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Small worlds: How and why
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We investigate small-world networks from the point of view of their origin. While the characteristics of
small-world networks are now fairly well understood, there is as yet no work on what drives the emergence of
such a network architecture. In situations such as neural or transportation networks, where a physical distance
between the nodes of the network exists, we study whether the small-world topology arises as a consequence
of a tradeoff between maximal connectivity and minimal wiring. Using simulated annealing, we study the
properties of a randomly rewired network as the relative tradeoff between wiring and connectivity is varied.
When the network seeks to minimize wiring, a regular graph results. At the other extreme, when connectivity
is maximized, a “random” network is obtained. In the intermediate regime, a small-world network is formed.
However, unlike the model of Watts and Strog@idature 393 440 (1998], we find an alternate route to
small-world behavior through the formation of hubs, small clusters where one vertex is connected to a large
number of neighbors.
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[. INTRODUCTION work with the motivation that the results are also applicable

to networks with different underlying cost metrics.
Coupled systems can be modeled as networks or graphs, Although recent work showed small worlds to be perva-
where the vertices represent the elements of the system, agiye in a range of networks that arise from both natural and
the edges represent the interactions between them. The :E\_anmade technology, the hows and whys of this ubiquity

pology of these networks influences their dynamics. Networ ave not been e>,<plfuned_. The fa”ct that_small worlds seem to
.be one of nature’s “architectural” principles leads us to ask

topologies may be random, where each node or vertex "What constraints might force networks to choose a small-
randomly wired to any other node; or they may be regulary,qiq topology. We investigate whether the emergence of a
with each vertex being connected in a fixed pattern to armall-world topology, in networks where the physical dis-
identical number of its neighboring nod¢s]. Watts and  tance is a criterion that cannot be ignored, can arise as a
Strogatz[2] showed that between these two extremes of totradeoff between maximal connectivity and minimal wiring.
pology lies another regime of connectivity, which they call We now briefly describe the small-world model of Watts
small-world networks. Such networks are “almost” regular and StrogatZW$), and also introduce the notation that we
graphs, but with a few long range connections. shall use. Watts and Strogatz considered a ring lattice, which
Consider a few examples of networks: neurons in thdS N vertices arranged at regular intervals on a ring, with each

brain, transportation and social networks, citations of scienYertex connected to itsnearest neighbors. Disorder is intro-

tific papers, and the World Wide Web. While some of theseduced into the graph by randomly rewiring each of the edges

. with a probability p. While at p=0 the graph remain&
networks come from the physical world and others do nOtreguIar, ap=1 a random graph resulf8]. At intermediate

nevertheless they all have a well-defined cost metric assoc]- small-world graphs result. Watts and Strogatz quantified
ated with them. Neural and transportation networks are ne he structural properties of graphs by two parameters, the

works where the cost of a connection translates to the phySgyacacteristic path length land theclustering coefficient C

cal distance between its adjacent nodes. In nonphysicalhg characteristic path length reflects the average connectiv-
networks, such as social networks, paper citations, and th@, or vertex-to-vertex separation of the network, while the
Internet, the cost of a connection can be measured by oth@fystering coefficient measures the extent to which neighbors
attributes such as the effort expended in maintaining a relaof g vertex are neighbors of each other. They found that their
tionship, or the time spent in accessing a web page. In all ofarginally randomized graphs are symptomatic of the world
these networks, the associated cost metric is not necessarilyirfiwhich we live, in that they are characterized not only by a
constant over all connections. Although various cost metricsmall degree of separation between vertices, but are also
influence networks, in this paper we investigate only a physihighly clustered. Small-world graphs, therefore, by locally
cal metric and ask how placing @ston the length of an looking like regular graphs but globally behaving like ran-
edge affects the connectivity of the network. However, wedom graphs, reconcile the properties of the graph topologies
at the two extremes. Finally we also point out that two kinds
of distance measures can be employed in a graph. One is the

*Email address: nisha@csa.iisc.ernet.in graph distance, the minimal number of links between any
Present address: G. R. Harrison Spectroscopy Laboratory, Rntwo vertices of the graph; and the other is iteysical dis-
6-014, MIT, Cambridge, MA 02139. tance between these vertices. We use Euclidean distance as a
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0.9 - ‘ - want the highest connectivitigshortest path lengitbetween

0.8 the local processing units, so that information can be ex-

' changed as fast as possible. On the other hand, it is wasteful
to wire everything to everything else. The energy require-
ments are higher, more heat is generated, more material
needs to be used, and, consequently, more space is occupied.
Unrealistic though this model is, it motivated us to examine
whether small worlds would emerge as the result of these
constraints.

Cherniak investigated the influence of wiring as a con-
straint on neural structure. In Ref§5,6] he questioned
whether neural networks optimize the positioning of their
0.1 1 components due to a constraint on the wiring of connections
between them. He found that the structure of a nervous sys-

40 60 80 tem at various hierarchical levels supports the hypothesis
Edge length scale that component placement optimization is a driving principle
of neuroanatomy.

