on the constants " � d� 3 and ‘0 associated with
DR, and on the two scales s1, s2 which were introduced
into the Hadamard partie-finie (5.6). The DR result is then

I	DR
ij �r0; "; ‘0� � I	pHS
ij �s1; s2; r0� �DIij�s1; s2; "; ‘0�:

(6.5)

The choice of Hadamard-regularization length scales s1, s2
in Eq. (6.5) is arbitrary because, as is easily checked s1, s2
cancel out between the two terms in the RHS of (6.5), so
that, as it should be, I	DR
ij depends only on the DR charac-
teristics " and ‘0 (and also on r0 which belongs to our
general multipole-moment formalism and is in fact irrele-
vant for the present discussion). Because of this indepen-
dence on the choice of the scales s1, s2, we can choose
them to be identical to the two specific length scales r01, r

0
2

entering the 3PN equations of motion. Therefore we can
rewrite Eq. (6.5) as

I	DR
ij �r0; "; ‘0� � I	pHS
ij �r01; r
0
2; r0� �DIij�r

0
1; r

0
2; "; ‘0�:

(6.6)

Let us now impose the physical equivalence between the
DR result (6.6) and the corresponding final HR result (6.3)
containing the ambiguity parameters �, �, and � . In doing
this identification, we must remember, from the work on
the 3PN equations of motion [40], that the ‘‘bare’’ particle
positions, ybare1 and ybare2 , entering the DR result differ from
their Hadamard counterparts, say yren1 and yren2 , entering the
equations of motion of [21,22], by some (purely spatial)
shifts of the world lines, i.e.,

ybare1 	t
 � yren1 	t
 � �1	t
; (6.7a)

ybare2 	t
 � yren2 	t
 � �2	t
: (6.7b)

These shifts have been uniquely determined in Ref. [40]
and denoted there by �1 and �2 (see Eqs. (1.13) and (6.41)–
(6.43) in [40]). In the present work, we denote them by �1

and �2 in order to avoid any confusion with the name of the
ambiguity parameter �. These shifts of the world lines are
crucial and must be taken into account when comparing the
DR and HR results. Let us insist that the shifts in Eqs. (6.7)
are those which ensured the equivalence between the DR
and HR results for the equations of motion. Having made
contact in [40] between the renormalization scales entering
the two regularization schemes in the context of the 3PN
equations of motion, we must, by consistency, employ
them to compare the DR and HR results for the 3PN
multipole moments. The names yren1;2 come from the fact
that the shifts permit to renormalize the DR result for the
equations of motion, in the sense that all the poles / 1="
appearing in the d-dimensional equations of motion were
finally absorbed into the new definition of the world lines.
A nontrivial check of our present calculations will be to
verify that the same shifts allow one to get finite (when
-22



18Note that the renormalized DR quadrupole moment is nu-
merically equal to the original, bare quadrupole moment
I	DR
ij �r0; "; ‘0; ybare1 ; ybare2 �. In particular, the original, bare quad-
rupole moment is also finite as "! 0 (when keeping fixed yrena in
taking the limit).
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"!0) final expressions for all the multipole moments,
when expressed in terms of yren1;2. Note that the definition
of the shifts corresponds to a nonminimal subtraction. This
nonminimality was needed to connect the DR result to the
two-parameter class of HR results parametrized by arbi-
trary values of the scales r01 and r02 (see [40] for a discus-
sion). Hence the shifts �1 and �2 depend on r01 and r02
(respectively). We shall comment more on the renormal-
ization in Sec. VII. The precise expression of the shift is

� 1	r
0
1;";‘0
�

11

3

G2
Nm

2
1

c6

�
1

"
� ln

�
r12r021 q

3=2

‘30

�
�
1983

1540

�
a1;

(6.8)

together with the shift of the other world line obtained by
1$ 2. Here, a1 denotes the three-dimensional Newtonian
acceleration a1 � �GNm2n12=r

2
12, where r12 � jy1 � y2j

and n12 � 	y1 � y2
=r12 [i.e., a1 is the same quantity as in
Eq. (6.1)], and GN correspondingly denotes the three-
dimensional Newtonian constant. The expression (6.8)
seems to differ from the one given by Eq. (1.13) in [40],
but this is because we have used in (6.8) the Newtonian
acceleration a1 in three dimensions, while Eq. (1.13) in
[40] has been written with the help of the d-dimensional
analogue a	d
1 . We have

a	d
1 ��
2	d�2
2

d�1
~kGm2r

1�d
12 n12; (6.9a)

a	3�"
1 �

�
1�"

�
3

2
� ln

�
r12q

1=2

‘0

���
a	d�3

1 �O	"2
: (6.9b)

Here we used G � GN‘
d�3
0 , and ~k � ��	d�

2
=2�=�	d�2
=2 � 1� 1
2 " lnq�O	"2
, where q � 4�eC

with C � 0:577 � � � denoting the Euler constant.
Evidently, since the shifts are at 3PN order, the modifi-

cation of the mass-quadrupole moment brought about by
the latter shifts (in the sense Iij�ybare� � Iij�yren� � ��Iij)
simply reads

��Iij � 2m1y
hi
1�

ji
1 � 1$ 2; (6.10)

where we recall the fact that the Newtonian limit of the
quadrupole in any dimension d takes the standard expres-
sion Iij � m1y

hi
1 y

ji
1 � 1$ 2�O	c�2
, see Eq. (3.53). The

physical equivalence between the DR and HR results sim-
ply means that we require that the full DR quadrupole
moment, computed for the bare particle positions entering
the DR delta-function source, I	DR
ij �r0; "; ‘0; ybare1 ; ybare2 �,
coincides (when "! 0, and for the correct,
looked-for values of �, �, �) with the HR result
I	HR
ij �r01; r

0
2; �; �; � ; y

HR
1 ; yHR2 �. As said above, the particle

positions yHRa entering the HR result must be identified
with the ‘‘renormalized’’ DR positions yrena introduced in
Eqs. (6.7): yHRa � yrena . Reexpressing the DR multipole
moment in terms of the particle arguments yHRa � yrena ,
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this requirement then leads to equating

I	HR
ij �r01; r
0
2; r0; �; �; �; y

ren
1 ; yren2 �

� lim
"!0

�I	DR
ij �r0; "; ‘0; yren1 ; yren2 � � ��	r01;r
0
2;";‘0


Iij�:

(6.11)

In other words, this equivalence is between HR and the
renormalized result from DR. We find that the poles �1="
separately present in the two terms in the brackets of (6.11)
cancel, so that the physical, renormalized, DR quadrupole
moment, defined as the RHS of (6.11), is finite when "! 0
and given by the limit shown.18

Let us now substitute into Eq. (6.11) the expressions of
the DR and HR quadrupole moments, respectively, given
by (6.6) and (6.3) above. [We henceforth assume that I	DR
ij

on the left-hand side of Eq. (6.6) is evaluated for ya �
yrena .] Since, as we have seen, both the HR and the DR
results have been expressed in terms of their core part,
given by the pHS regularization, we see that, when making
their comparison in (6.11), we shall be able to remove the
pHS part, which is common to both sides of the equation.
In this way, we obtain a relation for the ambiguity part 
Iij
of the HR quadrupole moment in terms of known quanti-
ties, viz.


Iij

�
��

1

22
; �; � �

9

110

�
� lim

"!0
	DIij�r

0
1; r

0
2; "; ‘0�

� ��	r01;r02;";‘0
Iij
: (6.12)

We must now insert into (6.12) the concrete result of the
detailed computation of the difference DIij, for all the
noncompact-support terms in the explicit expression of the
moment derived in Sec. V, and following the recipe pro-
vided by Eq. (5.10).

