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Small worlds: How and why
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We investigate small-world networks from the point of view of their origin. While the characteristics of
small-world networks are now fairly well understood, there is as yet no work on what drives the emergence of
such a network architecture. In situations such as neural or transportation networks, where a physical distance
between the nodes of the network exists, we study whether the small-world topology arises as a consequence
of a tradeoff between maximal connectivity and minimal wiring. Using simulated annealing, we study the
properties of a randomly rewired network as the relative tradeoff between wiring and connectivity is varied.
When the network seeks to minimize wiring, a regular graph results. At the other extreme, when connectivity
is maximized, a ‘‘random’’ network is obtained. In the intermediate regime, a small-world network is formed.
However, unlike the model of Watts and Strogatz@Nature393, 440 ~1998!#, we find an alternate route to
small-world behavior through the formation of hubs, small clusters where one vertex is connected to a large
number of neighbors.
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I. INTRODUCTION

Coupled systems can be modeled as networks or gra
where the vertices represent the elements of the system
the edges represent the interactions between them. Th
pology of these networks influences their dynamics. Netw
topologies may be random, where each node or verte
randomly wired to any other node; or they may be regu
with each vertex being connected in a fixed pattern to
identical number of its neighboring nodes@1#. Watts and
Strogatz@2# showed that between these two extremes of
pology lies another regime of connectivity, which they c
small-worldnetworks. Such networks are ‘‘almost’’ regula
graphs, but with a few long range connections.

Consider a few examples of networks: neurons in
brain, transportation and social networks, citations of sci
tific papers, and the World Wide Web. While some of the
networks come from the physical world and others do n
nevertheless they all have a well-defined cost metric ass
ated with them. Neural and transportation networks are
works where the cost of a connection translates to the ph
cal distance between its adjacent nodes. In nonphys
networks, such as social networks, paper citations, and
Internet, the cost of a connection can be measured by o
attributes such as the effort expended in maintaining a r
tionship, or the time spent in accessing a web page. In a
these networks, the associated cost metric is not necessa
constant over all connections. Although various cost met
influence networks, in this paper we investigate only a phy
cal metric and ask how placing acost on the length of an
edge affects the connectivity of the network. However,
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work with the motivation that the results are also applica
to networks with different underlying cost metrics.

Although recent work showed small worlds to be perv
sive in a range of networks that arise from both natural a
manmade technology, the hows and whys of this ubiqu
have not been explained. The fact that small worlds seem
be one of nature’s ‘‘architectural’’ principles leads us to a
what constraints might force networks to choose a sm
world topology. We investigate whether the emergence o
small-world topology, in networks where the physical d
tance is a criterion that cannot be ignored, can arise a
tradeoff between maximal connectivity and minimal wirin

We now briefly describe the small-world model of Wat
and Strogatz~WS!, and also introduce the notation that w
shall use. Watts and Strogatz considered a ring lattice, wh
is n vertices arranged at regular intervals on a ring, with ea
vertex connected to itsk nearest neighbors. Disorder is intro
duced into the graph by randomly rewiring each of the ed
with a probability p. While at p50 the graph remainsk
regular, atp51 a random graph results@3#. At intermediate
p, small-world graphs result. Watts and Strogatz quantifi
the structural properties of graphs by two parameters,
characteristic path length Land theclustering coefficient C.
The characteristic path length reflects the average conne
ity or vertex-to-vertex separation of the network, while t
clustering coefficient measures the extent to which neighb
of a vertex are neighbors of each other. They found that th
marginally randomized graphs are symptomatic of the wo
in which we live, in that they are characterized not only by
small degree of separation between vertices, but are
highly clustered. Small-world graphs, therefore, by loca
looking like regular graphs but globally behaving like ra
dom graphs, reconcile the properties of the graph topolog
at the two extremes. Finally we also point out that two kin
of distance measures can be employed in a graph. One i
graph distance, the minimal number of links between a
two vertices of the graph; and the other is thephysicaldis-
tance between these vertices. We use Euclidean distance

m.
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metric of the latter since, it is a natural choice for physic
networks, noting, however, that other suitable metrics can
constructed for nonphysical networks.

Section II elaborates on our motivations for question
whether small worlds can arise as a result of an optimiza
between conflicting constraints. In Sec. III we then descr
our optimization model. Section IV follows with a study o
the resulting optimized network topology, while Sec. V hig
lights differences between the WS model and the optim
tion model with respect to their small-world characteristi
In Sec. VI we ask whether a similar topology can be found
existing natural or manmade networks. Finally, we conclu
in Sec. VII.