The concept of multiple scales was introduced by Kastur-
irangan[7], where he asserted that the fundamental mecha-
0.025 (b) 1 nism behind the small-world phenomena is not disorder or
randomness, but the presence of edges at many different
0.02 1 length scales. He defined thength scale(or range of a
newly introduced edge;; , to be the graph distance between
its adjacent verticesandj beforethe edge was introduced.
He further emphasized that the distribution of length scales
of the new edges is of significantly more consequence than
whether the new edges are long, medium, or short ranged.

Following Kasturirangam7], we introduce theedge scale
distribution of a graph to be simply the histogram of the
length scales of all its edges. To obtain the distribution of

40 60 80 edges in a graph whose edges are merely rewingthout
Edge length scale the introduction of additional edgesve consider the length
FIG. 1. Edge scale distribution &8 p=0.125, and(b) p scale of a rewired edge to be the distance between its adja-

=1.00, p being the amount of disorder introduced into the ce_nt vertices in the Corresp_onding regular_graph. Starting
=250,k=4 regular network using the WS rewiring procedure to with ak-regular graph and using tf_\e WS rewiring procedure,
introduce small-world behavior. The inset(a displays the distri- W€ Study the edge scale distribution at several values of the
bution of all length scales other than the unit scale. Both plots aré@Wiring parametep. Figure 1 shows the edge scale distri-
averaged over 25 samples. bution at two values op. The edge scale distribution in the
small-world regime p=0.125), is shown in Fig. (). Due
metric of the latter since, it is a natural choice for physicall©® the introduction of a small amount of disorder, a few
networks, noting, however, that other suitable metrics can b§d9€s are rewired to become far, and consequently have a
constructed for nonphysical networks. Ia}rgg_length scale. However, they are too few in number to
Section Il elaborates on our motivations for questioningSignificantly alter the edge scale distribution, and hence the
whether small worlds can arise as a result of an optimizatioffd9es of unit length scale dominate the distribution. Figure
between conflicting constraints. In Sec. IIl we then describel(b) shows the edge scale distribution @t=1, a random
our optimization model. Section IV follows with a study of 9raph. Here the edges are uniformly distributed over the en-
the resulting optimized network topology, while Sec. V high- tiré length scale range, viz. from 1 tok. The network still
lights differences between the WS model and the optimizal€tains a slight bias toward the unit length scale. At .both
tion model with respect to their small-world characteristics.these values of randomness, however, the characteristic path
In Sec. VI we ask whether a similar topology can be found infength scales logarithmically with. There thus appears to be

existing natural or manmade networks. Finally, we concludeOme factor that constrains the distribution of edge length
in Sec. VII. scales to(a) and not(b), namely, restricting the rewiring to

just a few far edges. We question whether the association of

a cost to each edge proportional to its length, serves to work
Il. CAN SMALL WORLDS ARISE AS THE RESULT OF as this constraint.

AN OPTIMIZATION?

0.7

0 20

Probability distribution

0 20

. . . I1l. OPTIMIZATION MODEL
Consider a toy model of the brain. Let us assume that it

consists of local processing units, connected by wires. What We use the Metropolis algorithf8,9] for simulated an-
constraints act on this system? On the one hand, one woultkaling to find a network which results in the best optimiza-
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1 - - - all vertices in the graph. The wiring co®, in contrast, is a
() measure of thehysicaldistance between connected vertices.
0.8 The cost of wiring an edge;; , is taken to be the Euclidean
s distance between the verticeandj. Hence the total wiring
= cost is
e
%0.6
> W= VOa=x) 2 (i y))? 3
_ 1
§O.4 !
ne_ where §;,y;) are the coordinates of vertexon the ring
0.2 lattice. The characteristic path lengthis normalized by
L(0), thepath length in thé-regular network\W is normal-
ized by the total wiring cost that results when the edges at
00 20 20 50 80 each vertex are the longest possible, namely, when each ver-
Edge length scale tex is connected to its diametrically opposite vertex, and to
the vertices surrounding it. The paramekleris varied de-
0.02 : : : pending on the relative importance of the minimization_of
(b) andW. One can regard (2\) as the wiring cost per unit

length, andw as the length of wiring required. This model
therefore includes a constraint on both graph distance and

c

%0'015 physical distance, resulting in graphs that combine both re-
2 lational as well as spatial mechanisiig].

3 0.01 Our model optimizes the interconnectivity among compo-
2 nents in networks when component placement is fixed. By
§ contrast, Cherniak investigated whether the positioning of
ne_o 005 components is optimized in networks, when their component

interconnectivity is fixed. Both works, therefore, though built
on the hypothesis that wiring needs to be minimum, follow
contrasting approaches to optimality.