The computation of DIij was performed by means of
computer-aided algebraic manipulations, using the
MATHEMATICA software. The final result for DIij reads
[modulo the neglect of O	"
 terms]

DIij�r01; r
0
2; "; ‘0� �

G2
Nm

3
1

c6

��
�

22

3"
�

220

9
�

22

3


 ln
�
r12r

02
1 q

3=2

‘30

��
yhi1a

ji
1 �

86

45
vhi1v

ji
1

�

� 1$ 2; (6.13)

with the notation already used in (6.8) and (6.9). We then
modify the result by including the effect of the particular
shift which is given by Eqs. (6.8) and (6.10). Thanks to this
shift we see that the dependence of (6.13) on the constants
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r01, r
0
2, ", and ‘0 is canceled out. More precisely, we find

that the RHS of Eq. (6.12) exactly takes the form of a
particular instance of the general ambiguity term (6.1),
namely,

lim
"!0

	DIij�r01; r
0
2; "; ‘0� � ��	r01;r02;";‘0
Iij


� 
Iij

�
�
9451

9240
; 0;�

43

330

�
; (6.14)

which yields the following constraint (equivalent to three
independent equations) to be satisfied by the three ambi-
guity parameters �; �; �:


Iij

�
��

1

22
; �; � �

9

110

�
� 
Iij

�
�
9451

9240
; 0;�

43

330

�
:

(6.15)

This immediately gives the following values for the ambi-
guity parameters,

� � �
9871

9240
; (6.16a)

� � 0; (6.16b)

� � �
7

33
; (6.16c)

which finally provide an unambiguous determination of the
3PN radiation field of compact binaries by DR. As we
reviewed in the introduction, Eqs. (6.16) represent the
end result of DR, but in fact the results for each of the
parameters �, �, and � also have been obtained by means
of an independent calculation. Indeed, � � �7=33 has
been shown to be a consequence of the Poincaré invariance
of the formalism [45] (we give also an alternative,
d-dimensional derivation of this result in Sec. VIII below),
the value �� � � �9871=9240 was deduced from the
comparison between the dipole moment and the center-
of-mass position within HR [28] (the latter test is equiva-
lent to the one we shall perform below with the mass dipole
in DR), and finally we shall be able to check that � � 0 in
Sec. VII.19

B. The 3PN mass-dipole moment

The mass-dipole moment Mi is quite interesting to con-
sider because it satisfies a conservation law: _Mi � Pi � 0,
where Pi is the total momentum, and, as such, it can be
derived directly from the binary’s equations of motion
(instead of a wave generation formalism), as being linked
to the conserved quantity Ki � Gi � tPi associated with
19It is amusing to notice that our result for � happens to be
related to the previous one for the equation-of-motion related
ambiguity parameter � by a simple cyclic permutation of digits:
Compare

3� � �
9871

3080
with � � �

1987

3080
:

124004
the boost symmetry of the Hamiltonian or the Lagrangian
of the binary motion. Indeed, the mass-dipole moment is in
fact nothing but the center-of-mass vector Gi �

P
myi of

the system of particles.20 Now, the center-of-mass vector of
point particle binaries is already known at 3PN order. Its
explicit expression was derived both in ADM coordinates
[19] and in harmonic coordinates [23], Eq. (4.5) there; see
also its implicit derivation in harmonic coordinates in
Ref. [20]. (When deriving a 3PN conserved quantity we
neglect the 2.5PN radiation-reaction contribution to the
equations of motion.) We thus have the possibility of an
excellent verification of our calculations, since the end
result we shall obtain for the 3PN mass-dipole moment
Mi in DR should perfectly match with the 3PN center-of-
mass Gi. In our previous paper, Ref. [28], we have in fact
already verified thatMi � Gi within the HR scheme, in the
sense that we required that Mi � Gi holds, and then we
deduced from this requirement the value of a particular
combination of ambiguity parameters, namely, �� � �
�9871=9240. In the present section we shall directly show
that Mi � Gi in DR, without any fine tuning of ambiguity
parameters like in HR.

First of all, let us recall from [49] and the discussion in
[28] that in the present formalism the conserved mass-
dipole moment Mi is given by a slightly more complicated
expression than the nonconserved moments IL, with ‘ � 2.
Namely, we have Mi � Ii � �Ii, where Ii is given by the
same expression as for IL but taken for ‘ � 1, and where
�Ii represents a certain correction to it, which is given,
together with the similar corrections present in the mass M
and current dipole Si, in Eqs. (2.22) of [28] (in three
dimensions). In [28] we proved that the correction �Ii
gives zero in the dipole moment at 3PN order, so thatMi �
Ii �O	c�7
. Now, �Ii is in the form of integrals at infinity
(cf. the factor B in front of the integrals in Eqs. (2.22) of
[28]), and we have proven in Sec. V B that for such
integrals the results in HR and DR are the same. Hence
we deduce that �Ii is also zero when applying DR and that
Mi � Ii �O	c�7
 is also true in d dimensions, modulo
O	"
 terms. Therefore, we need only discuss here the DR
calculation of the main part of the dipole moment, namely,
Ii.

The 3PN mass-dipole moment Ii in HR is ambiguous,
but the structure of the ambiguity part is very simple, as it
contains one and only one ambiguity parameter �̂, which
turned out to be given by the particular combination �̂ �
�̂� �̂ of the parameters �̂ and �̂ which appeared previ-
ously in Eq. (6.1). See Sec. V B in [28] for details. The
20Note that the equivalence between the mass-dipole moment
Mi and the center-of-mass vector Gi can be thought of as being a
consequence of the equivalence principle between gravitational
and inertial masses, mg � mi. Indeed, Mi �

P
mgyi while Gi �P

miy
i. (The equivalence principle is automatically incorporated

into the present formalism, since the motion of the point particles
is geodesic, see [40].)
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structure of the ambiguity in the dipolar case is


Ii��̂� �̂� �
22

3
	�̂� �̂


G2
Nm

3
1

c6
ai1 � 1$ 2: (6.17)

Using the link we have found in (6.2) we can then write the
HR result for the dipole moment in terms of the combina-
tion �� � of the original ambiguity parameters in [26],
hence

I	HR
i �r01; r
0
2; �� �� � I	pHS
i �r01; r

0
2� �
Ii

�
�� ��

1

22

�
;

(6.18)

which is the dipolar analogue of Eq. (6.3). However, a
minor difference with (6.3) is that the 3PN dipole moment
happens to be independent of the cutoff scale r0. As we
said above, the value of �� � could be determined in [28]
by imposing that the HR result (6.3) is in agreement with
the 3PN center-of-mass position given in [23].

Let us now investigate what happens when using DR.
Like for the case of the quadrupole moment, the result for
the dipole moment in DR is given as the sum of the pHS
dipole and of the difference DIi, which is made out of the
sum of all the contributions of the noncompact-support
terms (excluding as usual the surface terms at infinity)
present in the explicit formulas of Sec. IV, say

D Ii�s1; s2; "; ‘0� �
X

non�compact
terms in Ii

DH�s1; s2; "; ‘0�; (6.19)

where s1, s2 are the two HR scales in the partie-finie
integral (5.6), " and ‘0 are the DR scales, and each of the
DH’s are computed using Eq. (5.10). Hence,

I	DR
i �"; ‘0� � I	pHS
i �s1; s2� �DIi�s1; s2; "; ‘0� (6.20a)

� I	pHS
i �r01; r
0
2� �DIi�r01; r

0
2; "; ‘0�; (6.20b)

where, like in the case of the quadrupole moment, we have
taken advantage of the fact that the constants s1; s2 cancel
out from the two terms in the RHS of (6.20a), to rewrite the
result in terms of the specific length scales r01; r

0
2 which

parametrize the 3PN equations of motion in [22]. The last
step is to renormalize the DR result by absorbing the poles
in a spatial shift of the two particles’ world lines. Of
course, we must use the same shift vectors as in
Eq. (6.8), and these result in the following modification
of the dipole moment,

��Ii � m1�
i
1 � 1$ 2; (6.21)

which is indeed checked to cancel the poles / 1=" of the
bare DR dipole moment, so that the following limit when
"! 0 is finite,

Mi�r
0
1; r

0
2� � lim

"!0
�I	DR
i �"; ‘0� � ��	r01;r02;";‘0
Ii�: (6.22)

This represents our final renormalized DR dipole moment.
The final result (6.22) for the dipole moment depends on
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the scales r01 and r02. We recall that this dependence does
not correspond to any physical ambiguity, since r01 and r02
have the character of gauge quantities.

Finally, after having performed the detailed calculation
of the difference (using the same algebraic computer pro-
grams as for the quadrupole), and having added this dif-
ference to the result for the pHS part which was obtained
earlier in Ref. [28], we found that the renormalized DR
moment Mi given by Eq. (6.22), is in complete agreement
with the conserved center-of-mass position Gi associated
with the conservative part of the 3PN equations of motion,
namely,

Mi�r
0
1; r

0
2� � Gi�r

0
1; r

0
2�; (6.23)

where Gi is explicitly given by Eq. (4.5) in Ref. [23]. We
view this test as an important verification of our method
and our detailed calculations.
VII. RENORMALIZATION AND DIAGRAMMATIC
APPROACH

We have given above the final results obtained by com-
bining the DR computation of the singular (� 1=") con-
tributions to the multipole moments, coming from the
vicinity of the point masses, with the pHS results of
Ref. [28]. This way of presenting our results is in close
correspondence with the actual calculations we did, but it
has the defect of somewhat hiding the logical structure of
our DR results. In this section, we shall go back to basic
methodological questions and explain in more details the
logic behind DR. We shall also show how the examination
of the structure of the DR results allows one to perform
several checks of these results.

