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Second post-Newtonian gravitational wave polarizations for compact binaries in elliptical orbits
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The second post-Newtonian~2PN! contribution to the ‘‘plus’’ and ‘‘cross’’ gravitational wave polarizations
associated with gravitational radiation from non-spinning, compact binaries moving in elliptic orbits is com-
puted. The computation starts from our earlier results on 2PN generation, crucially employs the 2PN accurate
generalized quasi-Keplerian parametrization of elliptic orbits by Damour, Scha¨fer and Wex and provides 2PN
accurate expressions modulo the tail terms for gravitational wave polarizations incorporating effects of eccen-
tricity and periastron precession.
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I. INTRODUCTION

Inspiraling compact binaries containing black holes a
neutron stars are one of the most promising sources of gr
tational radiation for both, almost operational ground ba
laser interferometric gravitational wave detectors such as
Laser Interferometric Gravitational Wave Observato
~LIGO!, VIRGO, GEO600 and TAMA300@1# and the pro-
posed space-based Laser Interferometer Space Ant
~LISA! @2#. To obtain an acceptable signal to noise ratio
detection in the terrestrial detectors, one needs to knoa
priori the binary’s orbital evolution in the inspiral waveform
@3# at least up to third post-Newtonian order beyond
~Newtonian! quadrupole radiation. However, for the me
surement of distance and position of the binary, it may
sufficient to know the two independent gravitational wa
polarizationsh1 andh3 to only 2PN accuracy@4#. Perturba-
tive computation via post-Newtonian~PN! expansions of the
binary orbit and gravitational wave~GW! phase are complet
to orderv5 beyond the standard quadrupole formula. Exte
sion of the PN perturbative calculations by another two
ders, to orderv7, is still not complete, because currently us
PN techniques@5# leave undetermined a physically cruci
parameter entering at thev6 level in the gravitational wave
flux @6#. More recently@7#, it has been shown that by em
ploying severalresummation techniques—to improve the
convergence of the PN series—one could make optimal
of existing 2PN results to compute GW phasing. Resumm
versions of 2PN accurate search templates may bejust suffi-
cient both for the detection and estimation of parameters
gravitational waves from inspiraling compact binaries of
bitrary mass ratio moving inquasi-circular orbits. For in-
spiraling non-spinning compact binaries of arbitrary ma
ratio in quasi-circularorbits, both the 2PN accurate gravit
tional wave polarizations@8# and the associated orbital evo
lution have been explicitly computed@9–11#. A 2.5PN accu-
rate formula for the orbital phase as a function of time h
also been obtained@12#. These expressions are employed
various data analysis packages like LAL@13# to search for
gravitational waves from inspiraling compact binaries.

The purpose of the present work is to obtain t
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‘‘instantaneous’’1 2PN contributions to the two gravitationa
wave polarizations for compact binaries moving inelliptical
orbits. On the one hand, these expressions forh1 and h3

represent gravitational waves from a binary evolving neg
gibly under gravitational radiation reaction, incorporatin
precisely up to 2PN order the effects of eccentricity and
riastron precession, during that stage of inspiral when
orbital parameters are essentially constant over a few orb
revolutions. On the other hand, it is the first~and the neces-
sary! step in the direction of obtaining ‘‘ready to use’’ theo
retical templates to search for gravitational waves from
spiraling compact binaries moving inquasi-ellipticalorbits.
The effect of radiation reaction on orbital evolution and
consequence on these gravitational waveforms for com
binaries in quasi-elliptical orbits is under investigation a
will be discussed in the future@14#.

Galactic binaries, in general, will be in circular orbits b
the time they reach the final stage of inspiral. However, th
exist astrophysical scenarios where compact binaries
have non-negligible eccentricity during the final inspir
phase. We will next review various such scenarios, some
them speculative, relevant for both ground and space ba
gravitational wave detectors.

Let us first consider cases that should be important
ground based interferometers. Intermediate mass black
binaries—with total masses in the range 50M (<M
<(a few)3102M (—may well be the first sources to be d
tected by LIGO and VIRGO@15,16#. Many recent astro-
nomical observations, involving massive black hole can
dates point to scenarios involving such compact binaries
eccentric orbits. The discovery of numerous bright comp
x-ray sources with luminositiesL.1039 erg/s in several
starburst galaxies and rapid time variation of their x-r
fluxes implies massive black holes as their central engine
is suggested that these observations may be explained b

1Following @10#, we term contributions to the GW waveform
which depends only on the state of the binary at the retarded ins
as its ‘‘instantaneous’’ part.
©2002 The American Physical Society11-1
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merger of globular clusters, containing black holes withM
.103 M ( , with its host galaxy@17#. However, 103 M (

black hole present in the center of the globular cluster w
have to be created by many coalescences of a>50M ( black
hole with lighter ones and these binaries, in highly eccen
orbits, should be visible to ground based interferomet
This scenario may be contrasted with the one suggeste
@18# which also involves compact binaries with high ecce
tricities. However, in this case, black hole binaries, weigh
a few solar masses and residing in star clusters, get eje
from the cluster by superelastic encounter with other clu
members. These escaping binaries will have short per
and high eccentricities before merging. It is worth mentio
ing that numerical simulations dealing with supermass
blackhole formation, performed in the eighties, from a de
cluster of compact stars also indicate creation of short pe
intermediate mass black hole binaries in highly eccentric
bits @19#.

Recently, there has been studies suggesting that spin
compact binaries may become chaotic@20#. The analysis in-
volves numerical evolution of two spinning point masses
ing 2PN accurate equations of motion. The interesting res
observed only for a very restricted portion of the parame
space, is that the outcome of the evolution is highly sensi
to initial conditions. It is also observed that binaries who
initial orbits are circular may later become highly eccentr
These preliminary results present yet another scenario w
eccentricity may become important.

Many of the potential sources for LISA@2# will be bina-
ries in ‘‘quasielliptical’’ orbits. We list them below, detail
and references to original papers may be found in@21#. First,
LISA will be sensitive to massive black hole~MBH! coales-
cence involving 103 to 107M ( black holes, up to 3 Gpc an
beyond. It is likely that these binaries will be in eccent
orbits during inspiral, as they will be interacting with den
stellar clusters in the galactic nuclei where they usually
side. The second candidate involves compact objects orb
MBH, where compact objects could be scattered into v
short period eccentric orbits via gravitational deflections
other stars. Finally, LISA will be sensitive to thousands
binaries in our galaxy and many of these short period bi
ries will also be in ‘‘quasi-eccentric’’ orbits. Interestingly
LISA will be highly sensitive to black hole binaries contai
ing primordial black holes of mass;0.5M ( . These binaries
are one of the speculative candidates for massive com
halo objects~MACHOs! @22#. It is also shown that@23,24#
the low frequency gravitational waves from black ho
MACHO binaries in highly eccentric orbits would form
strong stochastic background in the frequency ra
1025 Hz, f ,1021 Hz, where LISA will be most sensitive

Finally, we observe that eccentricity will be an importa
parameter while searching for continuous gravitational w
sources in binary systems. Recently, it was shown
searching for gravitational waves from such systems, wh
locations are exactly known, is computationally feasib
@25#. For many such astrophysically interesting systems,
note that a post-Newtonian orbital description for gene
orbits will be required.
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The computation of the gravitational wave polarizatio
h1 andh3 in terms of the orbital phase and frequency of t
binary was discussed by Lincoln and Will@26#, using the
method of osculating orbital elements from celestial mech
ics and the 2.5PN accurate Damour-Deruelle equations
motion @27,28#. They studied the evolution of general orbi
and obtained 1PN accurate expressions forh1 and h3 for
quasi-circular orbits. Later Moreno-Garrido, Mediavilla an
Buitrago obtained polarization waveforms for binaries in
liptical orbits at Newtonian order with and without radiatio
reaction, studied the effects of orbital parameters and pre
sion on gravitational wave amplitude spectrum and impli
tions for data analysis@29,30#. Analytic expressions for
gravitational wave polarizations and far-zone fluxes, for
liptic binaries were obtained to 1.5PN order by Junker a
Schäfer, and Blanchet and Scha¨fer @31,32#. The 2PN accurate
gravitational wave polarizations for inspiraling compact b
naries moving in quasi-circular orbits was given by
Blanchet, Iyer, Will and Wiseman@8#. For the above calcu-
lation they employed the 2PN accurate expressions forhi j

TT ,
the transverse traceless part of the radiation field represen
the deviation of the metric from the flat spacetime a
(dE/dt), the far-zone energy flux obtained independently
ing two different formalisms@33,9–11#. In the limiting case
of a test particle orbiting a Schwarzschild black hole, pert
bative calculations are extended to very high PN order.
example, in the case of very small mass ratios, polariza
waveforms are obtained to 4PN order@34#. For the case of
spinning compact objects in circular orbits, precession
non-precessional and dissipative effects on the gravitatio
waveform due to spin-orbit and spin-spin interactions w
studied extensively@35–38#. We note that using the frame
work we employ here it may be possible to extend results
these papers to compact binaries of arbitrary mass ratio m
ing in elliptical orbits.