40 60 80 Starting from the initial regular network, a standard
Edge length scale Monte Carlo schemg&8] was used to search for the energy
minimum. Similar to the WS model, duplicate edges and
loops were not allowed, and it was ensured that the rewiring
did not result in isolated vertices. The starting value Tor
the annealing temperature, was initially chosen to be the ini-
tion of the objective functiork, whose minimization is the tial energyE..The temperature was_then lowered in steps,

ef\ach amounting to a 10% decreasd iftach value off was

goal of the procedure. The network used in the model is th i :
. : . . eld constant for 150 reconfigurations, or for Ibsuccess-
of vertices arranged symmetrically along a ring. The size o . . : .

ul reconfigurations, whichever was earlier.

the networkn, as well as the total number of edges, is fixed.
So also are the positions of the vertices, which are equally

spaced along the circumference of the circle. Initially, the IV. OPTIMIZED NETWORKS: RESULTS
network isk regular, similar to the WS model. The network
configuration has an associated enefgy function of both
its wiring cost and the average degree of separation betwe
its vertices. The objective functida is taken to be

0 20

FIG. 2. Edge scale distribution resulting from optimizatioreat
A=0, and(b) A=1 for a network havingi=250 andk=4. Both
distribution plots are averaged over 25 simulations.

Since minimum characteristic path length, and minimum
wiring cost are contradictory goals, the optimization of either
%he or the other will result in networks at the two ends of the
randomization spectrum. As expected)at0, when the op-

E=\L+(1—\)W, (1) timization function concentrates only on minimizing the cost
of wiring edges, a regular network emerges with a uniform
a linear combination of the normalized characteristic patidegree and a high characteristic path length-(). The
lengthL and the normalized wiring co$¥. The characteris- edge scale distribution shows all edges to be concentrated
tic path lengthL, as defined by Watts and Strogatz, is thealmost entirely within the unit length scale, as shown in Fig.
average distance between all pairs of vertices, given by  2(a). At A=1, when only the characteristic path length is to
be minimized, the optimization results in a “random” net-
_ 1 2 d. @) work (L~logn). The edge scale distribution shown in Fig.
n(in-1) & "’ 2(b) has edges having lengths distributed uniformly over the
entire length scale range. A later section explains how, de-
whered;; is the number of links along the shortest path be-spite the logarithmic dependencelobn n, and the flat edge
tween vertices andj. It is therefore a measure based onscale distribution, the network at=1 is not the same as that
graph distance, and reflects the global connectivity amongof a random graph in Ref4].

L
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ing prohibitively expensive. A real world example of such a
universal hub network is unlikely, since a large hub is a
bottleneck to traffic through it, resulting in overcrowding at
the hubg7]. Hence the need for multiple, and consequently
smaller, hubs.

Watts [10] defined thesignificanceof a vertexv as the
characteristic path length of its neighborhob@), in the
absence of. Hub centers are significant, since they contract
distancedetweerevery pair of vertices within the hub. Thus
vertex pairs, although not directly connected, are connected
via a single common vertex. Hence the average significance,
a measure which reflects the number of contractions, is con-
siderable. Thus, in contrast to the WS model, where net-
works become small due to shortcuts, here smallness can be
attributed to the small fraction of highly significant vertices.

The formation of the universal hub at sufficiently lange
is not surprising, since it can be shown that for a network
that minimizesL and employs only rewirings, a universal
hub will effect the largest minimization. The formation of
multiple hubs, however, is due to the role playedwWhin the
optimization, which is to constrain the physical length of
edges, and therefore the size of hubs. As the hubs grow,
whenever the cost of edges from the hub center to farthest
nodes become high, the edges break away, resulting in mul-
tiple hubs. Thus the high wiring cost prevents the formation
of very large hubs, and controls both the size and number of
hubs.

Figures 3 and 4 demonstrate the evolution of hubs in an
FIG. 3. The ring lattice displays illustrate the evolution of hubs n= 100,k=4 optimized network a3 is varied between 0
as\ is varied over th¢0,1] range for am=100,k=4 optimized  and 1. While Fig. 3 uses ring-lattice displays to illustrate the
network. Very short interhub links cannot be distinguished aparbvolution, Fig. 4 illustrates the same networks as two-

from local vertex connectivity; however, longer range interhUbdimensional(ZD) displays. In the ring-lattice displays, verti-
links are clearly visible. Distinct hub centers illustrate the presence.oc 4re fixed symmetrically around the lattice, with hub cen-
Ef SUbS’t as \tNteh" as their \llz:]riegtilc.)nlir? Silze alnq“nutmbt;:;.('I;hoeosingle[ers and long-range interhub links being clearly visible. The
ub center atthe universaihub imit 1S ciearly lustrattaia) 0.9, 5p displays are generated by a graph drawer which uses a
4 3 2 2
éb; 150521’0 (é) (Cl)_255;<< 18*1: (Eﬂ) 1'22.?;18,1” (‘(?) 2'55;< 11(?,1” ((B spring embeqder to clearly demonstrate vertex i_nterconnec-
7.5x10° L, (k) 7.8x 10" 1, and(l) 1.0. tivity. As vertices are no longer f|xe.d _along a ring lattice,
‘ ‘ short-range interhub links can be distinguished apart from
A. Emergence of hubs local connectivity. We point out that the figures show typical
. . L network topologies at differemt’s. Since the annealing was