Let us first recall that Ref. [59] presented a general
method for dealing with the gravitational interaction of
two (nonspinning) compact bodies, i.e., bodies whose radii
are of the same order as their gravitational radii. At the
time, the main motivation for considering this situation
was the accurate relativistic description of binary pulsar
systems (i.e., binary neutron stars). Today, we have the
additional motivation of accurately describing not only the
motion but also the gravitational radiation from binary
black holes (as well as binary neutron stars, or mixed
black-hole neutron-star systems). Reference [59] did not
assume from the start a formal ‘‘point-mass’’ representa-
tion of the two compact bodies but used instead a matching
approach which combined two different approximation
methods: (i) an ‘‘external perturbation scheme,’’ i.e., an
iterative, weak-field (post-Minkowskian) approximation
scheme valid in a domain outside two world tubes contain-
ing the two bodies, and (ii) an ‘‘internal perturbation
scheme’’ describing the small perturbations of each body
by the far field of its companion. A useful outcome of this
matching approach was a proof that to a very high approxi-
mation, the internal structures of the compact bodies were
-25
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effaced when seen in the external scheme. More precisely,
[59] (Sec. 5 there) found that the internal structures af-
fected the equations of motion only starting at the 5PN
level, through a term which is of fractional order
�k�Gm=	c2r12
�5. Here k is a dimensionless Love number
describing the quadrupolar deformation of one of the com-
pact bodies under the influence of the tidal field generated
by its companion. This result can be simply understood
from a well-known Newtonian argument on the influence
on the orbital motion of the Newtonian quadrupole mo-
ments induced by tidal interaction between the two com-
pact objects (see e.g. Sec. 1.2 in [60]). Indeed, the
quadrupole moments scale as Q� kma5=r312, where a is
the typical size of the objects, hence in the case of compact
objects for which a�Gm=c2 we have in fact Q�
	km=r312
	Gm=c

2
5, which gives rise to the above men-
tioned correction to the equations of motion (and orbital
phase) at the 5PN order relatively to the Newtonian accel-
eration. This effacement result is the rationale for describ-
ing, up to 5PN order, two (nonspinning) compact bodies in
terms of two point masses. Technically, this means repre-
senting the compact bodies by a ‘‘skeleton’’ made of two
massive world lines, i.e., by a point-particle action

Spp � �
X
a

mac
Z ������������������������������������

�g��	y
�
a
dy

�
a dy�a

q
: (7.1)

Note that the previous reasoning suggests that, starting at
the 5PN level, one will need to augment the effective action
(7.1) by further terms, starting with a quadrupole-type
addition to the monopole action (7.1). At the 2.5PN level,
Ref. [59] explicitly showed how to deal with a point-
particle description of the type (7.1) by using Riesz ana-
lytical continuation method to (uniquely) regularize the
divergent integrals linked to the use of point particles in
nonlinear general relativity. It also was mentioned at the
time [61] that equivalent (2.5PN) results could be obtained
by using an analytic continuation of the space-time dimen-
sion D, instead of a Riesz-type analytic continuation.

The derivation of the equations of motion at the 3PN
level turned out to be technically complicated but concep-
tually satisfactory. Two independent works, published re-
spectively in [17,18] and [21,22], succeeded in computing,
using Hadamard-type regularizations, most of the compli-
cated nonlinear integrals appearing at 3PN order except for
a few of them, which turned out to be ambiguous because
of the appearance of logarithmic divergencies at the 3PN
order. Then, two further independent works, [39,40],
showed that dimensional regularization gave unique, con-
sistent answers, for the latter divergent integrals. A satis-
factory check of the consistency of DR was indeed that
these two independent calculations gave perfectly consis-
tent final answers, though they were performed in different
gauges, by completely different methods.

In particular, it was found [39] that, in Arnowitt-Deser-
Misner (ADM) gauge, DR led to finite equations of motion
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(no poles / 1=") so that the full dynamics of the system
could be described by an effective action obtained by
adding to the d-dimensional ADM-gauge-fixed gravita-
tional action the usual action for point particles coupled
to gravity, namely, Eq. (7.1) above. All the quantities
appearing in this ADM plus point-particle action have
finite limiting values when "! 0. By contrast, it was
found in [40] that, in harmonic coordinates, DR led to
equations of motion containing simple poles / 1=", but
that those poles could be renormalized away. There are two
ways of thinking of this renormalization. A first way is to
add to the usual point-particle action (7.1) a counterterm
describing a possible (infinitesimal) shift of the world lines
y�a (in other words a dipole term). Then one shows that this
dipolar counterterm is exactly what is needed to absorb the
1=" poles and to leave a finite answer for both the equa-
tions of motion and the bulk metric (i.e., the metric outside
the world lines). A second (technically equivalent) way is
to use only the usual point-particle action (7.1) but to
consider that the bare world lines y�a entering (7.1) can
be decomposed in the way given by Eq. (6.7), as (choosing
a parametrization by the coordinate time, ct � y0a)

y bare
a 	t
 � yrena 	t
 � �a	t
; (7.2)

where yrena is finite as "! 0, but where �a, though being
formally ‘‘small,’’ namely, of 3PN order, contains a pole
part / 1=" which absorbs all the poles appearing in the
harmonic-coordinates calculations.

Summarizing, the explicit 3PN-level calculations of the
equations of motion (and of the pole part of the bulk
metric, see Sec. VI of [40]) have confirmed the effacement
result of [59], i.e., technically, the soundness of describing
two compact bodies by the simple effective action (7.1).
However, they also showed that, at such a high nonlinearity
order, it is crucial to use a fully consistent, and gauge-
invariant regularization method. Dimensional regulariza-
tion, which was invented precisely to preserve gauge in-
variance [36–38], is the method of choice to use in this
respect.

A. Diagrammatic interpretation of the poles in DR

As a start let us explain how one might have described
the results of Sec. VI for the mass multipole moments in
terms of field-theory diagrams. Classical diagrammatic
representations of nonlinear interactions in general relativ-
ity have been introduced and used in several works, nota-
bly in [46,62,63]. In a previous paper of this series,
Ref. [40], we have used diagrams to clarify the structure
of the various contributions to the equations of motion of
two point particles. Let us do the same here for the mass
multipole moments given by (3.50).

We represent the basic delta-function sources entering
T�� as two world lines, and each (post-Minkowskian)
propagator ��1 as a dotted line. The various post-
Minkowskian potentials V	x
, Vi	x
, K	x
, X̂	x
, Ŵij	x
,
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b

FIG. 1. Dangerously divergent diagrams contributing to the
3PN multipole moments. The world lines of particles 1 and 2
are represented by vertical solid lines, the propagator ��1 by
dotted lines, the source points by bullets, and the  symbol
means a multiplication by a multipolar factor, such as x̂L,
together with a spatial integration

R
ddx � � � .
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etc., entering the effective sources *, *i, *ij (see Sec. IV)
can then be represented by drawing some dotted lines
which start at the bare sources 7, 7i, 7ij, join at some
intermediate vertices [corresponding to the nonlinear cou-
plings entering the definition of the nonlinear potentials,
such as the noncompact part of Ŵij given by (4.3)], and end
at the field point x. The simpler ‘‘linear potentials,’’ such as
V	x
 or the ‘‘compact’’ part of Ŵij	x
 (i.e., the part gen-
erated by 7ij) are just represented by one dotted line join-
ing a world line to the field point x. A product of potentials
entering the effective sources *��, such as @iVj	x
@jVi	x

is represented by juxtaposing the diagrams of each poten-
tial. (In this simplified diagrammatic representation we do
not explicitly indicate the various derivative operators
which enter as ‘‘vertex factors’’ at the common field point
x. However, we take care of them when they are important
for the convergence properties of the diagram.) Finally, we
can represent the inclusion of the ‘‘multipolar factors,’’
such as x̂L, by adding a circled cross  . It is then under-
stood that one integrates over the ‘‘crossed vertex,’’ i.e., the
field point.

Using such a representation, the mass multipole mo-
ments are given by the sum of many diagrams. Note first
that, when comparing the diagrams representing the cal-
culation of the 3PN multipole moment to the diagrams
entering the 3PN equations of motion in [40], one finds
that the former have a less complicated structure. Indeed,
Ref. [40] has shown that the 3PN equations of motion
involve diagrams containing up to four independent source
points (located on the world lines) and up to five inter-
mediate propagators (i.e., five dotted lines): see Figs. 2–4
in [40]. By contrast, the 3PN multipole moments only
involve (if we treat separately, as was systematically
done, the terms that can be transformed into surface inte-
grals at infinity) diagrams containing up to three source
points and four propagators. Examining the types of sin-
gular integrals corresponding to the possible diagrams, one
then finds the same rule of thumb which was found to hold
in [40] for the more complicated diagrams entering the
equations of motion: namely, the only dangerously21 di-
verging diagrams are those containing (at least) three
propagator lines that can simultaneously shrink to zero
size, as a subset of vertices coalesce together on one of
the world lines. But as there are, in the present problem, at
most three source points, this means that the dangerously
divergent diagrams are only those represented in Fig. 1
below (or their ‘‘mirror’’ image obtained by exchanging
1$ 2).