The basic aim of this paper is to obtain the instantane
2PN corrections to the ‘‘plus’’ and ‘‘cross’’ polarization
waveforms for compact binaries of arbitrary mass ratio m
ing in elliptical orbits starting from the corresponding 2P
contributions tohi j

TT @11,39#. As emphasized in@7#, the gravi-
tational wave observations of inspiraling compact binaries
analogous to the high precision radio-wave observations
binary pulsars. The latter makes use of an accurate relat
tic ‘‘timing formula’’ based on the solution—in quasi
Keplerian parametrization—to the relativistic equation
motion for a compact binary moving in an elliptical orb
@40#. In a similar manner, the former demands accur
‘‘phasing,’’ i.e. an accurate mathematical modeling of t
continuous time evolution of the gravitational waveform
This requires for elliptical binaries, a convenient solution
the 2PN accurate equations of motion. A very elegant 2
accurate generalized quasi-Keplerian parametrization for
liptical orbits has been implemented by Damour, Scha¨fer,
and Wex@41–44#. This representation is thus the most na
ral and best suited for our purpose to parametrize the
namical variables that enter the gravitational waveforms. T
complete 2PN accurate expressions forh1 and h3 consists
of the ‘‘instantaneous’’ contribution computed here supp
mented by tail contributions at 1.5PN and 2PN orders. T
1-2
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SECOND POST-NEWTONIAN GRAVITATIONAL WAVE . . . PHYSICAL REVIEW D 65 084011
tail computations are not considered here; they must be c
puted and included in the future.

The paper is organized as follows. In Sec. II, we pres
the details of the computation to obtain ‘‘instantaneous’’ 2P
corrections toh1 and h3 for inspiraling compact binaries
moving in elliptical orbits. Section III deals with the influ
ence of the orbital parameters on the waveform. Section
comprises our concluding remarks.

II. THE 2PN GRAVITATIONAL WAVE POLARIZATION
STATES

To compute the two independent gravitational wave
larization statesh1 andh3 , one needs to choose a conve
tion for the direction and orientation of the orbit. We follo
the standard convention of choosing a triad of unit vect
composed ofN, a unit vector along the radial direction to th
observer,p, a unit vector along the line of nodes, whic
coincides with y-axis andq, defined byq5N3p ~see Fig.
1!. The angle betweenN and the Newtonian angular mome
tum vector which lies along z-axis defines the inclinati
anglei of the orbit. The orbital phasef is measured from the
positive x-axis in a counter clockwise sense, restricting
values ofi from 0 to 1

2 p. The two basic polarization state
h1 andh3 are given by

h15
1

2
~pi pj2qi qj !hi j

TT , ~2.1a!

h35
1

2
~pi qj1pj qi !hi j

TT , ~2.1b!

wherehi j
TT is the transverse-traceless~TT! part of the radia-

tion field representing the deviation of the metric from t
flat spacetime.

From Eqs.~2.1a!,~2.1b! it is clear that the explicit compu
tation of 2PN corrections toh1 andh3 requires the follow-
ing: ~a! The 2PN corrections tohi j

TT , generally given in

FIG. 1. The orientation of unit vectors, which defines3 and1
polarization waveforms. The unit vectorsp and q are the gravita-
tional wave’sprincipal axeswith q5N3p. Note thatN is a unit
vector lying along the radial direction to the detector andp lies
along the line of nodes. The Newtonian angular momentum ve
L5mr3v is normal to the orbital plane and helps to define orb
inclination anglei. In this paper, the origin forf5l1W is 1ve
x-axis, hence it is related tofBIWW by f5fBIWW2p/2.
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terms of the dynamical variables of the binary, name

v2,G m/r , ṙ ,ni ,v i ,N•n,N•v, wherer andv are respectively,
the relative position and velocity vectors for the two mas
m1 and m2 in the center of mass frame,r 5ur u,v5uvu,n
5r /r , ṙ 5dr/dt and m5m11m2. The unit vectorN lies
along the radial direction to the detector and is given byN
5R/R, R being the radial distance to the binary; and~b! a
2PN accurate orbital representation for elliptical orbits to p
rametrize these dynamical variables.

Before explaining in detail the procedure to compute 2
contributions toh1 andh3 , we will first illustrate that com-
putation by presenting in detail the Newtonian computatio
for h1 andh3 .

A. The Newtonian GW polarizations

At the leading Newtonian order, we have

~hkm
TT!N5

4 G m

c4 R
Pi jkm~N!S v i j 2

G m

r
ni j D , ~2.2!

wherePi jkm(N) is the usual transverse traceless project
operator projecting normal toN, v i j 5v iv j , ni j 5ninj ; and
m is the reduced mass of the binary, given bym1 m2 /m.
Note that the above contribution arises from the mass qu
rupole moment of the binary.

There is no need to apply the TT projection in Eq.~2.2!,
and Eqs.~2.1a!,~2.1b! at the leading order gives

h15
2 G m

c4 R H ~pi pj2qi qj !S v i j 2
G m

r
ni j D J ,

5
2 G m

c4 R H „~p•v!22~q•v!2
…1

G m

r
„~p•n!2

2~q•n!2
…J , ~2.3a!

h35
2 G m

c4 R H ~pi qj1pj qi !S v i j 2
G m

r
ni j D J

5
4 G m

c4 R H ~p•v!~q•v!2
G m

r
~p•n!~q•n!J .

~2.3b!

The convention we adopted to define the triad
unit vectors implies p5(0,1,0), q5(2cosi,0,sini), N
5(sini,0,cosi), n5(cosf,sinf,0), and v5( ṙcosf2rḟsinf,
ṙ sinf1r ḟ cosf,0), where ḟ5df/dt. With these inputs,
Eqs.~2.3a!,~2.3b! become

h15
G mh C

c4 R H ~11C2!F S G m

r
1r 2 ḟ22 ṙ 2D cos 2f

12 ṙ r ḟ sin 2fG2S2FG m

r
2r 2 ḟ22 ṙ 2G J , ~2.4a!

or
l

1-3
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A. GOPAKUMAR AND BALA R. IYER PHYSICAL REVIEW D 65 084011
h352
G mh C

c4 R H S G m

r
1r 2 ḟ22 ṙ 2D sin 2f

22ṙ r ḟ cos 2fJ , ~2.4b!

whereh5m/m andC andSare shorthand notations for cosi
and sini.

When dealing with elliptical orbits, it is convenient an
useful to use a representation to rewrite the dynamical v
ablesr , ṙ ,f and ḟ in terms of the parameters describing
elliptical orbit. For example, in Newtonian dynamics, th
Keplerian representation in terms of eccentricity, semi-ma
axis, eccentric, real and mean anomalies is a convenien
lution to the Newtonian equations of motion for two mass
in elliptical orbits. The Keplerian representation reads

r 5a~12e cosu!, ~2.5a!

n~ t2t0!5 l 5u2e sinu, ~2.5b!

f2f05v, ~2.5c!

where

v52 tan21H S 11e

12eD 1/2

tanS u

2D J , ~2.5d!

whereu,l ,v are the eccentric, mean and real anomalies
rametrizing the motion and the constantsa,e,n,t0 ,f0 repre-
sent semi-major axis, eccentricity, mean motion, some in
instant and the orbital phase corresponding to that ins
respectively. These constants which characterize a given
centric orbit may be expressed, at the Newtonian order
terms of the conserved energyE and angular momentum pe
unit reduced massuJu as

a5
G m

~22 E!
, ~2.6a!

e5112 E h2 , ~2.6b!

n5
~22 E!3/2

G m
, ~2.6c!

with h5uJu/G m. Note thatn52 p/T, where T is the orbital
period.

In the case of circular orbitse50 andv5u5 l , f is thus
a linearly increasing function of time andṙ 50, ḟ5n
52 p/T. The polarizations are uniquely given by th
straightforward substitutions of these simple limiting form
The only residual choice is whether one uses the gau
dependent variableg5G m/c2 r or the gauge-independen
variablex5(pmFGW)2/3. The situation is more involved in
the case of general orbits even at the leading Newton
order. Indeed, ifeÞ0, thenvÞuÞ l , v(u) andu are more
complicated functions ofl and thusf is not a simple linearly
increasing function of time. This is why a straightforwa
representation of the polarizations in terms ofv and u or
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even a more involved one in terms ofu only, which may be
obtained by explicit elimination ofv, is inadequate. The clue
to the correct description follows from the analysis
Damour@45# for the 2PN accurate equations of motion of
compact binary. Here it was shown that the basic dynam
can be represented as a function of two variables2 l and l
and be 2p -periodic in both of them. The GW polarization
will inherit this double periodicity and we shall cruciall
exploit it as follows: We will splitf into a partl linearly
increasing with time and the remaining part denoted by Wl )
which is a periodic function ofl:

f5l1W~ l !, ~2.7!

wherel and W(l ) are given by

l5f01 l , ~2.8a!

W~ l !5„v@u~ l !#2u~ l !1e sinu~ l !…. ~2.8b!