II. CAN SMALL WORLDS ARISE AS THE RESULT OF
AN OPTIMIZATION?

Consider a toy model of the brain. Let us assume tha
consists of local processing units, connected by wires. W
constraints act on this system? On the one hand, one w

FIG. 1. Edge scale distribution at~a! p50.125, and~b! p
51.00, p being the amount of disorder introduced into then
5250,k54 regular network using the WS rewiring procedure
introduce small-world behavior. The inset in~a! displays the distri-
bution of all length scales other than the unit scale. Both plots
averaged over 25 samples.
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want the highest connectivity~shortest path length! between
the local processing units, so that information can be
changed as fast as possible. On the other hand, it is was
to wire everything to everything else. The energy requi
ments are higher, more heat is generated, more mat
needs to be used, and, consequently, more space is occu
Unrealistic though this model is, it motivated us to exami
whether small worlds would emerge as the result of th
constraints.

Cherniak investigated the influence of wiring as a co
straint on neural structure. In Refs.@5,6# he questioned
whether neural networks optimize the positioning of th
components due to a constraint on the wiring of connecti
between them. He found that the structure of a nervous
tem at various hierarchical levels supports the hypothe
that component placement optimization is a driving princip
of neuroanatomy.

The concept of multiple scales was introduced by Kast
irangan@7#, where he asserted that the fundamental mec
nism behind the small-world phenomena is not disorder
randomness, but the presence of edges at many diffe
length scales. He defined thelength scale~or range! of a
newly introduced edgeei j , to be the graph distance betwee
its adjacent verticesi and j before the edge was introduced
He further emphasized that the distribution of length sca
of the new edges is of significantly more consequence t
whether the new edges are long, medium, or short range

Following Kasturirangan@7#, we introduce theedge scale
distribution of a graph to be simply the histogram of th
length scales of all its edges. To obtain the distribution
edges in a graph whose edges are merely rewired~without
the introduction of additional edges!, we consider the length
scale of a rewired edge to be the distance between its a
cent vertices in the corresponding regular graph. Star
with a k-regular graph and using the WS rewiring procedu
we study the edge scale distribution at several values of
rewiring parameterp. Figure 1 shows the edge scale dist
bution at two values ofp. The edge scale distribution in th
small-world regime (p50.125), is shown in Fig. 1~a!. Due
to the introduction of a small amount of disorder, a fe
edges are rewired to become far, and consequently ha
large length scale. However, they are too few in number
significantly alter the edge scale distribution, and hence
edges of unit length scale dominate the distribution. Fig
1~b! shows the edge scale distribution atp51, a random
graph. Here the edges are uniformly distributed over the
tire length scale range, viz. from 1 ton/k. The network still
retains a slight bias toward the unit length scale. At bo
these values of randomness, however, the characteristic
length scales logarithmically withn. There thus appears to b
some factor that constrains the distribution of edge len
scales to~a! and not~b!, namely, restricting the rewiring to
just a few far edges. We question whether the associatio
a cost to each edge proportional to its length, serves to w
as this constraint.

III. OPTIMIZATION MODEL

We use the Metropolis algorithm@8,9# for simulated an-
nealing to find a network which results in the best optimiz

re
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tion of the objective functionE, whose minimization is the
goal of the procedure. The network used in the model is
of vertices arranged symmetrically along a ring. The size
the networkn, as well as the total number of edges, is fixe
So also are the positions of the vertices, which are equ
spaced along the circumference of the circle. Initially, t
network isk regular, similar to the WS model. The netwo
configuration has an associated energyE, a function of both
its wiring cost and the average degree of separation betw
its vertices. The objective functionE is taken to be

E5lL1~12l!W, ~1!

a linear combination of the normalized characteristic p
lengthL and the normalized wiring costW. The characteris-
tic path lengthL, as defined by Watts and Strogatz, is t
average distance between all pairs of vertices, given by

L5
1

n~n21! (
iÞ j

di j , ~2!

wheredi j is the number of links along the shortest path b
tween verticesi and j. It is therefore a measure based
graph distance, and reflects the global connectivity amo

FIG. 2. Edge scale distribution resulting from optimization at~a!
l50, and~b! l51 for a network havingn5250 andk54. Both
distribution plots are averaged over 25 simulations.
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all vertices in the graph. The wiring costW, in contrast, is a
measure of thephysicaldistance between connected vertice
The cost of wiring an edgeei j , is taken to be the Euclidea
distance between the verticesi and j. Hence the total wiring
cost is

W5(
ei j

A~xi2xj !
21~yi2yj !

2, ~3!

where (xi ,yi) are the coordinates of vertexi on the ring
lattice. The characteristic path lengthL is normalized by
L(0), thepath length in thek-regular network;W is normal-
ized by the total wiring cost that results when the edges
each vertex are the longest possible, namely, when each
tex is connected to its diametrically opposite vertex, and
the vertices surrounding it. The parameterl is varied de-
pending on the relative importance of the minimization ofL
and W. One can regard (12l) as the wiring cost per uni
length, andW as the length of wiring required. This mode
therefore includes a constraint on both graph distance
physical distance, resulting in graphs that combine both
lational as well as spatial mechanisms@10#.