These diagrams also are characterized by the fact that
they involve, as post-Minkowskian diagrams (i.e., before
explicitly performing the PN expansion, or the repeated
21Here and in the following we focus on the terms that generate
poles / 1=", and we refer to them as the ‘‘dangerous’’ terms.
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time derivatives, which can introduce the acceleration of
the world line) either m3

1 or m3
2 as explicit factor. This

reasoning is confirmed by a scrutiny of the many explicit
results reported in [26] for separate pieces of the multipole
moments. In the presentation of Ref. [26] (which is less
systematic than the more recent recalculation of [28], but
more explicit) the dangerously divergent integrals (in d �
3) are essentially all the terms involving the objects Y	�3;0


L ,
Y	�5;0

L , or S	�5;0


L , and these terms are all multiplied by m3
1.

Indeed, these objects are integrals of the typeR
d3xr�3

1 ’	x
 or
R
d3x
	r�3

1 
’	x
, which are logarithmi-
cally divergent in d � 3 and lead to 1=" poles in d�3�".

Let us exhibit the explicit form of the terms, correspond-
ing to the diagrams shown in Fig. 1, which are responsible
for the poles / 1=" in the final result for the multipole
moments. Let us decompose, as in [26,28], the expression
for IL in: (i) ‘‘first-order scalar’’ part SIL (linear in *), (ii)
second-order scalar part SIIL (linear in @2t*=c2), (iii) first-
order vector part VIL (linear in @t*i=c2), etc. One finds that
the dangerous contributions to IL are contained only in SIL,
SIIL, and VIL. Moreover, one finds that the velocity-
dependent terms that generates poles/ 1=" in intermediate
calculations all cancel out in the final result.22 We focus
here for simplicity on the noncanceled poles, which do not
depend on velocities. Hence,

IdangerL � SIdangerL � SIIdangerL � VIdangerL ; (7.3)

where one checks that among the many contributions
generated by inserting Eq. (4.7) into Eq. (3.50) the only
potentially dangerous ones, in the static limit v1 ! 0, v2 !
0, come from
22Such ‘‘canceled poles’’ lead to ambiguities in the finite part
when working in three dimensions. This is taken care of in our
complete results where the calculation is done in d � 3� "
before taking the limit "! 0.
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SIdangerL �
1

�fGc4
FP

Z
ddx~rBx̂L



�Ŵij@ijV�

1

6

�
d�1

d�2

�
2

V3�

1

2

	VŴ


�
1

c2

�
1

2
Ŵ@2t V�

1

2
V@2t Ŵ�4Ẑij@ijV�2

d�3

d�2
Ŵij@ijK

��
; (7.4a)

SIIdangerL �
1

2	2‘�d
�fGc6
FP

d2

dt2
Z
ddx~rBx̂L



�jxj2Ŵij@ijV�	2‘�d
VŴ�

1

3

	2‘�d
	d�1
2

	d�2
2
V3

�
; (7.4b)

VIdangerL ��
4	2‘�d�2


	‘�d�2
	2‘�d
�fGc6
FP

d
dt

Z
ddx~rBx̂iL



1

8

d	d�1
2

	d�2
3
V@tV@iV�

	d�1
2

4	d�2
2
Vi@kV@kV

�
1

4

d	d�1


	d�2
2
Vk@iV@kV�

d�1

d�2
@kV@iR̂k�Ŵkl@klVi�

d�1

2	d�2

@tŴik@kV�@iŴkl@kVl�@kŴil@lVk

�
; (7.4c)
where we set f � 2	d�2

d�1 .

Note that the expression we used for SIIL in our calcu-
lations has been transformed, from the original form which
directly follows from the source terms given in Eqs. (4.7)
above, by operating by parts on the terms proportional to
VŴ and V3. This was done to exactly parallel the calcu-
lation of Ref. [28] [see for instance Eq. (3.4b) there} and
thereby to reduce the problem of evaluating the DR result
to a term-by-term difference between analogous singular
integrands. As explained in Sec. V B, all the ‘‘gradient
terms’’ generated when operating by parts are expressible
in terms of surface integrals in the outer near-zone and do
not contribute to the difference between DR and pHS. We
have therefore suppressed most of these gradient terms in
Eqs. (7.4), except in Eq. (7.4a) where, as an example and as
a reminder of the presence of such terms, we have left the
terms proportional to the Laplacians of V3 and VŴ.

Let us explicitly show on the example of 
V3 that this
term, though potentially dangerous, does not give rise to
any pole. The linear potential V is naturally decomposed
into V � V1 � V2 where V1 / m1 is generated by the first
particle, and V2 / m2 by the second. In agreement with
Fig. 1 the dangerous contributions are cubic in m1 or cubic
in m2. In particular, the dangerous pieces in any term
containing V3 are 	V1


3 and 	V2

3. Let us henceforth look

only at the poles generated near the first world line (i.e.,
/ m3

1). In dimensional regularization, it is perfectly legiti-
mate to integrate by parts. This transforms the contribution
FP

R
ddx~rBx̂L
V3

1 into FP
R
ddx
	~rBx̂L
V3

1 . Using

	rBx̂L
 � 
	rB�‘n̂L
 � B	B � 2‘ � d � 2
rB�‘�2n̂L,
we see that the result is proportional to B. As we shall see
in detail below the remaining integral �

R
ddx’	x
V3

1
generates a pole / 1=". The contribution linear in 
V3

1
yields therefore a result proportional to B=". But, by the
definition of the d-dimensional finite part operation, one
has FP	B="
 � 0, so that we have indeed checked the
absence of pole generated by the a priori dangerous term
/ 
V3. A similar argument applies to the term / 
	VŴ

in (7.4a).

Let us consider the various remaining terms in the
integrand of SIL, Eq. (7.4a). We start with the term
/ ŴNC

ij @ijV, where ŴNC
ij denotes the so-called ‘‘noncom-
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pact’’ piece of Ŵij, i.e., the one whose source is�@iV@jV.
Again, it is easily seen that the only dangerous part of the
integrand is ��1

Ret	@iV1@jV1
@ijV1 and its mirror image
under the exchange 1$ 2. (This term is an example of
the diagram in Fig. 1(b).) We can compute this term by PN-
expanding both V1 and ��1

Ret. This yields a result of the
form (in the static limit)

WNC

1
ij @ijV1 � )0
U

3
1 �

J0

c2
ak1@kU

3
1 �O	v21
; (7.5)

where U1 � f~kGm1r
�1�"
1 , with ~k � �	1�"2 
=�

	1�"
=2, is
the Newtonian approximation to V1, where ak1 �
d2yk1=dt

2 is the acceleration of the first particle, and where
)0 and J0 are numerical coefficients, which depend on ".
By the same reasoning as used above for the term / 
V3

1
one concludes that the term )0
U

3
1 does not generate any

pole.
Only the second term on the RHS of (7.5) generates a

pole / 1=" which survives the finite part operation. By
looking at the terms contained in the last bracket on the
RHS of Eq. (7.4a) one finds that the only dangerous inte-
grands have the same form as the second term on the RHS
of Eq. (7.5), namely, proportional to ak1@kU

3
1. Let us only

give one example of a contribution of this form coming
from the last bracket in (7.4a). Consider the term (which
can be treated to leading PN order)

Ŵ NC@2t V � �f�1�
�1	@kV@kV
�NC@2t V: (7.6)

From the identity @kV@kV � 
	V2=2
 � V
V one has
�
�1	@kV@kV
�

NC � V2=2, so that the term (7.6) is of
the type of V2@2t V. As usual the only dangerous terms
are those proportional to V2

1@
2
t V1 or V2

2@
2
t V2. Focusing on

the first one, and using the fact that

@2t V1 � �ak1@kV1 �O	v21
; (7.7)

one ends up with an integrand (7.6) proportional to
V2
1a

k
1@kV1 or, to leading approximation U2

1a
k
1@kU1, which

is indeed identical to the second term in (7.5). Finally, we
conclude that the dangerous terms in Eq. (7.4a) are of the
form
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SI dangerL � FP
Z
loc
ddxj~xjBx̂L



JSI

�Gc6
ak1@kU

3
1

�
; (7.8)

where JSI is a numerical coefficient which sums several
similar contributions: JSI � �J0 � � � � [we include the
factor f�1 � 1�O	"
 into these coefficients], and where
the subscript ‘‘loc’’ to the integral reminds us that one can
integrate on any local neighborhood of x � y1.