It is worth emphasizing following@45# that though one could
considerl to be a function ofl given by l5f01 l , it is
more advantageous to considerf and consequently the GW
polarizations to be independently periodic in bothl and l.
With this observation, as we will see below, it is natural
split thel and W(l ) dependence in the polarization and co
sider thel dependence as representing the harmonic t
dependence and the W(l ) term as representing the time var
ing amplitude modulation~‘‘nutation’’ !. This clean separa
tion also facilitates a simple and precise treatment of
spectral decomposition of the GW polarizations as shown
Sec. III. Finally, we note that this decomposition is not ju
appropriate to discuss effects of eccentricity on the Newt
ian waveform and the periastron precession at 1PN order
powerful enough to analyze all PN effects up to the 2P
order.

Armed with the above important conceptual input, t
computation ofh1 andh3 involves a routine, albeit lengthy
algebra. It is straightforward to obtain Newtonian expre
sions for r , ṙ and ḟ in terms of n, e and u using Eqs.
~2.5a!–~2.5d!,~2.6a!–~2.6c! and relations forE andh2, given
at Newtonian order by (22 E)5(G m n)2/3, (22 E h2)
512e2. They are given by

r 5S G m

n2 D 1/3

~12e cosu!, ~2.9a!

ṙ 5
~G m n!1/3e sinu

~12e sinu!
, ~2.9b!

ḟ5
n A12e2

~12e sinu!2
. ~2.9c!

Using Eqs. ~2.9a!–~2.9c! and splitting f as f5l
1W( l ) in Eqs.~2.4a!,~2.4b!, we obtain, after some manipu
lation,

2We denote byl the variable denoted bym in Ref. @45# to avoid
confusion with the total massm in most current literature including
here.
1-4
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h15
G mh

c2 R S G m n

c3 D 2/3 1

~12e cosu!2 $~11C2!@„~e cosu!22e cosu22 e212…cos 2 W12 eA12e2 sinu sin 2 W#cos 2l

1~11C2!@2 eA12e2 sinu cos 2 W2„~e cosu!22e cosu22 e212…sin 2 W#sin 2l1S2 e cosu~12e cosu!%,

~2.10a!

h35
G mh

c2 R S G m n

c3 D 2/3 1

~12e cosu!2 C$@2~4 eA12e2 sinu !cos 2 W1„2~e cosu!222 e cosu24 e214…sin 2 W#cos 2l

1@„2~e cosu!222 e cosu24 e214…cos 2 W1~4 eA12e2 sinu!sin 2 W#sin 2l%. ~2.10b!
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We observe that terms like sin2 W sin 2l, cos 2 W cos 2l,
and cos 2 W sin 2l, sin 2 W cos 2l are generated respec
tively from cos 2f and sin 2f terms in Eqs.~2.4a!,~2.4b! due
to the f5W1l split. The circular limit of Eqs.
~2.10a!,~2.10b!, obtained by puttinge50, agrees with the
Newtonian terms in Eqs.~2!, ~3! and ~4! of @8#.

B. The 2PN GW polarizations

The computation of 2PN corrections toh1 and h3 is
similar in principle to the Newtonian calculation. Howeve
there are subtleties and technical details which will be p
sented, in some detail, below.

From the Newtonian calculations, it is easy to note t
we require a 2PN accurate orbital representation for com
ing 2PN corrections toh1 and h3 . We employ the most
Keplerian-like solution to the 2PN accurate equations of m
tion, obtained by Damour, Scha¨fer, and Wex@42–44#, given
in the usual polar representation associated with
Arnowitt-Deser-Misner~ADM ! coordinates. It is known as
the generalized quasi-Keplerian parametrization and re
sents the 2PN motion of a binary containing two comp
objects of arbitrary mass ratio, moving in an elliptical orb
The relevant details of the representation is summarize
what follows.

Let r (t),f(t) be the usual polar coordinates in the pla
of relative motion of the two compact objects in the AD
gauge. The radial motionr (t) is conveniently parametrize
by

r 5ar~12er cosu!, ~2.11a!

n~ t2t0!5 l 5u2et sinu1
f t

c4 sinv1
gt

c4 ~v2u!,

~2.11b!

whereu is the ‘‘eccentric anomaly’’ parameterizing the m
tion and the constantsar , er , et , n and t0 are some 2PN
semi-major axis, radial eccentricity, time eccentricity, me
motion, and initial instant respectively. The angular moti
f(t) is given by
08401
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-

e
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n

f2f05S 11
k

c2D v1
f f

c4
sin 2v1

gf

c4
sin 3v, ~2.12a!

where v52 tan21H S 11ef

12ef
D 1/2

tanS u

2D J .

~2.12b!

In the abovev is some real anomaly,f0 ,k,ef are some
initial phase, periastron precession constant, and angula
centricity respectively.

The main difference between the relativistic orbital rep
sentation and the non-relativistic one is the appearanc
three eccentricitieser , et , andef compared to one eccen
tricity in the Newtonian case. However, these eccentricit
are related. The explicit expressions for the parame
n, k, ar , et , er , ef , f t , gt , f f andgf in terms of the
2PN conserved energy and angular momentum per unit
duced mass are given by Eqs.~38! to ~48! of @44#. Though
the three eccentricities are related, there is the questio
selecting a specific one to present the polarizations. We h
chosen to present polarization waveforms in terms ofet since
it explicitly appears in the equation relatingl to u, which we
will numerically invert while computing its power spectrum
The question whether, as in pulsar timing, there is a part
lar combination of the three eccentricities ‘‘a good eccentr
ity’’ in terms of which expressions take familiar Newtonian
like forms is interesting and open.

Exactly as in the Newtonian case, at 2PN order too, o
can splitf into two parts; a partl linearly increasing with
time and a part W(l ) periodic in l but with a more compli-
cated time variation:

f5l1W~ l !, ~2.13a!

l5f01S 11
k

c2D l , ~2.13b!

W~ l !5S 11
k

c2D ~v2u1et sinu!

1
1

c4 $ f f sin 2v1gf sin 3v

2 f t sinv2gt~v2u!%. ~2.13c!
1-5
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Note that complicated 2PN corrections tol and W(l ) also includek that represents the periastron advance.
Using Eqs.~2.11a!,~2.11b!,~2.12a!,~2.12b!, and Eqs.~38! to ~48! of @44#, it is straightforward to obtain the 2PN accura

expressions for the dynamical variables in terms ofj5G m n/c3, et and u, using the following relations, easily derivab
from Eqs.~38! to ~48! of @44#

22 E5c2j2/3H 11
j2/3

12
@152h#1

j4/3

24 F ~15215h2h2!1
1

A12et
2 ~120248h!G J , ~2.14a!

22 E h25~12et
2!H 11

j2/3

4~12et
2!

@2~1727 h!et
2191h#1

j4/3

24~12et
2!2

@2~3602144h!et
2A12et

2

1~2252277h129h2!et
42~2102190h130h2!et

21189245h1h2#J , ~2.14b!

k5
3 j2/3

~12et
2!

1
j4/3

4~12et
2!2

$~51226h!et
21~78228h!%, ~2.14c!

ef5etH 11j2/3~42h!1
j4/3

96~12et
2!3/2

@„2~11522656h141h2!et
21196821088h24 h2

…

3A12et
21~7202288h!~12et

2!#J , ~2.14d!

er5etH 11
j2/3

2
~823 h!1

j4/3

24~12et
2!3/2

@„2~2882242h121h2!et
213902308h121h2

…

3A12et
21~180272h!~12et

2!#J . ~2.14e!

Using Eqs.~2.14a!–~2.14e! in Eqs.~2.11a!,~2.11b! and~2.12a!,~2.12b!, we obtain after some lengthy algebra, expressions
r , ṙ 5dr/dt5(dr/du)(du/dt),f5l1W( l ) and ḟ5(df/dv)(dv/du)(du/dt), in terms ofj5G m n/c3,et ,u, . . . given by

r 5S G m

n2 D 1/3

~12et cosu!H 12
j2/3

6~12et cosu!
@~627 h!et cosu11822 h#1

j4/3

72A~12et
2!3~12et cosu!

@„2~722231h

135h2!~12et
2!et cosu2~72175h18 h2!et

222341273h18 h2
…A12et

2236~12et
2!~522 h!~21et cosu!#J ,

~2.15a!

f5 l 1W~ l !, ~2.15b!

l 5u2et sinu2
j4/3

8A12et
2

1

~12et cosu!
$et sinuA12et

2h~41h!112~522 h!~u2v !~12et cosu!%, ~2.15c!

W5v2u1et sinu1
3 j2/3

~12et
2!

$v2u1et sinu%1
j4/3

32~12et
2!5/2

1

~12et cosu!3$@4A12et
2~12et cosu!2

„$2~102252h!et
2

2156156h%et cosu1h~41h!et
41~102260h22 h2!et

21156252h1h2
…1~12et

2!„@~3 et
2112!h28#~et cosu!2

1@~826 h!et
218224h#~et cosu!212h et

42~8227h!et
2
…h#et sinu1~12et cosu!3@48~12et

2!2~522 h!

28„~51226h!et
2178228h…#u18~12et cosu!3@„~51226h!et

2178228h…A12et
2

2~30212h!~122 et
21et

4!#v%, ~2.15d!
084011-6
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ṙ 5
~G m n!1/3

~12et cosu!
et sinuH 11

j2/3

6
~627 h!1

j4/3

72

1

~12et cosu!3F „2~722231h135h2!~et cosu!31~2162693h

1105h2!~et cosu!21~3241513h296h2!et cosu2~3619 h!het
22468215h135h2

…1
36

A12et
2

3„~12et cosu!2~42et cosu!~522 h!…G J , ~2.15e!