At intermediate values ok the optimization model re- jone syfficiently slowly, all hub networks obtained at each
sults inhubs that is, a group of nodes connected to a single, 51,6 of using different random number seeds are similar
node[7,11,13. The emergence of hubs is due to the contri-i, 1on510gy, and more quantitatively, their small-world prop-

bution of L to the optimization function. Due to the con- gies and edge scale distributions have no significant varia-
straint which seeks to minimize the physical distance betions.

tween connected vertices as well, hubs are formed by
vertices close to one another. In addition, the minimization
of the graph distance ensures the existence of connections
between hub centers, enabling whole hubs to communicate We now detail the evolution of hubs using the edge scale
with each other. The edges at any hub center therefore spalistribution shown in Fig. 9, and hub variations described in
a wide range of length scales. Figs. 3 and 4. All three figures show the same 100, k

The extreme situation is aniversal hub[7]: a single =4 network at various..
node, with all other nodes having connections to it. How- In Figs. 9a) and 4a), optimization results in a near regu-
ever, except for situations when the cost of wiring is negli-lar network, with hardly any hubs. When the cost reduces
gible, we find that the optimization does not result in a uni-very slightly to allow for a slight increase in edge wiring,
versal hub. This is apparent since a universal hub requires aliery small hubs are formed. Hence for increasing but very
the remainingn— 1 vertices to have connections to the ver-small N, Figs. 9b) and 9c) show the edges to be almost
tex at the center of the hub. This results in length scaleentirely concentrated in the unit length scale, with very few
which span the entire scale range, with long connections bdenger edges. The nonunit length scale edges account for

B. Hub evolution
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first time, to be visible in the ring-lattice plots. Figurées
shows that there is not much variation in the hub size, except
for the longer range of the interhub links.

Figures 9)—9(h) and 3f)—3(h) demonstrate that, as
increases further, the length and number of far edges are
progressively less constrained, the extended length permit-
ting larger and many more hubs. Vertices lose their local
nearest-neighbor interconnectivity as hub centers dominate
in connectivity [Figs. 4f)—4(h)]. However, as the size of
hubs progressively increases, they are consequently reduced
in number[Figs. 4i)—4(k)]. The density of interhub links
increases though to yield greater interhub distance contrac-
tion. In Figs. 4i)—4(k), one also observes efforts toward a
uniform reduced local connectivity.

Figures 4i) and 4j) are marked by a sharp reduction in
the number of hubs as the hubs balloon in size. This evolu-
tion culminates in the emergence of the universal [Fily.
4(k)], a single hub of connectivity. The formation of edges
between the hub center and all the otler1 vertices, as
illustrated in Fig. 8k), results in a uniform distribution of
nonunit length scale edges. Wiring, which is still associated
with a cost, albeit small, ensures that the remainder of the
edges are entirely local, as can be observed from the distri-
bution in Fig. 9k). Even when the cost of wiring drops fur-
ther, the universal hub topology continues to be retained,
since its value is sufficient to constrain the remainder of the
edges to be still entirely local.

Only when the cost of wiring is zero or is negligibly
small, does a change in topology result. Figurésa&nd 41),
at \=1, demonstrate that although the universal hub is re-

=100, k=4 optimized network as is varied over the sam®.1]  (3ineq[13], due to the absence of any effort towards minimal
range as the previous figure. The same networks are displayed ring, edges are uniformly distributed across the entire

2D graphs using a graph generator with a spring embedder. NOVYength scale range, as shown in Figl)9The loss in local

since vertices are no longer displayed as being fixed along a rin% = . . .
) . . onnectivity can be clearly seen in comparison to Figk) 3
lattice, vertex interconnectivity, as well as the emergence of hubs

and their variation in size and number is well illustrated(a) 0.0, S]nd 4k). Optlmlzatflon tl(f[).wlardh r‘rtl)lnlrglztlnt% only- reSLljltSf Itnh
(b) 5><10—4, (C) 5><10—3, (d) 1.25><10—2, (e) 2.5><10—2’ (f) ere-emergenc&) mu |pe u S, u e removal O e