Our model optimizes the interconnectivity among comp
nents in networks when component placement is fixed.
contrast, Cherniak investigated whether the positioning
components is optimized in networks, when their compon
interconnectivity is fixed. Both works, therefore, though bu
on the hypothesis that wiring needs to be minimum, follo
contrasting approaches to optimality.

Starting from the initial regular network, a standa
Monte Carlo scheme@8# was used to search for the energ
minimum. Similar to the WS model, duplicate edges a
loops were not allowed, and it was ensured that the rewir
did not result in isolated vertices. The starting value forT,
the annealing temperature, was initially chosen to be the
tial energyE. The temperature was then lowered in ste
each amounting to a 10% decrease inT. Each value ofT was
held constant for 150n reconfigurations, or for 15n success-
ful reconfigurations, whichever was earlier.

IV. OPTIMIZED NETWORKS: RESULTS

Since minimum characteristic path length, and minimu
wiring cost are contradictory goals, the optimization of eith
one or the other will result in networks at the two ends of t
randomization spectrum. As expected, atl50, when the op-
timization function concentrates only on minimizing the co
of wiring edges, a regular network emerges with a unifo
degree and a high characteristic path length (L;n). The
edge scale distribution shows all edges to be concentr
almost entirely within the unit length scale, as shown in F
2~a!. At l51, when only the characteristic path length is
be minimized, the optimization results in a ‘‘random’’ ne
work (L; logn). The edge scale distribution shown in Fi
2~b! has edges having lengths distributed uniformly over
entire length scale range. A later section explains how,
spite the logarithmic dependence ofL on n, and the flat edge
scale distribution, the network atl51 is not the same as tha
of a random graph in Ref.@4#.
7-3
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A. Emergence of hubs

At intermediate values ofl the optimization model re-
sults inhubs, that is, a group of nodes connected to a sin
node@7,11,12#. The emergence of hubs is due to the con
bution of L to the optimization function. Due to the con
straint which seeks to minimize the physical distance
tween connected vertices as well, hubs are formed
vertices close to one another. In addition, the minimizat
of the graph distance ensures the existence of connec
between hub centers, enabling whole hubs to communi
with each other. The edges at any hub center therefore
a wide range of length scales.

The extreme situation is auniversal hub@7#: a single
node, with all other nodes having connections to it. Ho
ever, except for situations when the cost of wiring is neg
gible, we find that the optimization does not result in a u
versal hub. This is apparent since a universal hub require
the remainingn21 vertices to have connections to the ve
tex at the center of the hub. This results in length sca
which span the entire scale range, with long connections

FIG. 3. The ring lattice displays illustrate the evolution of hu
asl is varied over the@0,1# range for ann5100,k54 optimized
network. Very short interhub links cannot be distinguished ap
from local vertex connectivity; however, longer range interh
links are clearly visible. Distinct hub centers illustrate the prese
of hubs, as well as their variation in size and number. The sin
hub center at the universal hub limit is clearly illustrated.l: ~a! 0.0,
~b! 531024, ~c! 531023, ~d! 1.2531022, ~e! 2.531022, ~f!
531022, ~g! 1.2531021, ~h! 2.531021, ~i! 531021, ~j!
7.531021, ~k! 7.831021, and~l! 1.0.
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ing prohibitively expensive. A real world example of such
universal hub network is unlikely, since a large hub is
bottleneck to traffic through it, resulting in overcrowding
the hubs@7#. Hence the need for multiple, and consequen
smaller, hubs.

Watts @10# defined thesignificanceof a vertexv as the
characteristic path length of its neighborhoodG(v), in the
absence ofv. Hub centers are significant, since they contr
distancesbetweenevery pair of vertices within the hub. Thu
vertex pairs, although not directly connected, are connec
via a single common vertex. Hence the average significa
a measure which reflects the number of contractions, is c
siderable. Thus, in contrast to the WS model, where n
works become small due to shortcuts, here smallness ca
attributed to the small fraction of highly significant vertice

The formation of the universal hub at sufficiently largel
is not surprising, since it can be shown that for a netwo
that minimizesL and employs only rewirings, a universa
hub will effect the largest minimization. The formation o
multiplehubs, however, is due to the role played byW in the
optimization, which is to constrain the physical length
edges, and therefore the size of hubs. As the hubs gr
whenever the cost of edges from the hub center to farth
nodes become high, the edges break away, resulting in m
tiple hubs. Thus the high wiring cost prevents the format
of very large hubs, and controls both the size and numbe
hubs.

Figures 3 and 4 demonstrate the evolution of hubs in
n5100,k54 optimized network asl is varied between 0
and 1. While Fig. 3 uses ring-lattice displays to illustrate t
evolution, Fig. 4 illustrates the same networks as tw
dimensional~2D! displays. In the ring-lattice displays, vert
ces are fixed symmetrically around the lattice, with hub c
ters and long-range interhub links being clearly visible. T
2D displays are generated by a graph drawer which us
spring embedder to clearly demonstrate vertex interconn
tivity. As vertices are no longer fixed along a ring lattic
short-range interhub links can be distinguished apart fr
local connectivity. We point out that the figures show typic
network topologies at differentl ’s. Since the annealing wa
done sufficiently slowly, all hub networks obtained at ea
value ofl using different random number seeds are sim
in topology, and more quantitatively, their small-world pro
erties and edge scale distributions have no significant va
tions.