ḟ5n
A12et

2

~12et cosu!2H 11
j2/3

~12et
2!~12et cosu!

@~12h!et cosu2~42h!et
213#1

j4/3

12

1

~12et cosu!3F 1

~12et
2!3/2

3$18~12et cosu!2~et cosu22 et
211!~522 h!%1

1

~12et
2!2$„2~9219h214h2!et

223612 h28 h2
…~et cosu!3

1„2~48214h117h2!et
41~69279h14 h2!et

2111412 h25 h2
…~et cosu!21„2~6232h2h2!et

4

1~93219h116h2!et
22222150h1h2

…~et cosu!26 h~122 h!et
61~54228h220h2!et

4

2~153261h22 h2!et
21144248h%G J . ~2.15f!
e
s

io
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M
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a
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Note that the above 2PN accurate expressions forl and
W( l ) in terms ofj,et , etc. are explicitly needed to explor
the spectral decomposition of the polarization waveform
They are not meant to be explicated in the 2PN express
for h1 and h3 , in terms ofl and W(l ) in Eqs. ~2.24a!–
~2.24e! and ~2.25a!–~2.25e!.

The 2PN corrections toh1 andh3 , in a form similar to
Eqs. ~2.10a!,~2.10b!, are obtained using Eqs.~2.1a!,~2.1b!.
However, we need the 2PN corrections tohi j

TT in ADM co-

ordinates, as the parametric expressions forr , ṙ , ḟ and the
f5l1W( l ) split, given by Eqs.~2.15a!–~2.15f!, are in the
ADM gauge. However, the 2PN corrections tohi j

TT , given by
Eqs. ~5.3! and ~5.4! of @39#, are available only inharmonic
(de Donder)coordinates. Using, in a straightforward mann
the transformation equations of Damour and Scha¨fer @46# to
relate the dynamical variables in the harmonic and the AD
gauge, we obtain the 2PN accurate instantaneous cont
tions to hi j

TT in the ADM gauge. For completeness, we l
below the relevant transformation equations relating the h
monic ~de Donder! variables to the corresponding ADM
ones,

rD5rA1
Gm

8 c4 r H F ~5v22 ṙ 2!h12 ~1112h!
Gm

r G r
218h r ṙ vJ , ~2.16a!

tD5tA 2
Gm

c4 h ṙ , ~2.16b!
08401
.
ns

,

u-

r-

vD5vA2
Gmṙ

8 c4 r 2 H F7v2138
Gm

r
23ṙ 2Gh14

Gm

r J r

2
Gm

8 c4r H F5v229ṙ 2234
Gm

r Gh22
Gm

r J v, ~2.16c!

r D5r A1
Gm

8 c4H 5 hv212~1112h!
Gm

r
219h ṙ 2J .

~2.16d!

The subscripts ‘‘D’’ and ‘‘A’’ denote quantities in the de
Donder~harmonic! and in the ADM coordinates respectivel
Note that in all the above equations the differences betw
the two gauges are of 2PN order. As there is no differe
between the harmonic and the ADM coordinates to 1PN
curacy, no suffix is used in Eqs.~2.16a!–~2.16d! for the 2PN
terms.

Using Eqs.~2.16a!–~2.16d!, the 2PN corrections tohi j
TT in

ADM coordinates can easily be obtained from Eqs.~5.3! and
~5.4! of @39#. For economy of presentation, we write (hi j

TT)A

in the following manner, (hi j
TT)A5(hi j

TT)O1 ‘‘ Corrections,’’
where (hi j

TT)A represent the metric perturbations in the AD
coordinates. (hi j

TT)O is a short hand notation for expressio
on the right-hand side~RHS! of Eqs. ~5.3! and ~5.4!
of @39#, where N,n,v,v2, ṙ ,r are the ADM variables
NA ,nA ,vA ,vA

2 , ṙ A ,r A respectively. The ‘‘corrections’’ repre-
sent the differences at the 2PN order, that arise due to
change of the coordinate system, given by Eqs.~2.16a!–
~2.16d!. As the two coordinates are different only at the 2P
1-7
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order, the ‘‘corrections’’ come only from the leading New-
tonian terms in Eqs.~5.3! and ~5.4! of @39#

~hi j
TT!A5~hi j

TT!O1
G

c4 R

G m

2 c4 r A
H F ~5 vA

2 255 ṙ A
2 !h

12~1112h!
G m

r A
G G m

r A
~ni j !A

TT2F ~14vA
2 26 ṙ A

2 !h

18~115 h!
G m

r A
G ṙ A~n( iv j )!A

TT2F ~10vA
2 218 ṙ A

2 !h

2~4168h!
G m

r A
G~v i j !A

TTJ . ~2.17!

To check the algebraic correctness of the above transfor
tion, we compute the far-zone energy flux directly in t
ADM coordinates using

S dE
dt D

A

5
c3 R2

32pGE „~ ḣi j
TT!A~ ḣi j

TT!A…dV~N!. ~2.18!

After a careful use of the transformation equations, the
pression for (dE/dt)A calculated above, matches with th
expression for the far-zone energy flux, Eq.~4.7a! of @39#
obtained earlier. This provides a useful check on the tra
formation from (hi j

TT)D to (hi j
TT)A .

We now have all the inputs required to compute the 2
corrections toh1 and h3 in terms of a elegant and conve
nient parametrization using Eqs.~2.1a!,~2.1b!. As mentioned
in @11,39#, there is no need to apply the TT projection
(hi j

TT) given by Eq.~2.17! before contracting withp andq, as
required by Eqs.~2.1a!,~2.1b!. Thus, we schematically write

hi j
TT5avvv i j 1annni j 1anvn( iv j ) . ~2.19!

The polarization statesh1 andh3 , for Eqs.~2.19! are given
by

h15
1

2
~pi pj2qi qj !~avv v i j 1ann ni j 1anv n( iv j )!

5
avv

2
„~p•v!22~q•v!2

…1
ann

2
„~p•n!22~q•n!2

…

1
anv

2
„~p•n!~p•v!2~q•n!~q•v!…, ~2.20a!

h35
1

2
~pi qj1pj qi !~avv v i j 1ann ni j 1anv n( iv j )!

5avv~p•v!~q•v!1ann~p•n!~q•n!1
anv

2
„~p•n!

3~q•v!1~p•v!~q•n!…. ~2.20b!

Before proceeding to a lengthy but straightforward co
putation of the ‘‘instantaneous’’ 2PN accurate polarizatio
h1 andh3 , we anticipate the structure of the final result
08401
a-

-

s-

-
s

schematically examining the functional forms in the interm
diate steps of the above calculation. The polarizations
terms off have the form

h15$avv@~••• !1~••• !cos 2f1~••• !sin 2f#1ann@~••• !

1~••• !cos 2f#1anv@~••• !1~••• !cos 2f

1~••• !sin 2f#%, ~2.21a!

h35$avv@~••• !cos 2f1~••• !sin 2f#1ann@~••• !sin 2f#

1anv@~••• !cos 2f1~••• !sin 2f#%. ~2.21b!

In the above and what follows (•••) denotes a dependenc
on variableset , n, m1 , m2 , i andu. The structure of the
PN expansion of the coefficientsa i j above is the following:

avv;11
1

c
@~••• !cosf1~••• !sinf#1

1

c2
@~••• !

1~••• !cos 2f1~••• !sin 2f#1
1

c3
@~••• !cos 3f

1~••• !sin 3f#1
1

c4
@~••• !1~••• !cos 4f

1~••• !sin 4f#. ~2.22!

ann has a similar expansion.anv also has a similar expansio
but the leading order term is of order 1/c. Using this infor-
mation about the functional dependence onf and elemen-
tary trigonometry one can infer in detail the harmonics off
appearing at each order and consequently thel and W(l )
dependence on display in Eqs.~2.24a!–~2.24e! and~2.25a!–
~2.25e! below. The ‘‘instantaneous’’ 2PN accurate polariz
tions h1 andh3 in terms ofj5G m n/c3,m,h,et and sines
and cosines ofl,W(l ),u( l ) andi, using Eqs.~2.20a!,~2.20b!,
~2.19!, ~2.15a!–~2.15f! and ~2.13a!–~2.13c! are finally writ-
ten as

~h1,3! inst5
G mh

c2 R
j2/3$H1,3

(0) 1j1/2H1,3
(1/2)1j H1,3

(1)

1j3/2H1,3
(3/2)1j2H1,3

(2) %, ~2.23!

where the curly brackets contain a post-Newtonian exp
sion. The expressions for various post-Newtonian terms
the ‘‘plus’’ and ‘‘cross’’ polarizations are shown below in
form emphasizing the harmonic content and the correspo
ing amplitude modulation. The various post-Newtonian c
rections to the ‘‘plus’’ polarization are given by
1-8
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H1
(0)5$@PC2C2

0 cos 2 W1PS2C2
0 sin 2 W#cos 2l1@PC2S2

0 cos 2 W1PS2S2
0 sin 2 W#sin2l1P0%, ~2.24a!