5x10°2, (g) 1.25¢10°%, (h) 2.5x10°% (i) 5x10°%, () Constr_aint on Wiring allows hubs to be composed of largely
7.5x10°, (k) 7.8< 10", and(l) 1.0. nonadjacent vertices.
In summary, during the evolution of hubs illustrated in
. o Figs. 3, 4, and 9, as the cost of wiring is decreased, the
very few and very small hubs, as illustrated in Fig&)4and following sequence is seetti) hubs emerge, and grow in
4(c). Due to their small size and very short interhub links, thesjze and number(ii) they increase in the range and density
hubs are indistinguishable from local vertex connectivity inof interhub links;(iii) there is a subsequent reduction in the
the ring lattice displays in Figs.(8-3(d). number of hubs{iv) there is the formation of a universal
A slight fall in the wiring cost permits an increased num- hub; and(v) hubs re-emerge, accompanied by a loss in local
ber of hubs. However, the cost of wiring continues to be highvertex interconnectivity, while the universal hub remains.
enough to constrain hubs to still be rather small. The distri-
bution of scales in Fig. @) hence still shows only two V. OPTIMIZATION AND THE WS MODEL: SOME
length scales, but with a marked increase in edges of the COMPARISONS
second length scale. The effort toward minimizingnsures
that the few hubs are bunched close together, so that short In this section we present further results but against the
interhub links can be used to enable the maximum distanckackdrop of the WS model. Recollecting, to define small-
contraction possiblgFig. 4(d)]. world behavior, two ingredients were used by Watts and
When further reduction in cost permits increased wiring,Strogatz. The first was the characteristic path lengtta
it is mostly the interhub links that take advantage of theglobal property of the graph, while the second was the clus-
reduced cost to enable hubs to be scattered over the entitering coefficientC, a local property which quantifies neigh-
network. Figure @) shows clearly the multiple length scales borhood “cliquishness.” Associated with each verteis its
generated by interhub links. The marked increase in th@eighborhood”,, thek, vertices to which it is directly con-
range of the interhub linkgFig. 3(e)] allows them, for the nected and among which there can be a maximurk, (i,

FIG. 4. This figure illustrates the evolution of hubs for an
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FIG. 5. Variation in the normalized characteristic path length  FIG. 6. Comparison between the WS model and the optimiza-
L/L(0), vsp and \, for the WS model and optimization model, tion model for an=100, k=4 network, with respect to the varia-
respectively. Both characteristic plots are obtained far=al00, k tion in their normalized clustering coefficie@/C(0). Both varia-
=4 network, and averaged over 40 simulations. tions are averaged over 40 realizations.

—1)/2 connectipnsCU, the F:Iustering coefficient of, de- ___contraction. The tip of the cliff forms due to a marked in-
notes the fraction of the links actually present among itS.raase in small hubs, while a sharp drop occurs when ex-

neighbors. It is defined as tended range interhub links yield a pronounced distance con-

IE(T,)| traction between many distant hubs and their widely
C,= o, (4) separated neighborhoods. The transition from many small
k, hubs to much larger and consequently fewer hubs results in a

2) gradual reduction i.. Finally, at the emergence of the uni-

versal hub, which has no counterpart in the WS model, the

andC is C, averaged over alb. single hub center contracts the distance betveemypair of
The WS and optimization models are compared with revertices, resulting in an average distance less than 2.

spect to their normalized small-world characteristics. In ad-
dition, we study their different behaviors with respect to nor- B. Clustering coefficient
malized wiring and degree, as well as edge scale distribution.
All results are obtained using ar+ 100,k=4 network. Each
plot is the result of averaging over 40 simulation runs.

Figure 6, which compares the variation in the clustering
coefficient for the two models, shows a far more interesting
behavior. The drop in local connectivity that is seen in the
WS model does not occuat all for the optimized network
because of the formation of hubs. Although the clustering

We begin our comparison with the characteristic pathcoefficient was not a characteristic that we sought to maxi-
length, the parameter whose smallness gives these networkgze, high cliquishness emerges. Figure 6 shows that the
their name. Figure 5 comparésfor the WS and optimized formation of hubs sustains the clustering coefficient at a
models. The control parameters in the two models, the optivalue higher than that for the corresponding regular graph,
mization parametex and the WS parametg@r are similar in  unlike the WS model. Thus the similarity betweggand\ as
that they both control the introduction of far edges. It shouldcontrol parameters is only valid fdr.
be remembered, however, that whitecontrols only the Before we make a more detailed analysis of Fig. 6, we
numberof far edges, allowing their length scales to be uni-discuss the clustering coefficient further. For a veriexts
formly distributed across the entire rangeconstrains not neighborhood size k plays a significant role toward the
only the number but also the physidahgthof far edges. value of its clustering coefficier€, . The smallek, is, the

In both cased. shows a sharp drop that signifies the onsetsmaller the number of possible intraneighborhood edges.
of small-world behavior. However, in contrast to the gradualHence vertices which lose in connectivity gain in cliquish-
drop effected by the random assortment of rewired edges iness. In a similar manner, vertices which gain in connectivity
the WS model, the drop due to hub formation is muchlose in cliquishness because of their larger neighborhood
sharper. Although its initial reduction is smaller due to thesize. This is because, although the vertices have a larger
additional constraint on edge length, its final value is mucthumber of intraneighborhood edges, they form a smaller
lower than the WS random graph limit. fraction of the total number of possible edges. At the univer-

The variation inL resulting from optimization can be un- sal hub limit, the hub center has the least clustered neighbor-
derstood from the role played by the hub centers in contracthood owing to the fact that all the remainimg-1 vertices
ing distance between pairs of vertices. Before the cliff, theform its neighborhood. The clustering coefficient can be de-
hubs, being few and very small, effect a very slight distancegermined to be approximatelyk-2)/n. Although the aver-