B. Hub evolution

We now detail the evolution of hubs using the edge sc
distribution shown in Fig. 9, and hub variations described
Figs. 3 and 4. All three figures show the samen5100, k
54 network at variousl.

In Figs. 9~a! and 4~a!, optimization results in a near regu
lar network, with hardly any hubs. When the cost reduc
very slightly to allow for a slight increase in edge wiring
very small hubs are formed. Hence for increasing but v
small l, Figs. 9~b! and 9~c! show the edges to be almo
entirely concentrated in the unit length scale, with very fe
longer edges. The nonunit length scale edges accoun
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SMALL WORLDS: HOW AND WHY PHYSICAL REVIEW E 63 021117
very few and very small hubs, as illustrated in Figs. 4~b! and
4~c!. Due to their small size and very short interhub links, t
hubs are indistinguishable from local vertex connectivity
the ring lattice displays in Figs. 3~a!–3~d!.

A slight fall in the wiring cost permits an increased num
ber of hubs. However, the cost of wiring continues to be h
enough to constrain hubs to still be rather small. The dis
bution of scales in Fig. 9~d! hence still shows only two
length scales, but with a marked increase in edges of
second length scale. The effort toward minimizingL ensures
that the few hubs are bunched close together, so that s
interhub links can be used to enable the maximum dista
contraction possible@Fig. 4~d!#.

When further reduction in cost permits increased wirin
it is mostly the interhub links that take advantage of t
reduced cost to enable hubs to be scattered over the e
network. Figure 9~e! shows clearly the multiple length scale
generated by interhub links. The marked increase in
range of the interhub links@Fig. 3~e!# allows them, for the

FIG. 4. This figure illustrates the evolution of hubs for ann
5100,k54 optimized network asl is varied over the same@0,1#
range as the previous figure. The same networks are displaye
2D graphs using a graph generator with a spring embedder. N
since vertices are no longer displayed as being fixed along a
lattice, vertex interconnectivity, as well as the emergence of h
and their variation in size and number is well illustrated.l: ~a! 0.0,
~b! 531024, ~c! 531023, ~d! 1.2531022, ~e! 2.531022, ~f!
531022, ~g! 1.2531021, ~h! 2.531021, ~i! 531021, ~j!
7.531021, ~k! 7.831021, and~l! 1.0.
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first time, to be visible in the ring-lattice plots. Figure 4~e!
shows that there is not much variation in the hub size, exc
for the longer range of the interhub links.

Figures 9~f!–9~h! and 3~f!–3~h! demonstrate that, asl
increases further, the length and number of far edges
progressively less constrained, the extended length per
ting larger and many more hubs. Vertices lose their lo
nearest-neighbor interconnectivity as hub centers domin
in connectivity @Figs. 4~f!–4~h!#. However, as the size o
hubs progressively increases, they are consequently red
in number @Figs. 4~i!–4~k!#. The density of interhub links
increases though to yield greater interhub distance cont
tion. In Figs. 4~i!–4~k!, one also observes efforts toward
uniform reduced local connectivity.

Figures 4~i! and 4~j! are marked by a sharp reduction
the number of hubs as the hubs balloon in size. This evo
tion culminates in the emergence of the universal hub@Fig.
4~k!#, a single hub of connectivity. The formation of edg
between the hub center and all the othern21 vertices, as
illustrated in Fig. 3~k!, results in a uniform distribution of
nonunit length scale edges. Wiring, which is still associa
with a cost, albeit small, ensures that the remainder of
edges are entirely local, as can be observed from the di
bution in Fig. 9~k!. Even when the cost of wiring drops fur
ther, the universal hub topology continues to be retain
since its value is sufficient to constrain the remainder of
edges to be still entirely local.

Only when the cost of wiring is zero or is negligibl
small, does a change in topology result. Figures 3~l! and 4~l!,
at l51, demonstrate that although the universal hub is
tained@13#, due to the absence of any effort towards minim
wiring, edges are uniformly distributed across the ent
length scale range, as shown in Fig. 9~l!. The loss in local
connectivity can be clearly seen in comparison to Figs. 3~k!
and 4~k!. Optimization toward minimizing onlyL results in
the re-emergenceof multiple hubs, but the removal of th
constraint on wiring allows hubs to be composed of larg
nonadjacent vertices.

In summary, during the evolution of hubs illustrated
Figs. 3, 4, and 9, as the cost of wiring is decreased,
following sequence is seen:~i! hubs emerge, and grow in
size and number;~ii ! they increase in the range and dens
of interhub links;~iii ! there is a subsequent reduction in t
number of hubs;~iv! there is the formation of a universa
hub; and~v! hubs re-emerge, accompanied by a loss in lo
vertex interconnectivity, while the universal hub remains.