Let us now consider the dangerous terms in SIIL,
Eq. (7.4b). In this case one must pay careful attention to
the dependence of the coefficients on the angular momen-
tum index ‘. Indeed, it is important to note that there was
no explicit dependence on ‘ in Eq. (7.8) apart from the
factor x̂L. By contrast, the coefficients entering (7.4b)
explicitly depend on ‘. Since (7.4b) has an overall factor
c�6, it is sufficient to use the leading PN approximations
for Ŵij and V; in view of our previous (1PN-accurate)
result (7.5) this means that we can use Ŵij@ijV1 ’ )0
U

3
1

(as usual we focus on the terms / m3
1). The occurrence of

an explicit Laplacian allows us to reexpress the first term
on the RHS of (7.4b) by integrating by parts. This leads to a
term proportional to (we keep only the coefficients depend-
ing on ‘)

1

2‘� d
FP

d2

dt2
Z
ddx
	j~xjBjxj2x̂L
U3

1: (7.9)

Using 
	jxjB�2x̂L
 � 	B� 2
	B� 2‘� d
jxjBx̂L we get
a contribution of the form

1

�Gc6
FP

d2

dt2
Z
ddxj~xjB

	B�2
	B�2‘�d

2‘�d

x̂LU
3
1: (7.10)

The pole part / 1=" of the contribution (7.10) is generated
by integrating in the vicinity of the first world line. For
such a local integral the IR-converging factor j~xjB has no
importance and we can take the analytic continuation B!
0 directly in the (localized) integrand. This leads to the
disappearance of the ‘ dependence in the factor appearing
in (7.10). As for the last two terms on the RHS of (7.4b),
one sees that the ‘ dependence cancels between the factor
/ 1=	2‘� d
 in front, and the factors / 	2‘� d
 multi-
plying the integrands x̂LVŴ and x̂LV

3. Finally, we con-
clude that the dangerous terms in SIIL are of the form

SII dangerL �
d2

dt2
Z
loc
ddxx̂L



JSII

�Gc6
U3

1

�
�O	v21
: (7.11)

The coefficient JSII does not depend on ‘ (like was the case
for JSI). The repeated time derivative in (7.11) can then be
let to act on U3

1 only (modulo ‘‘nondangerous’’ terms)
yielding, in view of Eq. (7.7), @2t U3

1 ’ �a
k
1@kU

3
1 so that

SII dangerL �
Z
loc
ddxx̂L



�

JSII

�Gc6
ak1@kU

3
1

�
: (7.12)

A similar study of the ‘‘vector’’ contribution VIL,
Eq. (7.4c), yields a result of the form
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1

�Gc6
	2‘� d� 2


	‘� d� 2
	2‘� d

FP

Z
loc
ddxj~xjBx̂iLf)VIai1
U

3
1

� JVIa
k
1@ikU

3
1g: (7.13)

Integrating by parts the first term, and taking the finite part
at B � 0, is easily seen to give a vanishing result [because

	x̂iL
 � 0]. The second term of (7.13), with a coefficient
denoted JVI, is a priori more problematic. Integrating by
parts does not give a vanishing result (because @ix̂iL / x̂L
does not vanish). If present, this term would have a com-
plicated dependence on ‘. However, the overall coefficient
JVI of this term is the sum of many individual contribu-
tions, and one finds that they all cancel out to yield JVI �
0, so that finally

VI dangerL � 0: (7.14)

The result JVI � 0 can be obtained either by explicit
calculations in d dimensions, using notably the explicit
form of ŴNC

ij , namely, (to leading order)

Ŵ NC

1
ij � �

1

4
	d� 1
	d� 2
U2

1

�
n̂ij1

	d� 1
	d� 4


�
�ij

d	d� 2
2

�
; (7.15)

or by considering the limiting case d � 3. In this limiting
case, the poles / 1=" are associated to logarithmically
divergent integrals. Looking at the three-dimensional re-
sults given by (8.2c), (9.3j), and (9.3k) of Ref. [26] for VIL,
one indeed finds that the terms ak1@ikY

	�3;0

iL , corresponding

to the d � 3 limit of the second contribution in (7.13), do
cancel in the final result, though they appear in intermedi-
ate terms: see the first terms on the RHS of Eqs. (9.3j)–
(9.3k) of [26] with coefficients �2=63 and �2=63, respec-
tively, (note a small misprint in (9.3k) of [26]: the overall
factor m2

1 should be understood as m3
1). Note also that, in

view of the general structure (7.13) derived above, it is
enough to check the cancellation of these terms for the
quadrupolar case 	‘ � 2
 to conclude that JVI � 0.

Summarizing our results so far, we conclude, by adding
(7.8), (7.12), and (7.14) that the pole part / m3

1 in the ‘th
mass multipole moment is contained in

IdangerL �
Z
loc
ddxx̂L



J

�Gc6
ak1@kU

3
1

�
; (7.16)

with a final coefficient J � JSI � JSII. By summing the
various contributions one finds

J � �
11

6
�O	"
; (7.17)

where the first term on the RHS is enough to discuss the
residue of the pole / 1=".
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B. Renormalization of poles by shifts of the world lines

The result (7.16)–(7.17) is the explicit expression of the
dangerous part of the two diagrams of Fig. 1. Let us now
see explicitly why it is nicely renormalized away by using
exactly the same dipole counterterm that was found neces-
sary in [40]. The pole generated by (7.16) can be seen, after
integrating by parts the spatial gradient (@k), as coming
from an integral of the form

Iloc �
Z
loc
ddx’	x
U3

1; (7.18)

where’	x
 is a smooth function of x (at least near x � y1).
Taylor-expanding ’	x
 near x � y1 one sees that the pole
in (7.18) comes from the zeroth term ’	y1
 which multi-
plies an integral proportional to

Z
loc
d3�"xr�3�3"

1 � �2�"

Z R

0
dr1r

�1�2"
1

� �2�"R
�2"=	�2"
; (7.19)

where we recall that �2�" denotes the area of the 2� "
dimensional sphere. Therefore, in the limit "! 0, the
integral (7.18) is asymptotically equivalent to

Iloc � �
2�
"
G3m3

1’	y1
 �O	"0
: (7.20)

This means that, when "! 0 the integrand U3
1 is asymp-

totically equivalent (in the formal sense of distributions in
d-dimensional space) to

U3
1 � �

2�
"
G3m3

1�	x� y1
 �O	"0
: (7.21)

Inserting this result into (7.16) one concludes that the pole
part (due to the UV divergencies in the neighborhoods of
y1 and y2) of the 3PN-accurate ‘th mass multipole moment
is given by

IpoleL �
Z
ddxx̂Lak1@k



�

2J
"
G2m3

1

c6
�	x� y1


�
� 1$ 2:

(7.22)

If we compare (7.22) with the leading, Newtonian approxi-
mation for IL, namely,

INL �
Z
ddxx̂Lfm1�	x� y1
g � 1$ 2; (7.23)

we see that the pole part (7.22) can be absorbed in a dipole-
like modification [� @k�	x� y1
] of the mass density
m1�	x� y1
, or equivalently in a shift of the world line
position y1. More precisely, if we decompose the full y1
(henceforth called the bare y1) as in Eq. (7.2), with yren1
being finite as "! 0, but with �1 designed to absorb the
pole part (7.22), one easily checks that one needs to define
124004
�k1 � �
2J
"
G2m2

1

c6
ak1 �O	"0
; (7.24)

in order to renormalize away this pole. Note that it was
crucial to have no ‘ dependence of the coefficients in the
dangerous part (7.16) in order to be able to renormalize
away the infinite sequence of multipoles by means of the
‘-independent shift �1 (7.24).

In addition, by inserting the numerical value (7.17) of
the coefficient J, one finds that the shift (7.24) needed to
absorb the poles in the infinite sequence of multipole mo-
ments coincides with the shift obtained in [40] by the
requirement of renormalizing both the ‘‘bulk metric’’ and
the equations of motion. More precisely, Ref. [40] found
that the choice of the shift recalled above in Eq. (6.8) [and
which contains (7.24) as its pole part] allowed one not only
to get a finite (pole-less) bulk metric and finite equations of
motion, but that the equations of motion coincide (when,
and only when, � � �1987=3080) with the harmonic-
gauge equations of motion, parametrized by r01 and r02,
and derived using HR in Refs. [21,22]. We recall that it
is necessary to introduce some length scales r01 and r02
associated with the HR of logarithmically divergent inte-
grals in harmonic gauge.