H1
(0.5)5$@PC1C1

0.5 cos W1PS1C1
0.5 sin W#cosl1@PC1S1

0.5 cos W1PS1S1
0.5 sin W#sinl1@PC3C3

0.5 cos 3 W

1PS3C3
0.5 sin 3 W#cos 3l1@PC3S3

0.5 cos 3 W1PS3S3
0.5 sin 3 W#sin 3l%, ~2.24b!

H1
(1)5$@PC2C2

1 cos 2 W1PS2C2
1 sin 2 W#cos 2l1@PC2S2

1 cos 2 W1PS2S2
1 sin 2 W#sin 2l1@PC4C4

1 cos 4 W

1PS4C4
1 sin 4 W#cos 4l1@PC4S4

1 cos 4 W1PS4S4
1 sin 4 W#sin 4l1P1%, ~2.24c!

H1
(1.5)5$@PC1C1

1.5 cos W1PS1C1
1.5 sin W#cosl1@PC1S1

1.5 cos W1PS1S1
1.5 sin W#sinl1@PC3C3

1.5 cos 3 W

1PS3C3
1.5 sin 3 W#cos 3l1@PC3S3

1.5 cos 3 W1PS3S3
1.5 sin 3 W#sin 3l1@PC5C5

1.5 cos 5 W

1PS5C5
1.5 sin 5 W#cos 5l1@PC5S5

1.5 cos 5 W1PS5S5
1.5 sin 5 W#sin 5l%, ~2.24d!

H1
(2)5$@PC2C2

2 cos 2 W1PS2C2
2 sin 2 W#cos 2l1@PC2S2

2 cos 2 W1PS2S2
2 sin 2 W#sin 2l1@PC4C4

2 cos 4 W

1PS4C4
2 sin 4 W#cos 4l1@PC4S4

2 cos 4 W1PS4S4
2 sin 4 W#sin 4l1@PC6C6

2 cos 6 W

1PS6C6
2 sin 6 W#cos 6l1@PC6S6

2 cos 6 W1PS6S6
2 sin 6 W#sin 6l1P2%, ~2.24e!

and for the ‘‘cross’’ polarization by

H3
(0)5$@XC2C2

0 cos 2 W1XS2C2
0 sin 2 W#cos 2l1@XC2S2

0 cos 2 W1XS2S2
0 sin 2 W#sin 2l%, ~2.25a!

H3
(0.5)5$@XC1C1

0.5 cos W1XS1C1
0.5 sin W#cosl1@XC1S1

0.5 cos W1XS1S1
0.5 sin W# sinl1@XC3C3

0.5 cos 3 W

1XS3C3
0.5 sin 3 W#cos 3l1@XC3S3

0.5 cos 3 W1XS3S3
0.5 sin 3 W#sin 3l%, ~2.25b!

H3
(1)5$@XC2C2

1 cos 2 W1XS2C2
1 sin 2 W#cos 2l1@XC2S2

1 cos 2 W1XS2S2
1 sin 2 W#sin 2l1@XC4C4

1 cos 4 W

1XS4C4
1 sin 4 W#cos 4l1@XC4S4

1 cos 4 W1XS4S4
1 sin 4 W#sin 4l1X1%, ~2.25c!

H3
(1.5)5$@XC1C1

1.5 cos W1XS1C1
1.5 sin W#cosl1@XC1S1

1.5 cos W1XS1S1
1.5 sin W#sinl1@XC3C3

1.5 cos 3 W

1XS3C3
1.5 sin 3 W#cos 3l1@XC3S3

1.5 cos 3 W1XS3S3
1.5 sin 3 W#sin 3l1@XC5C5

1.5 cos 5 W

1XS5C5
1.5 sin 5 W#cos 5l1@XC5S5

1.5 cos 5 W1XS5S5
1.5 sin 5 W#sin 5l%, ~2.25d!

H3
(2)5$@XC2C2

2 cos 2 W1XS2C2
2 sin 2 W#cos 2l1@XC2S2

2 cos 2 W1XS2S2
2 sin 2 W#sin 2l1@XC4C4

2 cos 4 W

1XS4C4
2 sin 4 W#cos 4l1@XC4S4

2 cos 4 W1XS4S4
2 sin 4 W#sin 4l1@XC6C6

2 cos 6 W

1XS6C6
2 sin 6 W#cos 6l1@XC6S6

2 cos 6 W1XS6S6
2 sin 6 W#sin 6l1X2%, ~2.25e!

where P’s and X’s are functions ofet , m1 , m2 , u( l ) and i. The notation PCbSc
a , for instance, denotes the coefficient

cos b W sin cl at ‘‘aPN’’ order and similar explanation holds for XCbSc
a too. The explicit expressions for P’s and X’s, i.e., th

coefficients of sine and cosine multiples ofl and W(l ) appearing in Eqs.~2.24a!–~2.24e! and ~2.25a!–~2.25e! are given by

PC2C2
0 52PS2S2

0 5
1

~12et cosu!2 $~11C2!@~et cosu!22~et cosu!22 et
212#%, ~2.26a!

PC2S2
0 5PS2C2

0 52
1

~12et cosu!2 $~11C2!A12et
2et sinu%, ~2.26b!

P05
S2

~12et cosu!
et cosu, ~2.26c!

PC1C1
0.5 52PS1S1

0.5 5
S

2

m12m2

m

1

~12et cosu!
$~123 C2!et sinu%, ~2.26d!
084011-9
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PC1S1
0.5 5PS1C1

0.5 5
S

4

m12m2

m

1

~12et cosu!2 $A12et
2@2~et cosu!152„6~et cosu!21…C2#%, ~2.26e!

PC3C3
0.5 52PS3S3

0.5 52
S

2

m12m2

m

1

~12et cosu!3 $~11C2!et sinu@~et cosu!222~et cosu!24 et
215#%, ~2.26f!

PC3S3
0.5 5PS3C3

0.5 5
S

4

m12m2

m

1

~12et cosu!3 $~11C2!A12et
2@6~et cosu!227~et cosu!28et

219#%, ~2.26g!

PC2C2
1 52PS2S2

1 5
1

6

1

~12et cosu!3 $@2~925 h!~et cosu!31~18210h!~et cosu!21„~18210h!et
2120212h…~et cosu!

2~33111h!et
2214138h#1@2~3113h!~et cosu!31~6126h!~et cosu!21„~6126h!et

2133251h…~et cosu!

2~48234h!et
216222h#C21~123 h!@26~et cosu!3112~et cosu!21~12et

2213!~et cosu!29et
214#C4%,

~2.26h!

PC2S2
1 5PS2C2

1 5
1

6

et sinu

~12et cosu!3H 1

A12et
2 @„~18210h!et

22622 h…~et cosu!2~3927 h!et
212715 h#1

1

A12et
2 @„~6

126h!et
216238h…~et cosu!2~30120h!et

2118132h#C213 A12et
2~123 h!@24~et cosu!15#C4J ,

~2.26i!

PC4C4
1 52PS4S4

1 5
S2

24

1

~12et cosu!4 $~123 h!~11C2!@26~et cosu!4118~et cosu!31~48et
2261!~et cosu!21~65269et

2!

3~et cosu!248et
41117et

2264#%, ~2.26j!

PC4S4
1 5PS4C4

1 5
S2

4

1

~12et cosu!4 $~11C2!~123 h!A12et
2et sinu@24~et cosu!219~et cosu!18 et

2213#%,

~2.26k!

P15
S2

24

1

~12et cosu!3 $@~3022 h!~et cosu!32~6024 h!~et cosu!22~5715 h!~et cosu!1~8713 h!et
2#1@~18254h!

3~et cosu!32~362108h!~et cosu!21~329 h!~et cosu!1~15245h!et
2#C2%, ~2.26l!

PC1C1
1.5 52PS1S1

1.5 52
S

48

m12m2

m

et sinu

~12et cosu!4$@48~et cosu!32144~et cosu!21~33122h!~et cosu!2~336112h!et
21399

210h#1@2~108172h!~et cosu!31~3241216h!~et cosu!22~121240h!~et cosu!2~144236h!et
2260

160h#C215~12et cosu!~122 h!@12~et cosu!2224~et cosu!15#C4%, ~2.26m!

PC1S1
1.5 5PS1C1

1.5 5
S

96

m12m2

m

1

~12et cosu!4H 1

A12et
2 @~48148h296et

2!~et cosu!32~24148h272et
2h!~et cosu!21„~396

1104h!et
222042296h…~et cosu!1~1232198h!et

42~5462220h!et
21303198h#1

1

A12et
2 @„~2161144h!et

2

2722288h…~et cosu!32„~7561240h!et
224442552h…~et cosu!22„~144196h!et

22336196h…~et cosu!

1~7201144h!et
42~756196h!et

2112224h#C22A12et
2~122 h!@120~et cosu!32276~et cosu!2152~et cosu!