V. OPTIMIZATION AND THE WS MODEL: SOME
COMPARISONS

In this section we present further results but against
backdrop of the WS model. Recollecting, to define sma
world behavior, two ingredients were used by Watts a
Strogatz. The first was the characteristic path lengthL, a
global property of the graph, while the second was the cl
tering coefficientC, a local property which quantifies neigh
borhood ‘‘cliquishness.’’ Associated with each vertexv is its
neighborhoodGv , thekv vertices to which it is directly con-
nected and among which there can be a maximum ofkv(kv

as
w,
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s
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NISHA MATHIAS AND VENKATESH GOPAL PHYSICAL REVIEW E 63 021117
21)/2 connections.Cv , the clustering coefficient ofv, de-
notes the fraction of the links actually present among
neighbors. It is defined as

Cv5
uE~Gv!u

S kv

2 D , ~4!

andC is Cv averaged over allv.
The WS and optimization models are compared with

spect to their normalized small-world characteristics. In
dition, we study their different behaviors with respect to n
malized wiring and degree, as well as edge scale distribut
All results are obtained using ann5100,k54 network. Each
plot is the result of averaging over 40 simulation runs.

A. Characteristic path length

We begin our comparison with the characteristic p
length, the parameter whose smallness gives these netw
their name. Figure 5 comparesL for the WS and optimized
models. The control parameters in the two models, the o
mization parameterl and the WS parameterp, are similar in
that they both control the introduction of far edges. It sho
be remembered, however, that whilep controls only the
numberof far edges, allowing their length scales to be u
formly distributed across the entire range,l constrains not
only the number but also the physicallengthof far edges.

In both cases,L shows a sharp drop that signifies the on
of small-world behavior. However, in contrast to the grad
drop effected by the random assortment of rewired edge
the WS model, the drop due to hub formation is mu
sharper. Although its initial reduction is smaller due to t
additional constraint on edge length, its final value is mu
lower than the WS random graph limit.

The variation inL resulting from optimization can be un
derstood from the role played by the hub centers in contr
ing distance between pairs of vertices. Before the cliff,
hubs, being few and very small, effect a very slight distan

FIG. 5. Variation in the normalized characteristic path leng
L/L(0), vs p and l, for the WS model and optimization mode
respectively. Both characteristic plots are obtained for an5100,k
54 network, and averaged over 40 simulations.
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contraction. The tip of the cliff forms due to a marked i
crease in small hubs, while a sharp drop occurs when
tended range interhub links yield a pronounced distance c
traction between many distant hubs and their wid
separated neighborhoods. The transition from many sm
hubs to much larger and consequently fewer hubs results
gradual reduction inL. Finally, at the emergence of the un
versal hub, which has no counterpart in the WS model,
single hub center contracts the distance betweeneverypair of
vertices, resulting in an average distance less than 2.

B. Clustering coefficient

Figure 6, which compares the variation in the clusteri
coefficient for the two models, shows a far more interest
behavior. The drop in local connectivity that is seen in t
WS model does not occurat all for the optimized network
because of the formation of hubs. Although the cluster
coefficient was not a characteristic that we sought to ma
mize, high cliquishness emerges. Figure 6 shows that
formation of hubs sustains the clustering coefficient a
value higher than that for the corresponding regular gra
unlike the WS model. Thus the similarity betweenp andl as
control parameters is only valid forL.

Before we make a more detailed analysis of Fig. 6,
discuss the clustering coefficient further. For a vertexv, its
neighborhood size kv , plays a significant role toward th
value of its clustering coefficientCv . The smallerkv is, the
smaller the number of possible intraneighborhood edg
Hence vertices which lose in connectivity gain in cliquis
ness. In a similar manner, vertices which gain in connectiv
lose in cliquishness because of their larger neighborh
size. This is because, although the vertices have a la
number of intraneighborhood edges, they form a sma
fraction of the total number of possible edges. At the univ
sal hub limit, the hub center has the least clustered neigh
hood owing to the fact that all the remainingn21 vertices
form its neighborhood. The clustering coefficient can be
termined to be approximately (k22)/n. Although the aver-

FIG. 6. Comparison between the WS model and the optim
tion model for an5100,k54 network, with respect to the varia
tion in their normalized clustering coefficientC/C(0). Both varia-
tions are averaged over 40 realizations.
7-6
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age degree remains unchanged, the varying hub size
number can influence which neighborhoods dominate the
erage clustering coefficient.