As we have shown here the dangerous divergencies
associated with the vicinity of the first world line are
entirely contained in the diagrams shown in Fig. 1, and,
therefore, are proportional to m3

1, without any explicit
dependence on the second mass m2. (There is only an
implicit dependence onm2 via the fact that the acceleration
a1 is proportional to m2. But, at the level of the diagrams,
a1 must be considered as a pure characteristic of the first
world line.) As a consequence, we see in Eq. (7.24) that the
dipole m1�k1 needed to subtract the poles is also propor-
tional to m3

1. This simple algebraic fact immediately leads,
without calculations, to the result that � � 0. Indeed, the
definition of the parameter � in Ref. [26] was to parame-
trize a conceivable a priori ambiguity, which is indeed
allowed by the weak assumptions of [26], in the renormal-
ization of the logarithmic divergencies of the type (for the
first particle)

m3
1 ln

�
r01
s1

�
� 	�� �
m3

1 � �m2
1m2; (7.25)

where r01 and s1 are two possible choices of regularization
length scales associated to the first particle, and where we
have incorporated the factor m3

1 associated to the divergen-
ces linked to y1. As (7.25) shows, the parameter � corre-
sponds to a mixing between diagrams with three legs on the
first world line (as in Fig. 1) and diagrams having two legs
on the first world line and one on the second. Our diagram-
matic study has shown that the latter diagrams have no
dangerous divergencies, i.e., that they do not introduce any
conceivable ambiguity (even if we were working directly
in d � 3, using HR). Therefore we conclude that � � 0.
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The work of this section has shown that the pole in the
‘th mass moment IL was given by Eq. (7.22) whose
numerical coefficients contain no dependence on the value
of ‘. This proves, in particular, that the same shift (7.24), or
more precisely (6.8), yields finite values of both the quad-
rupole moment Iij (‘ � 2) and the dipole moment Mi

(‘ � 1).23 As stated above the mass-dipole moment Mi
coincides with the Arnowitt-Deser-Misner dipole moment
or center-of-mass position Gi, such that Gi � Pit is con-
served, where Pi denotes the total ADM linear momentum.
The comparison betweenMi andGi in [28] permitted to fix
the value of the combination �� � � �9871=9240 within
the HR scheme, under the assumption that the regulariza-
tion scales s1 and s2 represent some unknown but fixed
constants, related to r01 and r02 by some definite equations,
and, in particular, take the same values for both the com-
putations of the quadrupole Iij and the dipole Mi. This
assumption worked well in the case of the HR computation
of the multipole moments, but failed to work when it was
tried to assume that the same scales s1 and s2 are also those
which entered the HR computation of the equations of
motion [22]. Indeed, the work on the equations of motion
used for the relation between s1 and r01, for the divergences
linked to the first particle, ln	r01=s1
 � const� �m2=m1

where �was later determined to have a nonzero value, � �
�1987=3080. Such a link is clearly incompatible with
(7.25) and the value we have found for � � 0. This means
that one is not a priori allowed to assume, when using HR,
that the scales s1 and s2 represent always the same scales,
fixed once and for all, and which can be used in different
bodies of calculations. In this respect the HR is not a fully
consistent regularization scheme. However, it can never-
theless be applied if one accepts that its incompleteness
results in the appearance of some unknown scales s1 and s2
(generally in front of a few terms only), which can take
different values, depending on the type of calculation one
is doing. By contrast we have proved in Sec. VI B above
that the same value of � is consistent, in DR, with the
renormalized results of both Iij and Mi � Gi. This result
constitutes evidently a solid confirmation of the value � �
�9871=9240.

C. Comments on finite-size effects in the effective action
of compact bodies

To conclude our discussion of the diagrammatic ap-
proach to the renormalization of the poles which appear
in harmonic gauge, let us briefly comment24 on the recent
claim [64] that these poles require the introduction of new
23Recall from Sec. VI B that the conserved mass-dipole mo-
ment Mi reads Mi � Ii � �Ii, where �Ii represents a certain
correction term which, however, turns out not to contribute at the
3PN order (see [28]).

24Note that the discussion of this subsection applies to the first
version of Ref. [64]. The second archive version withdraws
several of its previous claims.
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terms in the effective action describing compact (but ex-
tended) objects, beyond Eq. (7.1) and the dipole term we
found above, linked to the shift (7.2). The modified effec-
tive action proposed in Ref. [64] has the form

S0pp � Spp � Sfinite size; (7.26)

where Spp is the standard point-particle effective action
(7.1) and where

Sfinite size �
X
a

c	a
R
Z
dsaR	ya


�
X
a

c	a
V
Z
dsaR��	ya
u

�
a u�a; (7.27)

with u�a � dy�a =dsa. Several claims were made in
Ref. [64]: (i) that the extra terms (7.27) are necessary to
‘‘encapsulate finite-size properties of the sources,’’ (ii) that
they are linked to the same dangerous diagrams that were
examined in Fig. 6 of [40] and Fig. 1 above, and (iii) that
they entail the presence of genuine ambiguities at the 3PN
level which can only be fixed by a matching calculation. If
these statements were correct, that would mean not only
that the basic ‘‘effacement’’ property (modulo 5PN-level
‘‘quadrupole-type’’ additional terms to the effective ac-
tion) is incorrect, but also that the recent results,
[39,40,44] and this work, fixing all 3PN-level ambiguity
parameters by DR are flawed.

Let us, however, indicate why we think that the claims
(i), (ii), and (iii) made in Ref. [64] are not correct. First, we
mention that the addition of curvature-coupling terms
of the type indicated in (7.27) has already been considered
in Ref. [65] and in Appendix A of Ref. [66], which con-
sidered finite-size effects in tensor-scalar gravity. Indeed,
when gravity is partly mediated by a scalar excitation, the
internal characteristics of compact objects are much less
effaced than in the pure spin-2 case. In particular, the
coupling to the spherical inertia moment I �R
d3x7	x
x2 can introduce extra couplings of the type of

the curvature terms in (7.27) (see [65]) together with
several other scalar-dependent couplings. However, it
was shown in [66] that the use of suitable field redefinitions
can transform away the curvature couplings (7.27) into
couplings explicitly involving the gradient of the scalar
field,

R
dsaNa	’
g

��@�’@�’. As such a term does not
exist in the pure spin-2 case, one sees that Ref. [66] proves
that (7.27) can be field-redefined away. Indeed, a simple
way to see it is to recall that the first-order effect of a field
redefinition of the metric 	g0�� � g�� � "h��
 is to mod-
ify the effective action by terms proportional to the
Einstein field equations, namely, �Stot � �	16�G
�1
R
dDx

�������
�g

p
	R�� � 1

2Rg
�� � 8�GT��
"h�� (to simplify,

we set the light velocity c � 1 here and below).
Conversely, the (a priori illicit) use of the Einstein field
equations within an action is equivalent to a suitably
defined field redefinition "h��. Applying this general re-
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sult to (7.26) we see that the curvature-coupling terms
(7.27) are equivalent to

S0finite size �
X
a

c0	a
R

ZZ
dsads0a

ma�������
�g

p �	D
	y�a 	sa
 � y�a 	s0a



�
X
a

c0	a
V

ZZ
dsads0a

ma�������
�g

p u�a 	sa
u�a	sa



 ua�	s0a
ua�	s0a
�	D
	y
�
a 	sa
 � y�a 	s0a

;

(7.28)

(where D � d� 1) modulo a field redefinition g0�� �
g�� � h�� of the type

h��	x
 �
X
a

Z
dsa�c

00	a

R g�� � c00	a
V u�u��



�	D
	x� � y�a	sa

�������

�g
p : (7.29)

Here c0R, c0V , c00R, c00V are linear combinations of the coef-
ficients cR, cV entering (7.27), namely, c00R � �2c0R �
16�G	cV � 2cR
=	d� 1
, c00V � 2c0V � 16�GcV . After
using, for instance, the delta function in time, �	y0a	sa
 �
y0a	s

0
a

, to integrate over s0a (with the conclusion that s0a �

sa), one easily sees that the result (7.28) is proportional to
the sa integral of the d-dimensional delta function eval-
uated at a vanishing separation: �	d
	yia	sa
 � yia	sa

. In
DR, such a pure contact term vanishes exactly, so that we
have simply S0finite size � 0. (As Ref. [64] also uses DR, we
are entitled in using DR to discuss their claims.) Therefore
we conclude that the proposed curvature-coupling terms
(7.27) are equivalent to a field redefinition of the type
(7.29). However, (7.29) is again a ‘‘contact term’’ in the
sense that it vanishes outside of the world lines and cannot
therefore affect the external field generated by the world
lines in which we are interested. In conclusion, the term
(7.27) can be essentially completely field-redefined away
and has no physical import.

We can give another (partial) confirmation of this result
by looking at the form of the pole that Ref. [64] claims to
be associated with the diagrams in Fig. 6 of [40], or Fig. 1
here (i.e., diagrams (c) and (d) of Fig. 7 of [64]).
Transcribing the Fourier-space result (53) of [64] in x
space, and considering the combination that enters the
leading term in the multipole moments, one finds that,
according to [64], those dangerous diagrams are equiva-
lent, when "! 0, to an effective mass-energy distribution
of the type

*Gold�Roth
eff �

T00
	3
 � Tii	3

c2

�
Q
"
G2m3

1

c4

�	x� y1
; (7.30)

where Q is a (nonzero) numerical constant and 
 the
Laplacian.