1105et
221#C4J , ~2.26n!
084011-10
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PC3C3
1.5 52PS3S3

1.5 5
S

96

m12m2

m

et sinu

~12et cosu!4 $@~108224h!~et cosu!32~324272h!~et cosu!22„~432296h!et
22143

2274h…~et cosu!1~1176272h!et
226712346h#1@~72148h!~et cosu!32~2161144h!~et cosu!22„~288

1192h!et
21882736h…~et cosu!1~1152224h!et
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2!~et cosu!31~2700et

2

22718!~et cosu!21~960et
423235et

211933!~et cosu!22115et
413805et

221536#C2%, ~2.27u!

XC6C6
2 52XS6S6

2 5
C S4

96
~115 h225 h!A12et

2 et sinu

~12et cosu!6 $272~et cosu!41312~et cosu!31~384et
22844!~et cosu!2

2~1053et
221325!~et cosu!2384et

411437et
221105%, ~2.27v!

XC6S6
2 5XS6C6

2 5
C S4

960
~125 h15 h2!

1

~12et cosu!6 $120~et cosu!62600~et cosu!52~2160et
223206!~et cosu!41~7860et

2

28444!~et cosu!31~5760et
4219135et

2113051!~et cosu!22~11475et
4223240et

2111269!~et cosu!23840et
6

117235et
4221325et

217776%, ~2.27w!

X25
C S2

24

et sinu

~12et cosu!5H 1

A12et
2 @„2~362116h112h2!et

2124268h224h2
…~et cosu!21„~1742538h110h2!et

2

21501442h162h2
…~et cosu!2~1532459h221h2!et

41~1682496h240h2!et
2227185h217h2#

1A12et
2~115 h225 h!@6~et cosu!2222~et cosu!115et

211#C2J , ~2.27x!
f- -
whereC5cosi andS5sin i. The relations between the coe
ficients like PCnCn

i 5PSnSn
i or XCnSn

j 52XSnCn
j are a trivial

trigonometric consequence of thef5l1W split in the ex-
pression for GW polarizations in terms off.
08401
To compare with the earlier 2PNaccurate gauge indepen
dent expressions for h3 and h1 for binaries in circular or-
bits, we proceed as follows. First, we setet50 in Eq. ~2.23!
and rewrite the resulting expressions forh1 andh3 in terms
1-16
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of the ‘‘gauge independent’’ orbital angular frequencyv for
circular orbits. The 2PN accurate relation connecting
mean motionn to v may be derived from Eqs.~39!, ~44! and
~46! of @44# and it reads

j5tH 12
3 t2/3

~12et
2!

1
t4/3

4~12et
2!

F ~51226h!

2
1

~12et
2!

~69254h!G J , ~2.28!

where t5G mv/c3. Next, we use the following angu
lar transformation relationf[l1W( l )5(fBIWW2p/2),
wherefBIWW the orbital phase variable appearing in@8#. The
expressions forh3 and h1 thus obtained agree@47# with
Eqs.~2!, ~3! and ~4! of @8# modulo the tail terms.

All the computations to obtain Eq.~2.23! are performed
usingMAPLE @48#. This completes the calculation of the 2P
accurate GW polarizations for compact binaries moving
elliptic orbits, modulo the tail terms.3 Though in principle the
required equations for the tails are available in@32#, the ex-
plicit expressions for the tail contribution toh3 andh1 for
eccentric binaries have not been obtained. As mentioned
lier, this should be computed and included to write down
complete 2PN polarizations.

III. INFLUENCE OF THE ORBITAL PARAMETERS
ON THE WAVEFORM

In this section, we investigate the dominant effects of
centricity, orbital inclination and other orbital elements
h3(t) and h1(t). For this purpose, the one sided pow
spectral density of the Newtonian contributions to the po
ization waveforms are computed, by taking the squar
modulus of their respective discrete Fourier transform
sampled over an orbital period. The results thus describe
influence of orbital elements on the power spectrum of Ne
tonian waveforms when gravitational radiation-reaction
negligible and referred to here as a ‘‘non-evolving’’ wav
form.

To relate earlier studies done at Newtonian order to
present one, we proceed in two stages. In the first instanc
compare with the results of@29,30#, the orbital motion is
restricted to the leading Newtonian order, and the perias
advance is mimicked by the introduction of an arbitrary co
stant shift parameterk in the f variable. In the second cas
the orbital motion is taken to be 2PN accurate. In this ca
the periastron advance is fully included in the formalism a
explicitly defined in terms of the binary’s parameters like t
masses and eccentricity. In both the cases mentioned ab
only the leading Newtonian part of the GW polarizations
considered.

Let us begin with the ‘‘3 ’’ polarization. For the ease o

3A C or FORTRAN version of the aboveh3 andh1 expressions is
available on request from gopu@wugrav.wustl.edu
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presentation,h3
N , the Newtonian part ofh3(t), is written

compactly below as

h3
N 5

G mh

c2 R S G m n

c3 D 2/3

H3
(0) , ~3.1a!

H3
(0)5$A2S~ l !sin 2l1A2C~ l !cos 2l%,

~3.1b!

where A2S( l )[A2S„u( l )…5XC2S2
0 cos2W(l )1XS2S2

0 sin2W(l ),
and A2C( l )[A2C„u( l )…5XC2C2

0 cos2W(l )1XS2C2
0 sin2W(l ).

Note that A2S( l ) and A2C( l ) are real and periodic function
of l with period given by 2p/n. The spectral analysis ofh3

will be performed usingH3
(0) , the scaled3 polarization

waveform, because since we are dealing with non-evolvi
binaries, (G mh/c2 R)(G m n/c3)2/3 essentially remains a
constant over a few orbital periods. Similar arguments h
for h1 too.

A. Newtonian orbital motion

In this section, we restrict the dynamics of the binary
Newtonian order. This implies we are using Eq
~2.8a!,~2.8b! for l and W(l ) in thef5l1W( l ) split. How-
ever, following@29,30#, we introduce an arbitrary periastro
advance parameterk into the definition ofl so thatl5f0
1(11k) l and W(l )5(v2u1e sinu)(11k). Note that with
these forms forl and W(l ), the scaled GW polarization
waveforms are entirely specified bye, k andf0.

As mentioned earlier, A2S( l ) and A2C( l ) are periodic
functions ofl 5n(t2t0), wheren52p f r , f r being the fre-
quency associated with the ‘‘radial period’’@42# i.e. the time
of return to the periastron. Consequently, they can be
panded inFourier seriesas follows:

A2C~ l !5 (
j 52`

`

Cje
i j l , ~3.2a!

A2S~ l !5 (
j 52`

`

Sje
i j l . ~3.2b!

Employing Eqs. ~3.2a!,~3.2b! and l5f01(11k) l , in
Eqs.~3.1a!,~3.1b!, we get

H3
(0)5 (

j 52`

`

~S̄je
iv j

1 l1C̄je
iv j

2 l !, ~3.3!

where

S̄j[
ei2f0

2
~Cj2 i Sj !, ~3.4a!

C̄j[
e2 i2f0

2
~Cj1 i Sj !, ~3.4b!

v j
1[~ j 12 p!, ~3.4c!
1-17
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v j
2[~ j 22 p!, ~3.4d!

p[~11k!. ~3.4e!

Equation~3.3! may be re-written as

H3
(0)5(

j 50

`

@S̄je
iv j

1 l1C̄2 je
2 iv j

1 l1S̄2 je
2 iv j

2 l1C̄je
iv j

2 l #

2@S̄0ei2pl1C̄0e2 i2pl#. ~3.5!

Recallingl 5n(t2t0), with n52p f r , the frequency conten
and the associated intensities may be read off from
above. From Eq.~3.5!, it follows that the Fourier spectrum o
H3

(0)( l ) consists of lines at frequenciesv j
1 f r andv j

2 f r with

powers (uS̄j u21uC̄2 j u2) and (uS̄2 j u21uC̄j u2) respectively.
Using the reality off0 , A2S and A2C, thoughSj andCj are
complex numbers, it is easy to show thatuS̄j u25uC̄2 j u2 im-
plying that power in the line with frequencyv j

1 f r will be

2uS̄j u2. Similarly, uC̄j u25uS̄2 j u2, and power in thev j
2 f r line

is 2uC̄j u2.
Thus, the Fourier series for Newtonian part ofh3 effec-

tively reduces to

H3
(0)5A2H (

j 51

`

@S̄je
iv j

1 l1C̄je
iv j

2 l #1S̄0ei2plJ . ~3.6!

The ‘‘one sided power spectrum’’ for the Newtonianh3 may
be written as

H3
(0)5A2H S̄0ei2pl1(

j 51

`

@S̄je
i ( j 12p) l1C̄je

i u( j 22p)u l #J ,

~3.7!

where explicitly the sum is over positive frequencies. In t
generic case, thev j

15( j 12 p) part gives lines at frequen
cies (112 p) f r ,(212 p) f r ,(312 p) f r , . . . with strengths
;uS̄1u2,uS̄2u2,uS̄3u2, . . . respectively. Similarly, thev j

25( j
22 p) part of Eq. ~3.6! creates lines at frequencies (
22 p) f r ,(222 p) f r ,(322 p) f r , etc. with strengths pro
portional to uC̄1u2,uC̄2u2,uC̄3u2, etc. respectively. There wil
be also a line at frequency 2p fr with strength ;uS̄0u2

5uC̄0u2 @49#.
These observations are easy to understand. At Newto

order, in the absence of the periastron precession, i.e.k50,
there is only one time scale in the problem, given by
orbital period and the spectrum consists of lines at multip
of the orbital frequency. When periastron precession is in
duced,kÞ0, a second slower time scale enters the probl
which splits and shifts original spectral lines from their e
lier positions, thereby lifting the degeneracy associated w
the non-precessing orbit.