In addition, a factor which influences theclustering
within the neighborhood of a vertex is the inclusion of a h
center to the neighborhood. The effect on clustering diff
depending on the range of the link between the vertex
the hub center. If the range of the link is large and the ver
lies outside the hub, then a far away hub center is inclu
into the vertex’s otherwise locally connected neighborho
The hub center has little or no association with the remain
neighbors of the vertex, and so it lowers the average cli
ishness. However, if the vertex lies within the hub, the h
center serves as a node which is connected to all or a l
fraction of the neighbors. Hence the neighborhood of
vertex becomes more clustered. This effect is more p
nounced when~1! the size of the neighborhood is small,~2!
the vertex includes more than one hub center in its neigh
hood, and~3! the hub whose center is being included is co
posed of largely local neighbors. Thus, unlikeL, which is
tuned by a single parameter,C is controlled by many more; a
point that we will return to shortly in the analysis of Fig.

From Fig. 6 we see as expected for the WS model,
C(p) falls as approximatelyC(0)(12p)3 @14#, and eventu-
ally drops almost to zero for the completely randomiz
graph. This is due to the increasing number of inclusions
random far nodes into otherwise locally connected neighb
hoods. In contrast, the presence of hubs in the optimiza
model ensures thatC(l) never falls belowC(0), reaching
its maximum when the network converges to a univer
hub.

Keeping in mind the evolution of the optimized netwo
shown in Figs. 3 and 4, we can qualitatively understand
behavior ofC(l) in Fig. 6. Whenl is small, the network is
dominated by regular neighborhoods@Figs. 3~a!–3~c! and
4~a!–4~c!#. Since hub centers gain in connectivity at the e
pense of adjacent vertices, vertices adjacent to hub cen
gain in cliquishness due to their reduced neighborhood si
as described earlier. Despite there being just a few sm
hubs, since there are more reduced connectivity vertices
hub centers, the averageC is raised slightly above that of
regular graph.

With a slight increase inl, Figs. 3~d! and 4~d! show a
sharp increase inC. At this point, the marked increase i
hubs, with only a slight increase in size, results in a p
nounced increase in the number of reduced connectivity
tices. Many of these vertices have neighborhoods which
completely clustered~called cliques!, since in addition to
their reduced size, they include one or more hub centers
their neighborhood. Cliques, not surprisingly, dominate
average, resulting in a large jump inC. However, the emer-
gence of long range interhub links in Figs. 3~e! and 3~f! and
4~e! and 4~f! results in loweringC. Their introduction
causes:~1! hub centers to have lowered cliquishness ow
to the inclusion of distant nodes into their neighborhoo
and ~2! some reduced connectivity neighborhoods to
longer be complete cliques due to the inclusion of the ce
of a hub, which has lost local neighbors to interhub neig
bors.
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In Figs. 3~g! and 3~h! and 4~g! and 4~h!, C again rises due
to increased cliques generated not only by the increa
number and size of hubs, but also because their larger
allows for the inclusion of local neighbors once again. Ho
ever in Figs. 3~i!–3~k! and 4~i!–4~k!, while the few hubs
gain in connectivity~and consequently lose in cliquishness!,
the remaining vertices veer toward a uniform reduced c
nectivity. The resulting marked reduction in the number
cliques accounts for the slight drop at Figs. 3~i! and 4~i!,
while the subsequent near uniform reduced connecti
serves to further raiseC. Finally, at the universal hub limit
@Figs. 3~k! and 4~k!#, all vertices have a uniform reduce
vertex connectivity at the expense of the single hub cen
Having gained in cumulative connectivity, the hub center h
a very low clustering coefficient of approximately (k
22)/n. However, the remaining reduced sized neighb
hoods, and their inclusion of the hub center, ensure the
erageC shoots up to its maximum.

In Figs. 3~l! and 4~l!, the average clustering falls due t
the nonuniformity in vertex connectivity. However the inclu
sion of the universal hub center into every neighborho
ensures thatC does not drop too much. The multiple hub
result in a variation in vertex connectivity, with hub cente
gaining in connectivity at the expense of others. This lea
a few vertices having asingleconnection. With a neighbor
hood of only 1, and no intra-neighborhood connectivi
these vertices are totally unclustered@15#, which accounts for
the drop inC.

Thus we see an interesting interplay between neighb
hood size, hub center inclusions, and the number and ra
of interhub links. However, the data for the variation ofC in
the optimized model are noisy, mainly becausek is very
small. Constraints in computational resources have force
to work with small n. Further, to maintain the sparsene
condition ofn@k, a low k was used, which does not reall
satisfy the WS condition thatk@1. Due to the smallk, even
a small loss in connectivity, can cause neighborhood cli
ishness to rise sharply. Although different factors come i
play during theC variation, the spikes are due to the pr
nounced effect of reduced connectivity neighborhoods,
in particular to those of cliques. The cliques serve to ma
tain the entireC variation higher than would probably resu
for higherk. Work is in progress to obtain data using largek
networks.