The result (7.30) is consistent with part of our analysis
above. Indeed, using Eqs. (7.5), (7.8), (7.13), and (7.21),
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our analysis has shown that the dangerous terms in the
cubically nonlinear ‘‘noncompact’’ contributions to *, *i,
and *ij are equivalent to a term in * of the form

*eff �
1

"
G2m3

1

c4

�
)
�	x� y1
 �

J

c2
ak1@k�	x� y1


�
:

(7.31)

Equation (7.30) is consistent with the first term on the RHS
of (7.31). But, as we have shown above, this term has no
physical implication; only the second term, involving a
dipole coupling ak1@k�, mattered. This confirms our con-
clusion that the claims (i), (ii), and (iii) of [64] are not
correct because the terms they considered have no physical
relevance. Note also that the ‘‘finite-size’’ effect (7.30)
(formally linked to a spherical inertia momentR
d3x7	x
x2, as in the tensor-scalar case of [66]) is ac-

tually a 2PN-level term. If that term had created physical
effects linked to the finite size of the source, this would
have meant that the 2.5PN equations of motion [59] had
missed some 2PN violation of the effacement properties.
As a final comment let us recall that the ADM-gauge
calculations of [39] never exhibited any pole. In ADM
gauge all the 3PN diagrams are finite and the whole dis-
cussion of possible renormalization-group dependent
quantities evaporates away.
VIII. QUADRUPOLE MOMENT OF A BOOSTED
POINT PARTICLE

In Sec. VI we obtained unique values for the three
heretofore unknown parameters �, �, and � , by adding to
the HR calculations of the quadrupole moment of an
interacting binary point-mass system the additional con-
tributions DIij coming from a DR treatment of the singu-
larities near y1 and y2. In Sec. VII we have shown that a
detailed study of the structure of the singular diagrams
represented in Fig. 1 allowed one to check the values of
both � and � (using information about the full computation
of the dipole moment in HR to check the latter). Here, we
shall complete our checks by giving an independent cal-
culation of the third parameter � . This calculation will be
based on a full DR evaluation of the quadrupole moment of
a moving isolated particle (m1 � 0, m2 � 0). In another
paper, Ref. [45], we have already checked the value of �
within a purely three-dimensional approach, based on the
physical situation of an isolated boosted Schwarzschild
(exterior) solution with mass m1 (and still with m2 � 0),
and without use of any self-field regularization. Therefore
our new, DR-based, computation of � given here can also
be viewed as a further check of the consistency of DR.

We thus consider the limiting case of a single particle
with massm1, moving on a straight line. In order to be able
to discuss meaningfully this limiting case, it is important
not to use a center-of-mass frame for the original binary
system m1, m2. Indeed, if we start from a center-of-mass
-32



DIMENSIONAL REGULARIZATION OF THE THIRD . . . PHYSICAL REVIEW D 71, 124004 (2005)
frame before taking the limit m2 ! 0, we shall end up with
a single particle at rest and placed at the center of the
coordinate frame used to compute the multipole moments.
To simplify the notation, we shall suppress the index 1 on
the characteristics of the single particle that we consider.
As in [45] we gain also some simplification by assuming
that the origin of the coordinate system (with respect to
which the particle is moving) which is used to define the
multipole moments coincides with the position of the
particle at the time t � 0. In other words, we consider a
single particle of mass m, moving on the world line yi �
vit. As was already used in [45], the limiting casem1 ! m,
m2 ! 0, yi1 ! yi � vit of the mass-type quadrupole mo-
ment of a binary system Iij	m1; m2
, evaluated by HR in
[26,28], takes the form (at 3PN order)

IHRij 	m; 0
 � myhiyji
�
1�

9

14

v2

c2
�

83

168

v4

c4
�

507

1232

v6

c6

�

�

�
232

63
�

44

3
�
�
G2m3

c6
vhivji: (8.1)

As we see, the � ambiguity enters only in a term /

G2m3vhiji=c6. We shall henceforth focus on this term and
show how DR uniquely fixes its coefficient, i.e., the nu-
merical coefficient C in the expression

IDRij 	m; 0
 � Bmyhiyji � C
G2m3

c6
vhivji: (8.2)

To evaluate the coefficient C in DR, the first step is to
obtain theD-dimensional metric, in harmonic coordinates,
generated by a boosted point particle. We shall first deter-
mine the metric generated by a point particle at rest and
then apply Lorentz invariance in D dimensions. There are
two ways of doing this. We can start from the expressions
for the harmonically relaxed Einstein field equations (at
3PN order) explicitly given in [40] and solve them by
iteration, when assuming a source given by a single delta
function. Another method consists in starting from the
well-known D-dimensional Schwarzschild solution, in
Schwarzschild-Droste coordinates, and then look for the
particular harmonic coordinates selected by the DR treat-
ment of delta-function sources. We have used both meth-
ods and checked that they fully agree. Let us indicate some
details of the first, more pedestrian, approach.

In the rest frame of a single point particle, the stress-
energy tensor has T00 � mc2�	d
	x
 as a single nonvanish-
ing component. This yields a scalar source 7	x
, as used in
our formalism, see Eq. (4.1), of the form

7	x
 � fm�	d
	x
; (8.3)

with f � 2	d� 2
=	d� 1
, together with 7i � 0 � 7ij.
The basic scalar potential V generated by 7, �V �
�4�G7, is then found to be

V � f~k
Gm

rd�2
; (8.4)
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where ~k � ��	d� 2
=2�=�	d�2
=2. The other linear poten-
tials are easily found to vanish, Vi � 0, K � 0. Going then
to the various nonlinear potentials, one finds, successively,
R̂i � 0, Ẑij � 0, Ŷi � 0, as well as T̂ � 0. Note that the
vanishing of all those potentials results both from the
treatment of contact terms in DR (namely, r)�	d
	x
 � 0)
and from the special structure of Einstein’s equations (the
fact that Ẑij and T̂ vanish is due to the special structure of
some cubic nonlinearities in Einstein’s equations). Finally,
besides V, the only nonvanishing potentials are Ŵij and X̂,
which are determined by solving


Ŵij � �
1

2

�
d� 1

d� 2

�
@iV@jV; (8.5a)


X̂ � Ŵij@ijV: (8.5b)

As in [40], it is useful to introduce the combination

V � V �
2

c2

�
d� 3

d� 2

�
K �

4

c4
X̂�

16

c6
T̂ � V �

4

c4
X̂;

(8.6)

which simplifies the expression of the metric. Indeed, one
has

g00 � � exp
�
�2

V

c2

�
�O

�
1

c10

�
; (8.7a)

gij � exp
�

2

d� 2

V

c2

�

�ij �

4

c4
Wij

�
�O

�
1

c8

�
; (8.7b)

and g0i � 0. The gothic metric g�� �
�������
�g

p
g�� reads,

besides g0i � 0,

g00 � � exp
�
2
d� 1

d� 2

V

c2

�

1�

2

c4
Ŵkk

�
�O

�
1

c8

�
; (8.8a)

gij � �ij �
4

c4
Ŵij �

2

c4
Ŵkk�ij �O

�
1

c8

�
: (8.8b)

Note that a remarkable simplification occurred in the ex-
pression (8.8b) of the spatial gothic metric. Indeed, we see
from (8.4) that V=c2 is proportional to Gm=c2 and there-
fore that Ŵij=c4 / 	Gm=c2
2 while X̂=c6 / 	Gm=c2
3.
The result (8.8b) shows that gij � �ij �O�	Gm=c2
2� �
O�	Gm=c2
4� � � � � . The point is that there are no terms
/ 	Gm=c2
3 in the spatial gothic metric. One can even
prove, more generally, that the spatial structure of
Einstein’s equations is such that gij (for a particle at rest)
contains only even powers ofGm=c2. The only component
of the gothic metric which contains odd powers of Gm=c2,
and in particular 	Gm=c2
3, is the time-time component
g00, Eq. (8.8a).