A caveat is worth noting: The discussion after Eq.~3.7! is
valid only if all the terms corresponding to frequenciesj s
12p) f r and (u j c22pu) f r are linearly independent, wherej c

and j s are summation indexj for C̄j and S̄j . This is in gen-
eral true except whenj s12p5u j c22pu, which corresponds
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to values ofk equal to 0, 0.25 and 0.5@50#. For these values
of k, power in a given spectral line will have contribution
both from C̄j and S̄j for different values ofj given by j c
2 j s2454 k. These special values ofk are interesting in that
they can provide useful checks on the numerical accurac
the analytical procedure outlined above. This is because
values ofk50,0.5,0.25, the full time domain waveform@and
not just the parts A2S( l ),A2C( l )] H3

0 ( l ) is exactlyperiodic
over 2p, 2p and 4p intervals respectively. Consequentl
one may alternatively compute the desired power spect
by a direct Fourier transform of the fullH3

(0)( l ), without
going via Eq.~3.7!, which exploits double periodicity off in
l andl. Similar arguments hold true for the1 polarization.

It is clear from Eq.~3.7! that the strengths of the differen
Fourier components are determined by the coefficientsC̄j

and S̄j which are given in terms ofCj and Sj , the discrete
Fourier transforms of A2C( l ) and A2S( l ).

4 This has become
possible since we have exploited the double-periodicity
the motion in anglesl andl. Thus the calculation reduces t
the numerical implementation ofSj andCj which we turn to
next.

Though the power spectrum for the Newtonian part ofh3

can be obtained using Eq.~3.7!, its implementation is not
straightforward due to following reasons. First, the discr
Fourier transformsCj andSj can be evaluated using standa
fast Fourier transform routines as inNumerical Recipes@51#
only after A2S and A2C are written as explicit functions ofl.
However, in our analysis they are explicit functions ofu and
thus implicit functions ofl via l 5u2e sinu. Consequently,
we must first computeu( l ) and substitute it in Eqs
~3.1a!,~3.1b! to proceed. Secondly, W(u)5(v2u1e sinu)
will not be a smooth function ofu if we numerically imple-
ment v52 tan21$„(11e)/(12e)…1/2tan(u/2)%. We will also
need to use a smooth functional relation connectingv andu
to obtain a well behavedH3

0 (u( l ) andH1
0 (u( l ).

Let us first consider the implementation ofu( l ). There are
two independent ways to obtainu( l ) from l 5u2e sinu. The
first method is widely used, for analytical treatments, in st
dard textbooks of celestial mechanics@52#. The idea here is
to expand the eccentric anomalyu in terms of the mean
anomalyl. At the Newtonian order, it is given by

u5 l 1(
s51

` S 2

sD Js~s e!sinsl, ~3.8!

whereJs(s e) is the Bessel function of the first kind of orde
s with s>1.

Alternatively, we can numerically invert Eq.~2.5! con-
necting the mean and eccentric anomalies, using the New
Raphson method implemented byRTSAFEroutine ofNumeri-
cal Recipes@51#, and obtainu( l ). We computeu( l ) using

4Using the Fourier integral theorem, it is easy to show that A2C( l )
may be written in terms of the Fourier transform of A2C( l ), the
discretized version of which allows us to express A2C( l ) in terms its
discrete Fourier transform. Similar arguments apply to A2S( l ).
1-18
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both methods to make sure that they give consistent res
for the parameter values we are dealing here.

We now turn to the numerical implementation of W(u).
In textbooks of celestial mechanics, the transcendental r
tion connecting true and eccentric anomalies is expresse
a series given by

v2u52(
j 51

` S b j

j
sin j u D , ~3.9!

whereb5(1/e)(12A12e2). We use the above expansio
of v2u in W(u)5v2u1e sinu to circumvent artificial dis-
continuities in W(u) as a function of the eccentric anoma
u.

Using the above inputs, we computeu( l ) and W„u( l )… at
a finite number of points by samplingl. Next, we use the
REALFT routine of@51# to compute the discrete Fourier tran
formsSj andCj of the discretely sampled periodic function
A2S( l ) and A2C( l ). We then compute the ‘‘one sided pow
spectrum’’ for the Newtonianh3 using Eq.~3.7! for various
values ofe, k and i. We now have all the inputs to invest
gate the influence of orbital elements on the Newtonian p
of the3 polarization waveform. The results and discussio
are postponed to the end of this section.

The spectral analysis forh1 is similar to that forh3 and
we only quote the main results without any further detail

H1
(0)5P0~ l !1P1~ l !sin 2l1P2~ l !cos 2l, ~3.10!

whereP15PC2S2
0 cos 2 W1PS2S2sin 2 W, P25PC2C2cos 2 W

1PS2C2sin 2 W and P05P05(12C2)e cosu(12ecosu).
The Fourier series for Eq.~3.10! is given by

H1
(0)5 (

j 52`

`

@S̄j
1eiv j

1 l1C̄j
1eiv j

2 l1 P̄j
0ei j l #, ~3.11!

whereS̄j
1 andC̄j

1 are defined similar toS̄j andC̄j but with

A2S and A2C replaced byP1 and P2. Similarly, P̄j
0 is the

discrete Fourier transform ofP0( l ). Using arguments simila
to the ones used for theH3

0 analysis, we relateS̄j
1 , C̄2 j

1 and

S̄2 j
1 , C̄j

1 and obtain the ‘‘one sided power spectrum’’ fo
Newtonianh1 as

H1
(0)5A2H (

j 51

`

@S̄j
1ei ( j 12p) l1C̄j

1ei u( j 22p)u l1 P̄j
0ei j l #

1C̄0
1ei2plJ 1 P̄0

0 . ~3.12!

From Eq. ~3.12!, it follows that for the ‘‘1 ’’ polarization
there will be lines at frequencies 0,2p fr ,u122pu f r , f r ,(1
12p) f r , u222pu f r ,2 f r ,(212p) f r , . . . with relative

strengths;, 1
2 uP̄0

0u2, uS̄0
1u2, uC̄1

1u2, uP̄1
0u2, uS̄1

1u2, uC̄2
1u2,

uP̄2
0u2, uS̄2

1u2, . . . respectively. Note that there are lines u
affected by introduction ofk. These arise from the non-l
08401
ts,

la-
as

rt
s
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term in H1
0 ( l ). The values ofk50,0.25,0.5 are special an

require a treatment analogous to the corresponding one in
cross polarization case.

Using the above inputs, we plot the time-domain wav
formsH3,1

0 ( l ) and the associated normalized relative pow
spectrum (H3,1

(0) ) j /( j (H3,1
(0) ) j in Figs. 2–6. The combined

influence of the orbital parameters like eccentricitye, perias-
tron advance parameterk and orbital inclinationi, on the
time-domain waveform and the associated power spect
of the Newtonianh3 andh1 using Newtonian accurate or
bital motion is summarized below.

Eccentricity, e. The effects ofe on H3
0 are explored in

Fig. 2. In the limit of low values of eccentricitye, as ex-
pected, the dominant contribution to the power spectru
comes from the second harmonic. However, as the eccen
ity e increases, higher harmonics appear in the spectrum
comparable strengths. For a given value of the perias
advancek and inclination anglei, the position of the domi-
nant harmonic changes as the value ofe increases. The shap
of the waveform also changes significantly as we increase.
For moderate and high values ofe there is a stronger burst o
radiation near valuesl 50 and 2p corresponding to the pe
riastron passage, since near the periastron, the two ma
are closest to each other and their relative velocity is a m
mum. In the frequency domain this results in the broad p
containing many frequencies. The line feature in the f
quency domain on the other hand corresponds to the ave
orbital motion of the binary.

The ‘‘arbitrary’’ periastron advance parameter, k. The ob-
servation made here are based on Fig. 3. A careful inspec
of H3,1

0 ( l ) with kÞ0 indicates that in general they are n
2 p periodic. This is expected ask is a measure of the angl
of return to the periastron. As mentioned earlier, in the pow
spectrum, the main effect of including an arbitraryk is a
‘‘splitting’’ and subsequent ‘‘shifting’’ of the position of each
spectral line from its integer multiple value in units off r , the
radial frequency. The shift is appreciable for medium a
high eccentricities and leads to a shift of the dominant h
monic in the spectrum.

Orbital inclination, i. A change in the orbital inclination
changes only the magnitude ofH3

0 and its power spectrum
keeping the relative distribution of spectral lines the sam
This is easy to see as the dependence of orbital inclina
anglei is easily factored out in the expression forh3 . How-
ever, the shape ofH1

0 and its power spectrum is influence
by i as seen in Fig. 4.