A. Characteristic path length
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age degree remains unchanged, the varying hub size and In Figs. 3g) and 3h) and 4g) and 4h), C again rises due
number can influence which neighborhoods dominate the avto increased cligues generated not only by the increased
erage clustering coefficient. number and size of hubs, but also because their larger size
In addition, a factor which influences thelustering allows for the inclusion of local neighbors once again. How-
within the neighborhood of a vertex is the inclusion of a hubever in Figs. &)-3(k) and 4i)—4(k), while the few hubs
center to the neighborhood. The effect on clustering differgain in connectivity(and consequently lose in cliquishngss
depending on the range of the link between the vertex anthe remaining vertices veer toward a uniform reduced con-
the hub center. If the range of the link is large and the vertexectivity. The resulting marked reduction in the number of
lies outside the hub, then a far away hub center is includedliques accounts for the slight drop at Figgi)3and 4i),
into the vertex's otherwise locally connected neighborhoodwhile the subsequent near uniform reduced connectivity
The hub center has little or no association with the remainingerves to further rais€. Finally, at the universal hub limit
neighbors of the vertex, and so it lowers the average cliqufrigs. 3k) and 4k)], all vertices have a uniform reduced
ishness. However, if the vertex lies within the hub, the hubyertex connectivity at the expense of the single hub center.
center serves as a node which is connected to all or a larggying gained in cumulative connectivity, the hub center has

fraction of the neighbors. Hence the neighborhood of the, very low clustering coefficient of approximatelyk (
vertex becomes more clustered. This effect is more PrO=_5y/n. However, the remaining reduced sized neighbor-
nounced V\{herﬁl) the size of the ne|ghborhood. IS sma(!;k) hoods, and their inclusion of the hub center, ensure the av-
the vertex includes more than one hub center in its nelghboréragec shoots up to its maximum
hood, and3) the hub whose center is being included is com- . . :

posed of largely local neighbors. Thus, unlike which is In Figs. 31) and 4l), the average clustering falls due to

tuned b indl vy trolled b > the nonuniformity in vertex connectivity. However the inclu-
uned by a singlé parametér,Is controlied by many more; a - o, of the universal hub center into every neighborhood
point that we will return to shortly in the analysis of Fig. 6.

) nsures thaC does not drop too much. The multiple hubs

c Frc}m” Fig. 6 we see asl exgeclt(id fgr tlhf WS(; model, thafeg it in a variation in vertex connectivity, with hub centers
(p) falls as approximatel{(0)(1—p)* [14], an eventu- gaining in connectivity at the expense of others. This leaves

ally drop; "’F'mOSt to zero for the completely .rando.m|zed few vertices having aingle connection. With a neighbor-
graph. This is due'to the Increasing number of mcIus!ons %hood of only 1, and no intra-neighborhood connectivity,
random far nodes into otherwise locally co_nnected n_e'ghb_orﬂwese vertices are totally unclustefdd], which accounts for
hoods. In contrast, the presence of hubs in the optimizatiog}, drop inC
model ensures thaf(\) never falls belowC(0), reaching '

) . h h K . Thus we see an interesting interplay between neighbor-
ﬁibmaxmum when the network converges to a universal,,q size, hub center inclusions, and the number and range

N . . - of interhub links. However, the data for the variation®fn

Keepmg.ln mind the evolution of t.he.opt|m|zed network the optimized model are noisy, mainly becadsés very
shown' in Figs. 3.and' 4, we can qyahtatlvely understanq th‘:émall. Constraints in computational resources have forced us
behavior ofC(A) in Fig. 6. Whenh is small, the network is  , \york with smalln. Further, to maintain the sparseness
dominated by regular nmghborhopﬂslgs. C{a_)—_3(c) and condition ofn>k, a low k was used, which does not really
4(a)—4(c)]. Since hub centers gain in connectivity at the ex'satisfy the WS condition tha&1. Due to the smak. even
pense of adjacent vertices, vertices adjacent to hub centefs_ .-\ 10ss in connectivity, can cause neighborh,ood cliqu-
gain in cliquishness due to their reduced neighborhood size hness to rise sharply. AItHough different factors come into
as described earlier. Despite there being just a few small|

hubs. s h Juced i i h ay during theC variation, the spikes are due to the pro-
ubs, since there are more reduced connectivity vertices unced effect of reduced connectivity neighborhoods, and
hub centers, the averageis raised slightly above that of a

regular graph in particular to those of cliques. The cliques serve to main-
. S . . tain the entireC variation higher than would probably result
With a slight increase in\, Figs. 3d) and 4d) show a g P y

for higherk. Work is in progress to obtain data using latge
sharp increase iiC. At this point, the marked increase in 9 'S In progress ! using lakg