C. Wiring and degree

Figure 7~a! displays the increase in the cost of wiring,
alternatively, the amount of wiring, withp andl. The com-
parison between the optimization model and the WS mo
illustrates clearly the difference made by the inclusion of
minimal wiring constraint. For smalll, both models exhibit
similar wiring cost. At largerl however, the absence of
similar constraint in the WS model results in a much grea
amount of wiring. The clear advantage exhibited by the o
timized networks persists untill51, when optimization ne-
glects the minimization of wiring cost entirely. At this poin
the optimized network uses greater wiring than its WS co
terpart, but only slightly.
7-7
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In contrast to the WS model, a constraint on degree is
maintained in the optimized model. Figure 7~b! shows how
the maximum degree increases withl and p, for the two
models. The maximum degreeD, is normalized by the net
work sizen. For the optimized network,D is equivalent to
the size of the largest hub. At smalll, there is no difference
between the two models, but once hubs begin to emergD
increases sharply for the optimized network. At the univer
hub and the near random graph limit, the maximum degre
n21, the size of the universal hub. In contrast, each ed
being rewired only once in the WS model, allows for only
slight variation in degree. One also observes a similarity
the variations ofW andD for the optimized networks, sinc
W controls the size of hubs, and henceD.

D. Edge scale distribution

A comparison between the WS~Fig. 8! and optimized
~Fig. 9! edge scale distributions clearly illustrates the diffe

FIG. 7. Comparison between the WS and optimization mod
vs p and l, respectively.~a! Variation in the wiring costW, nor-
malized by the optimized value ofW(1). ~b! Variation in the maxi-
mum degreeD, normalized by network sizen. D is equivalent to the
size of the largest hub in the optimization model. Each plot sho
results for an5100,k54 network averaged over 40 samples.
02111
ot

l
is
e,

n

-

ing underlying mechanisms that result in small worlds. Sin
the WS rewiring mechanism exercises no restraint on
length scales of the rewired edges, the rewired edges
correspondingly uniformly distributed over the entire leng
scale range. In contrast, for the minimally wired network
lower length scales occur with a higher probability.

Figure 10 shows plots of the optimized edge scale pr
ability distribution on a log-log scale, where a power-la
behavior is seen. Figures 10~a! and 10~b! illustrate the edge
scale distributions at varyingl, while Fig. 10~c! is a com-
bined plot which demonstrates the variation in the power-l
distributions with l. Each distribution is displayed alon
with its associated linear least-squares fit. The variation
their exponents, as obtained from the linear least-square
to the data againstl, is shown in Fig. 10~d!.

The variation in the power-law exponents withl can be
clearly demarcated into two regions. The first, spanning t
orders of magnitude variation inl, exhibits a very slight
exponent variation. Figure 10~a! illustrates the typical prob-
ability distribution in this regime. Just two points emerg
since the high wiring cost constrains almost all edges to h
a unit length scale, with a very slight probability of a high
length scale. A sharp jump in the exponent marks the be
ning of the second regime. Figure 10~b! illustrates the typical
probability distribution in this regime. It is seen that
straight line is a reasonably good fit to the data over a w
edge scale range. Finally, whenl51, and a near random
network is achieved, a flat distribution of length scales
sults with each scale being equally probable. The combi
plot of all the distributions with their associated least-squa
fits, although noisy, illustrates the behavior of the data@Fig.
10~c!#.

The exponent variation clearly reveals two regimes of
havior. The first jump in the exponent corresponds to
onset of small-world behavior, the first perceptible reduct
in L that is seen in Fig. 5. This marks the beginning of t
multiple scale regime, and is also a signature of hub form
tion. As mentioned previously, due to computational co
straints we were unable to investigate larger networks.
believe that the noise in the data is due to the small size
the networks that we have studied.

Finally, we wish to comment upon Kasturirangan’s mu
tiple scale hypothesis. Figure 10~d! clearly demonstrates th
connection between the onset of small-world behavior a
the emergence of multiple length scales in the network. T
clearly supports the claim in Ref.@7# that small worlds arise
as a result of the network having connections that span m
length scales. These are the first numerical results in sup
of his hypothesis. The power-law behavior also demonstra
that any optimized distribution of multiple scales will resu
in a hierarchy of scales. It is to be noted that multiple sca
contribute to reducingL in the WS model as well. However
since no restriction on the length of edges exists,any non-
zero p will result in multiple scales. Hence, the onset
small-world behavior appears with a smooth reduction inL.