By explicitly solving Eq. (8.5a), we find, in d dimen-
sions,
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Ŵ ij � �
1

4
	d� 1
	d� 2
V2

� n̂ij
	d� 1
	d� 4


�
�ij

d	d� 2
2

�
: (8.9)

Inserting this result in the RHS of (8.5b) then allows one to
solve for X̂, in any dimension d, and we find

X̂ � �
1

24

�
d� 1

d� 4

�
V3: (8.10)

Then, from Eq. (8.8) we get, still in the rest frame:

g 00 � �A; gij � B�ij � Cn̂ij; (8.11)

where A, B, and C can be expressed in terms of V=c2 and
admit expansions of the type

A � 1� a1
V

c2
� a2

V2

c4
� a3

V3

c6
� a4

V4

c8
� . . . ; (8.12a)

B � 1� b2
V2

c4
� b4

V4

c8
� . . . ; (8.12b)

C � c2
V2

c4
� c4

V4

c8
� . . . ; (8.12c)

where, as said above, B and C contain only even powers of
V=c2. The d-dependent numerical coefficients a1, a2, a3,
b2, and c2 can be read off the results (8.4) and (8.8)–(8.10)
above.

It is then easy to ‘‘boost’’ the metric (8.11) to a moving
frame. It suffices to write it as

g�� � �Au�u� � B	��� � u�u�
 � Cnh�n�i; (8.13)

where u� is the D velocity of the particle, and n� the unit
radial D vector orthogonal to the world line.25 As the mass
m enters only through V / Gm, we see immediately from
(8.13) that, in the ‘‘laboratory frame’’ where the point
particle is moving, the only term in the gothic metric
(8.13) which is cubic in Gm is

	g��
cubic � �a3
V3

c6
u�u�: (8.14)

The explicit value of the coefficient a3 in (8.14) is found to
be

a3 � 8
�
d� 1

d� 2

��
1

6

�
d� 1

d� 2

�
2
�

1

8

�
d� 1

d� 2

�
�

1

24

�
d� 1

d� 4

��
:

(8.15)

When " � d� 3! 0, one finds

a3 � 8
�
1�

4

3
"�O	"2


�
: (8.16)

Finally, to obtain (8.14) in the lab frame, we need to
25We have u2 � ���u
�u� � �1, n2 � ���n

�n� � �1,
���u

�n� � 0, and nh�n�i � n�n� � 1
D�

��.
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reexpress the rest-frame result (8.4) for V in terms of lab-
frame quantities. This is simply done by saying that the
rest-frame radial distance r entering (8.4) can be invari-
antly characterized as the orthogonal distance r? between
the world line and the field point. In any frame, r? is given
by

r? � 	��� � u�u�
	x
� � y�
	x� � y�
; (8.17)

where y� is any point on the world line (y� does not need
to be such that x� � y� be orthogonal to u�). Finally, we
get for the part of the gothic metric deviation h�� � g�� �
��� which is cubic in Gm,

h��cubic	x; t
 � �
a3
c6

�
f~kGm

r1�"?

�
3
u�u�; (8.18)

where u0 � 1=
����������������������
1� v2=c2

p
, ui � u0vi=c � ui, and

r2?	t
 � 	�ij � uiuj
	x
i � yi	t

	xj � yj	t

; (8.19)

where yi	t
 is the point on the world line which is lab
synchronous with the field point (at the same time t �
y0=c).

We have focused here on the terms cubic inGm because,
as indicated in (8.1)–(8.2), we are only interested in com-
puting the coefficient C appearing in front of the cubic
term of (8.2). We need now to use the definition of the
mass-quadrupole moment Iij, which is given by Eq. (3.50),
where the RHS is expressed in terms of the PN expansion
of 8�� � c4

16�G�h��. Introducing, as in (3.49) above, the
notation * � 2

d�1 �	d� 2
800 � 8ii�=c2, *i � 80i=c,
*ij � 8ij, we finally obtained the following
d-dimensional expressions for the cubic terms in these
various effective sources:

*cubic � �
3�O	"


�
G2m3

c4
1� "� v2=c2

1� v2=c2
1

r5�3"
?

; (8.20a)

*i
cubic � �

3�O	"

�

G2m3

c4
vi

1� v2=c2
1

r5�3"
?

; (8.20b)

*ij
cubic � �

3�O	"

�

G2m3

c4
vivj

1� v2=c2
1

r5�3"
?

; (8.20c)

where r? � r1
�����������������������
1� 	niui
2

p
so that we have the expansion

1

r5�3"
?

�
1

r5�3"
1

�
1�

5� 3"
2

	ni1v
i
2

c2
� � � �

�
: (8.21)

Here r1	t
 �
����������������������������������������������������
�ij	xi � yi	t

	xj � yj	t



q
is the usual, lab-

instantaneous distance between the field point x and the
particle y	t
, and ni1	t
 � 	xi � yi	t

=r1. We have rein-
stalled here the index 1 to distinguish the radial distance
to the particle, r1 � jx� yj � jx� y1j, from the radial
distance to the origin of the lab-frame coordinate system,
everywhere denoted as r � jxj.
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When inserting the explicit expressions (8.20) in the
definition of the quadrupole moment, one ends up with a
sum of d-dimensional integrals whose integrands contain
several types of factors: an overall factor j~xjB � jx=r0jB,
various multipolar factors �x̂L, together with various spa-
tial derivatives of r�5�3"

1 . We use @tf	r1
 � �vi@if	r1
 to
replace time derivatives acting on the *’s by space deriva-
tives. By separating the quadrupole moment in several
contributions, as is Eq. (3.50) above, one easily checks
that the leading O	c�4
 contribution coming from replac-
ing r�5�3"

? ! r�5�3"
1 is SIL and gives a vanishing contri-

bution (after taking the d-modified finite part). Then it
takes more work to check that the O	c�6
 contribution
VIL coming from the time derivative of *i also gives a
vanishing contribution. One is then left to evaluating an
integral of the type

Iij / FP
Z
ddxj~xjB



�
5� 3"

2
x̂ijn̂ab1 v̂

ab
1 r

�5�3"
1

�
1

2	7� "

jxj2x̂ijv̂ab1 @abr

�5�3"
1

�
: (8.22)

The dependence on " of the global factor (not displayed
here) does not matter for our present calculation. On the
contrary, the relative coefficients�	5� 3"
 and 1=	7� "

of the two terms are crucial, as there will occur below a
cancellation between their lowest-order contributions. The
trick to compute Eq. (8.22) (for a finite value of B) is to
express it, after using some integration by parts, in terms of
parametric derivatives of ‘‘Riesz integrals.’’ An
(Euclidean) Riesz integral in any dimension d is the inte-
gral

R	a; b; y0; y1
 �
Z
ddxjx� y0jajx� y1jb

� Nabjy0 � y1ja�b�d; (8.23)

where the numerical coefficient Nab is equal to

Nab � �d=2
�	a�d2 
�	

b�d
2 
�	�

a�b�d
2 


�	� a
2
�	�

b
2
�	

a�b�2d
2 


: (8.24)

We find that we can express (8.22) as being proportional to

v̂ ab
1

@2

@yhi0@y
ji
0

@2

@yha1 @y
bi
1

R	B� 4;�3� 3"; y0; y1
: (8.25)

Here, we have introduced, as extra parameter, the position
yi0 of the origin used to define the multipole moments. Up
to now we have simply taken yi0 � 0, but one could have
defined from the start the multipole moments with factors
of the type jx� y0jB	x� y0


hLi. Inserting all needed fac-
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tors, and explicitly evaluating the derivatives appearing in
(8.25), we end up with a final answer of the type Icubicij �

CG2m3
1c
�6vhiji1 , i.e., of the form expected from Eq. (8.2),

with a numerical coefficient given, after appropriate ex-
pansion, by

C � FP
�
B	�14"� 9B� � � �


7"	B� 2"


�
; (8.26)

where the ellipsis denote terms of higher order in " and/or
B that do not contribute.

We explicitly exhibit the near-final form (8.26) to em-
phasize the subtle nature of the determination of C. The
result is proportional to B, which will ultimately be analyti-
cally continued to zero, so that one might a priori believe
that C will vanish when B! 0. However, this is not so
because C also contains the shifted pole / 	B� 2"
�1. In
addition, when B is nonzero, (8.26) also exhibits a pole /
"�1. As we explained above, the MPM formalism (and its
subsequent PN reexpansion) imposes a specific finite part
operation FP to be applied to all multipole moments. It
consists in first subtracting the shifted pole terms and then
in taking the limit B! 0 (see Sec. III A). For instance, in
the case of a simple pole of the form N	B; "
=	B� 2"
,
one must subtract N	2"; "
=	B� 2"
 before taking B! 0,
which then leads to the finite part �N	0; "
 �
N	2"; "
�=	�2"
. Applying this to (8.26) yields the final
result

C �
�2"	�14"� 18"


7"	�2"

�

4

7
; (8.27)

which is exactly the same result as found with an indepen-
dent surface-integral evaluation [45]. Comparing this value
to the last term on the RHS of Eq. (8.1), we then conclude
that � is uniquely fixed to the value

� � �
7

33
; (8.28)

in full agreement with our full two-body DR results in
(6.16) above and with the regularization-free calculations
of Ref. [45].
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