: i . L . networks.
hubs, with only a slight increase in size, results in a pro-

nounced increase in the number of reduced connectivity ver-
tices. Many of these vertices have neighborhoods which are
completely clusteredcalled clique$ since in addition to Figure Ta) displays the increase in the cost of wiring, or
their reduced size, they include one or more hub centers intalternatively, the amount of wiring, with and\. The com-
their neighborhood. Cliques, not surprisingly, dominate theparison between the optimization model and the WS model
average, resulting in a large jump @ However, the emer- illustrates clearly the difference made by the inclusion of the
gence of long range interhub links in FiggeBand 3f) and  minimal wiring constraint. For smaN, both models exhibit
4(e) and 4f) results in loweringC. Their introduction similar wiring cost. At largerh however, the absence of a
causes(1) hub centers to have lowered cliquishness owingsimilar constraint in the WS model results in a much greater
to the inclusion of distant nodes into their neighborhoodsamount of wiring. The clear advantage exhibited by the op-
and (2) some reduced connectivity neighborhoods to notimized networks persists until=1, when optimization ne-
longer be complete cliques due to the inclusion of the centeglects the minimization of wiring cost entirely. At this point,
of a hub, which has lost local neighbors to interhub neigh-the optimized network uses greater wiring than its WS coun-
bors. terpart, but only slightly.

C. Wiring and degree
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ing underlying mechanisms that result in small worlds. Since
the WS rewiring mechanism exercises no restraint on the
length scales of the rewired edges, the rewired edges are
correspondingly uniformly distributed over the entire length
scale range. In contrast, for the minimally wired networks,
lower length scales occur with a higher probability.

Figure 10 shows plots of the optimized edge scale prob-
ability distribution on a log-log scale, where a power-law
behavior is seen. Figures ) and 1Q@b) illustrate the edge
scale distributions at varyiny, while Fig. 10dc) is a com-
bined plot which demonstrates the variation in the power-law
distributions with \. Each distribution is displayed along
with its associated linear least-squares fit. The variation in
their exponents, as obtained from the linear least-squares fit
to the data against, is shown in Fig. 10d).

The variation in the power-law exponents withcan be
clearly demarcated into two regions. The first, spanning two
orders of magnitude variation iR, exhibits a very slight
exponent variation. Figure 1&) illustrates the typical prob-
ability distribution in this regime. Just two points emerge,
since the high wiring cost constrains almost all edges to have
a unit length scale, with a very slight probability of a higher
length scale. A sharp jump in the exponent marks the begin-
ning of the second regime. Figure(bDillustrates the typical
probability distribution in this regime. It is seen that a
straight line is a reasonably good fit to the data over a wide
edge scale range. Finally, when=1, and a near random
network is achieved, a flat distribution of length scales re-
sults with each scale being equally probable. The combined
plot of all the distributions with their associated least-squares
fits, although noisy, illustrates the behavior of the ddtig.

FIG. 7. Comparison between the WS and optimization modelsLO(C)].

vs p and \, respectively.(a) Variation in the wiring cosW, nor-
malized by the optimized value &¥(1). (b) Variation in the maxi-
mum degre®, normalized by network size D is equivalent to the

The exponent variation clearly reveals two regimes of be-
havior. The first jump in the exponent corresponds to the
onset of small-world behavior, the first perceptible reduction

size of the largest hub in the optimization model. Each plot showsy, | that is seen in Fig. 5. This marks the beginning of the

results for an=100,k=4 network averaged over 40 samples.

multiple scale regime, and is also a signature of hub forma-
tion. As mentioned previously, due to computational con-
straints we were unable to investigate larger networks. We

In contrast to the WS model, a constraint on degree is nopelieve that the noise in the data is due to the small size of

maintained in the optimized model. Figuréy shows how
the maximum degree increases withand p, for the two
models. The maximum degré®, is normalized by the net- tiple scale hypothesis. Figure () clearly demonstrates the

work sizen. For the optimized networld is equivalent to  connection between the onset of small-world behavior and
the size of the largest hub. At smal there is no difference  the emergence of multiple length scales in the network. This
between the two models, but once hubs begin to em&ge, ¢jearly supports the claim in Ref7] that small worlds arise

increases sharply for the optimized network. At the universalg 5 result of the network having connections that span many
hub and the near random graph limit, the maximum degree igyqih scales. These are the first numerical results in support

E_.l’ the .S'Zde Ofl the unlyetrrs]alvr\}léb. In dc?ntlrlast, efach ‘ngeof his hypothesis. The power-law behavior also demonstrates
€ing réwired only once in the model, allows for on'y &, ¢ any optimized distribution of multiple scales will result

slight variation in degree. One alsq qbserves a S|m|lgr|ty "n a hierarchy of scales. It is to be noted that multiple scales
the variations oW/ andD for the optimized networks, since . T
contribute to reducing. in the WS model as well. However,

W controls the size of hubs, and herie since no restriction on the length of edges exiatsy non-
zero p will result in multiple scales. Hence, the onset of
small-world behavior appears with a smooth reductioh.in

A comparison between the W&ig. 8 and optimized We also observe a power-law tail for vertex degree. We
(Fig. 9) edge scale distributions clearly illustrates the differ-find that most vertices have a small degree, and some are

the networks that we have studied.
Finally, we wish to comment upon Kasturirangan’s mul-