We also observe a power-law tail for vertex degree. W
find that most vertices have a small degree, and some

ls

s
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FIG. 8. Edge scale distribution for ann5100,k54 network randomized using the WS rewiring procedure at various values ofp: ~a! 0.0,
~b! 531024, ~c! 531023, ~d! 1.2531022, ~e! 2.531022, ~f! 531022, ~g! 1.2531021, ~h! 2.531021, ~i! 531021, ~j! 7.531021, ~k!
7.831021, and~l! 1.0. The inset in each plot shows the distribution of all scales with the unit length scale excluded. Each plot is an
over 40 simulations.
021117-9
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FIG. 9. Edge scale distribution for ann5100,k54 network optimized at various values ofl: ~a! 0.0, ~b! 531024, ~c! 531023, ~d!
1.2531022, ~e! 2.531022, ~f! 531022, ~g! 1.2531021, ~h! 2.531021, ~i! 531021, ~j! 7.531021, ~k! 7.831021, and~l! 1.0. The inset in
each plot shows the distribution of all scales with the unit length scale excluded. Each plot is an average over 40 simulations.
021117-10
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FIG. 10. Log-log plot of the
edge scale probability distribution
at ~a! l51.2531023, and ~b! l
51.2531021, for an n5100,k
54 optimized network.~c! Com-
bined plot of the probability distri-
butions, each with its associate
linear least-squares fit.~d! Varia-
tion in the power-law exponents
with l. Each distribution plot is
averaged over 40 realizations.
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well short of the average degree, with vertices at hub cen
gaining at their expense. Owing to the small network si
however, the scaling range is rather limited, and so we do
include these results.

VI. DO SIMILAR NETWORKS EXIST?

Any efficient transportation network works under a sim
lar underlying principle of maximizing connectivity whil
ensuring that the cost is minimized. Our results seem to
dicate that any efficient transportation network will be
small world, and in addition will exhibit a similar hub con
nectivity. In a clear illustration of the underlying principle
any map of airline routes or roadways shows big cities
being hubs of connectivity. This is hardly surprising, ho
ever, since in such networks a conscious effort is made
ward such a minimization. However, the same philosop
may well be at work in natural transportation and other b
logical networks.

Although this model concentrates on natural and artific
transportation networks, which are networks composed
links that possess a measurable physical length allowing
to associate a cost with each edge, we would also like
point out that our observed hub structure can be seen
number of large complex networks ranging from fields
diverse as the World Wide Web to the world of acto
Kleinberg et al. @16# observed the following recurrent phe
nomenon on the Web: for any particular topic there are h
of information as well as connectivity, constructed by a d
interlinking. ‘‘Authoritative’’ pages focused on the topic ar
02111
rs
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l
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s
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recognized by the many links pointing to them, while ‘‘hub
pages are identified by the many links pointing from them
pages rich in useful material pertinent to the topic. In ad
tion, Baraba´si and Albert@17# explored several large data
bases describing the topology of large complex networks
traverse a host of disciplines. They observed that, regard
of the system and the nature of its components, the proba
ity P(k) that a vertex in the network interacts withk other
vertices decays as a power law followingP(k);k2g. The
power law for the network vertex connectivity indicates th
highly connected vertices~large k) have a large chance o
occurring, dominating the connectivity, and hence dem
strating the presence of hubs in these networks. Furthe
was noted in Ref.@18# that the small-world phenomenon i
the world of actors arises due to ‘‘linchpins,’’ hubs of co
nectivity in the acting industry that cut across genres a
eras. Thus hubs seem to constitute an integral structural c
ponent of a number of large and complex random netwo
both natural and manmade.

VII. CONCLUSIONS

Watts and Strogatz showed that small worlds capture
best of both graph worlds: the regular and the random. Ho
ever, there has been no work citing reasons for their ubiq
tous emergence. Our work is a step in this direction, qu
tioning whether small worlds can arise as a tradeoff betw
optimizing the average degree of separation between no
in a network, as well as the total cost of wiring.
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Previous work concentrated on small-world behavior t
arises as a result of the random rewiring of a few edges w
no constraint of the length of the edges. On introducing t
constraint, we have shown that an alternate route to sm
world behavior is through the formation of hubs. The vert
at each hub center contracts distances between pairs of
tices within hubs, and between groups of vertices acr
hubs, yielding a small characteristic path length. In additi
reduced sized neighborhoods, and the inclusion of hub c
ters into neighborhoods, serve to sustain the clustering c
ficient at its initially high value. We find that optimized ne
works are more clustered than their corresponding reg
networks, and have a smaller average degree of separ
than their corresponding random graphs, and hence do b
than those described by Watts and Strogatz. Further, s
worlds that arise due to optimization require less wiring th
their WS counterparts. This may be useful in networks wh
wiring is expensive. However, degree is not constrain
which allows some vertices to dominate in connectivity.
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In summary, our work lends support to the idea tha
competitive minimization principle may underlie the form
tion of a small-world network. Also, we observe that hu
could constitute an integral structural component of a
small-world network, and that power laws in edge leng
scale and vertex connectivity may be signatures of this p
ciple in many complex and diverse systems.

Finally, in future work, we will be studying larger net
works that were computationally inaccessible to us
present. We are also investigating the application of
small-world architecture in the brain; also, a dynamic mo
will be considered to understand the emergence of sm
worlds in social networks@19#.

N.M. thanks V. Vinay and Ramesh Hariharan for use
discussions, and Mark Newman for useful comments a
suggestions. This work was performed at the Indian Instit
of Science, and submitted as part of Ref.@19#.
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