D. Edge scale distribution
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FIG. 8. Edge scale distribution for an= 100, k=4 network randomized using the WS rewiring procedure at various valyzg&7f0.0,
(b) 5X10°%, (c) 5x10°3, (d) 1.25x10° 2, () 2.5x10 2, (f) 5x10°2, (g) 1.25x10° %, (h) 2.5x 1074, (i) 5%10°%, (j) 7.5x107%, (k)

7.8x10° %, and(l) 1.0. The inset in each plot shows the distribution of all scales with the unit length scale excluded. Each plot is an average

over 40 simulations.
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FIG. 10. Log-log plot of the
edge scale probability distribution
at (8 A=1.25x10"3, and (b) A
=1.25x10"1, for an n=100,k
=4 optimized network(c) Com-
bined plot of the probability distri-
butions, each with its associated
linear least-squares fi{d) Varia-
tion in the power-law exponents
with \. Each distribution plot is
averaged over 40 realizations.

10
Edge length scale IS

well short of the average degree, with vertices at hub centengcognized by the many links pointing to them, while “hub”
gaining at their expense. Owing to the small network sizepages are identified by the many links pointing from them to
however, the scaling range is rather limited, and so we do ngtages rich in useful material pertinent to the topic. In addi-
include these results. tion, Barabai and Albert[17] explored several large data-
bases describing the topology of large complex networks that
traverse a host of disciplines. They observed that, regardless
of the system and the nature of its components, the probabil-

Any efficient transportation network works under a simi- ity P(k) that a vertex in the network interacts wikhother
lar underlying principle of maximizing connectivity while vertices decays as a power law followif{k)~k™”. The
ensuring that the cost is minimized. Our results seem to inpower law for the network vertex connectivity indicates that
dicate that any efficient transportation network will be ahighly connected verticedarge k) have a large chance of
small world, and in addition will exhibit a similar hub con- occurring, dominating the connectivity, and hence demon-
nectivity. In a clear illustration of the underlying principle, strating the presence of hubs in these networks. Further, it
any map of airline routes or roadways shows big cities asvas noted in Ref{18] that the small-world phenomenon in
being hubs of connectivity. This is hardly surprising, how-the world of actors arises due to “linchpins,” hubs of con-
ever, since in such networks a conscious effort is made tonectivity in the acting industry that cut across genres and
ward such a minimization. However, the same philosophyeras. Thus hubs seem to constitute an integral structural com-
may well be at work in natural transportation and other biO'ponent of a number of |arge and Comp|ex random networksy

logical networks. _ both natural and manmade.
Although this model concentrates on natural and artificial

transportation networks, which are networks composed of
links that possess a measurable physical length allowing us
to associate a cost with each edge, we would also like to
point out that our observed hub structure can be seen in a Watts and Strogatz showed that small worlds capture the

number of large complex networks ranging from fields asbest of both graph worlds: the regular and the random. How-

diverse as the World Wide Web to the world of actors.ever, there has been no work citing reasons for their ubiqui-

Kleinberg et al. [16] observed the following recurrent phe- tous emergence. Our work is a step in this direction, ques-

nomenon on the Web: for any particular topic there are hubsioning whether small worlds can arise as a tradeoff between

of information as well as connectivity, constructed by a dualoptimizing the average degree of separation between nodes
interlinking. “Authoritative” pages focused on the topic are in a network, as well as the total cost of wiring.

VI. DO SIMILAR NETWORKS EXIST?

VII. CONCLUSIONS
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Previous work concentrated on small-world behavior that In summary, our work lends support to the idea that a
arises as a result of the random rewiring of a few edges witltompetitive minimization principle may underlie the forma-
no constraint of the length of the edges. On introducing thigion of a small-world network. Also, we observe that hubs
constraint, we have shown that an alternate route to smalkould constitute an integral structural component of any
world behavior is through the formation of hubs. The vertexsmall-world network, and that power laws in edge length
at each hub center contracts distances between pairs of vejcale and vertex connectivity may be signatures of this prin-
tices within hubs, and between groups of vertices acrosgjp|e in many complex and diverse systems.
hubs, yielding a small characteristic path length. In addition, " inally, in future work, we will be studying larger net-
reduced sized neighborhoods, and the inclusion of hub cergorks that were computationally inaccessible to us at
ters into neighborhoods, serve to sustain the clustering coefyresent. We are also investigating the application of the
ficient at its initially high value. We find that optimized net- gma11-world architecture in the brain; also, a dynamic model

works are more clustered than their corresponding regul%i” be considered to understand the emergence of small
networks, and have a smaller average degree of separatigfyids in social network§19].

than their corresponding random graphs, and hence do better

than those described by Watts and Strogatz. Further, small

worlds that arise due to optimization require less wiring than N.M. thanks V. Vinay and Ramesh Hariharan for useful
their WS counterparts. This may be useful in networks whereliscussions, and Mark Newman for useful comments and
wiring is expensive. However, degree is not constrainedsuggestions. This work was performed at the Indian Institute
which allows some vertices to dominate in connectivity.  of Science, and submitted as part of Réf].
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