If the polarizations of the gravitational waveh3 andh1

are available, the orbital inclination can be inferred by co
puting the ratio of the total power measured in each po
ization. For circular orbits, the result analytically follow
since uh3

N u2/uh1
N u2 is only a function ofi and is given by

4 cos2 i/(11cos2 i)2. In the general eccentric case, to explo
this, we plotuh3

N u2/uh1
N u2 as a function ofi for various values

of the e andk in Fig. 5. The plots are identical for differen
values ofe andk but vary with the inclination angle provid
ing support for the claim made in the beginning of this pa
graph.
1-19
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FIG. 2. Plots for scaled GW polarizatio
waveform, H3

0 as a function of the mean
anomaly, l and the corresponding normalize
relative power spectrum using Newtonian orbit
motion, for various values of eccentricitye. Note
in H3

0 ( l ) a ‘‘burst’’ of GW emission near perias
tron passage and a shift in the position of t
dominant harmonic in the power spectrum ase
increases. In the Fourier domain, the former r
sults in a broad frequency rich peak. In all pane
the ~arbitrary! periastron precession constant a
the orbital inclination angle take values 0.1 an
p/3 respectively.
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Even though in general, an arbitrary periastron adva
parameterk at Newtonian order destroys the 2p-periodicity
of H3,1

0 ( l ), we may choosek valuesexactlyequal to 0 or
0.5 so thatH3

0 ( l ) is still 2 p periodic. These particular val
ues ofk allow us to perform useful numerical checks on o
analytical procedure. In this case, we can compute the po
spectrum directly fromH3

0 ( l ) by numerically implementing
the discrete Fourier transform of Eqs.~3.1a!,~3.1b!. We can
also implement Eq.~3.7! to obtain the power spectrum, afte
adding contributions from variousC̄j and S̄j to a givenhar-
monic, which is now some integer multiple of the rad
frequency,f r . The results are displayed in Fig. 6. For bet
comparison, in these figures, we normalize relative to
power in the dominant harmonic rather than relative to
total power as in other figures. We next choosek50.25, so
thatH3

0 ( l ) is now 4p periodic. Again, comparison with th
power spectrum computed directly from Eqs.~3.1a!,~3.1b!
08401
e

r
er

l
r
e
e

and via Eq.~3.7! is possible. The results fork50, 0.25 and
0.5 via these two methods are compared and found to
identical up to numerical errors as seen in Fig. 6, provid
important checks on our analysis and routines that comp
the one sided power spectrum via Eq.~3.7!. We observe a
similar behavior forH1

0 .

B. The 2PN accurate orbital description

The spectral analysis discussed in the previous sec
may be extended to 2PN accurate orbital motion with min
technical modifications. The expressions for W(l ) and l in
the f5l1W( l ) split are now given by Eqs.~2.13a!–
~2.13c!. Moreover, the orbital elements appearing inH3

(0) and
H1

(0) are now 2PN accurate. These changes will modify
pressions forSj , Cj in Eq. ~3.7! for the ‘‘3 ’’ waveform and
the corresponding expressions for the ‘‘1 ’’ waveform.
,

ity
FIG. 3. The configuration is similar to Fig. 2
but in the panels,k, the~arbitrary! periastron pre-
cession constant is varied for fixed eccentric
e50.5 and orbital inclination anglei 5p/3. Note
the splitting and shifting of spectral lines from
integer multiple values off r ask is increased.
1-20
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FIG. 4. Plots of scaled GW polarization wave
form, H1

0 as a function of mean anomaly,l and
its corresponding normalized relative pow
spectrum for Newtonian orbital motion, when th
orbital inclination anglei is varied. In all frames,
eccentricity e50.5 and periastron precessio
constant,k50.1.
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To implement the 2PN accurate spectral analysis, we n
the following: First, at the 2PN level the simpler approach
obtain theu( l ) relation, connecting the mean and eccent
anomalies, is to numerically solve foru( l ) from Eqs.
~2.11a!,~2.11b! because 2PN accurate analytic expression
u( l ) similar to Eq. ~3.8! is not available in the literature
However, we may employ Eq.~3.9! with ef in the placee to
get v2u at 2PN order. This is because in the generaliz
quasi-Keplerian representation, the relation connecting
anomalyv to eccentric anomalyu has the same structura
form as for the Keplerian case. Secondly, there are p
Newtonian corrections to the relations connectinger andef
to et , m1 , m2 andn. In our analysis, only those values o
et are considered which lead toef ,er less than one. Finally
in this 2PN accurate orbital description, the periastron p
cession constantk is no longer arbitrary but uniquely dete
mined bym1 , m2 , n and et as given by in Eqs.~2.14a!–
~2.14e!.
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We explore the effects of 2PN accurate orbital motion
the power spectrum for ‘‘3 ’’ polarization in Figs. 7 and 8. In
Fig. 7, we explore the influence ofet on the relative power
spectrum and the behavior is qualitatively similar to t
Newtonian case. We explore, in Fig. 8, the effect of chang
values fork by varyingm1 , m2 andn after fixing the value
of et . We see that the behavior is similar to the Newtoni
case when we vary values ofk for a givene. This is required
as at 2PN order, for a givenet , k is uniquely determined by
m1 , m2 and n. However, there are quantitative differenc
in that positions and strengths of various harmonics are
ferent in the Newtonian and the 2PN cases.

A quantitative comparison between the spectral analy
with Newtonian and 2PN motion is presented in Figs. 9 a
10. Note that we can perform this comparison as we
using scaled polarization waveforms,H3

0 andH1
0 . In Fig. 9,

we plot bothH1
0 ( l ) and its power spectrum using Newtonia

and 2PN accurate orbital motion. We choose the arbitr
d

t
t
ts
FIG. 5. The ratio of the total power measure
in 3 and 1 polarization for Newtonian motion
as a function of orbital inclination anglei for
various values of periastron precession constank
and eccentricitye. From the plots, it is clear tha
the ratio is independent of the orbital elemen
like e andk.
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FIG. 6. Plots ofH3
0 l , A2C( l ), A2S( l ) as a

function of mean anomaly,l and their relative
power spectra constructed using Eq.~3.7! and di-
rectly usingH3

0 ( l ). The orbital motion is New-
tonian accurate and we employ certain spec
values ofk50, 0.5 and 0.25. The relative powe
spectra, plotted in third column, are numerical
identical, hence indistinguishable. Note that plo
in second column are always 2p periodic, while
those in the first column are 2p, 2 p and 4p
periodic for k50, k50.5 and k50.25 respec-
tively. We also observe that fork50, the relative
power spectrum depends on the position of pe
astronf0.
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parameterk, introduced in the Newtonian case to match t
2PN accuratek associated with the generalized qua
Keplerian representation. In this manner, we force orb
elements for Newtonian and 2PN dynamics to be the sa
Though, qualitatively similar, the plots for the Newtonia
and the 2PN orbital motion are quantitatively different in th
strengths of spectral lines are different by a few parts
thousand in most cases.

Finally, in Fig. 10, we plotH1
0 ( l ) and its power spectrum

as a function of orbital inclination angle for Newtonian a
2PN accurate orbital motion. The value ofk for the Newton-
ian runs are again chosen so that it is comparable to
actual 2PN accuratek value. It is clear from these figures th
inclusion of PN corrections to orbital motion changes dis
bution of spectral lines, though the position of the domin
~maximum amplitude! harmonic is roughly the same. Th
figure also shows how the orbital inclination anglei slowly
08401
-
l
e.

t
n

e

-
t

modulates the spectral lines for Newtonian and 2PN orb
motion.

IV. CONCLUSIONS

A. Summary of results

In this paper we have computed all the ‘‘instantaneou
2PN contributions toh1 andh3 for two compact objects of
arbitrary mass ratio moving in elliptical orbits, using 2P
corrections tohi j

TT and the generalized quasi-Keplerian re
resentation for the 2PN motion. The expressions forh1 and
h3 obtained here represent gravitational radiation from
elliptical binary during that stage of inspiral when orbit
parameters are essentially the same over a few orbital p
ods, in other words when the gravitational radiation react
is negligible. We investigate the effect of eccentricity, a
vance of periastron and orbital inclination on the power sp
n
d
or-

al-

-

FIG. 7. Plots for scaled GW polarizatio
waveform,H3

0 ( l ) and corresponding normalize
relative power spectrum using 2PN accurate
bital motion, for various values ofet . Unlike in
Fig. 2, the value ofk cannot be independently
chosen since it is uniquely determined by the v
ues of m1 , m2 , n and et . The observations
from plots are similar to Fig. 2, as variation ink
is small compared to that inet . In all frames,
m15m251.4M ( , orbital inclination angle i
5p/3 and mean motionn5100 radians per sec
ond.
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FIG. 8. The configuration is similar to Fig. 7
but in the panels we vary masses and mean m
tion to get the different values ofk, rather thane.
For all plots et50.4 and i 5p/3. Qualitatively,
conclusions are similar to Fig. 3. Unit forn will
be radians per second.
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d
or
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he
trum of the Newtonian part ofh1 andh3 . The 2PN accurate
generalized quasi-Keplerian representation is used in c
junction with two angular variablesl andl chosen to facili-
tate the subsequent analysis of the waveform evolving un
gravitational radiation reaction. These expressions thus f
the first step in the direction of obtaining ‘‘ready-to-use
theoretical templates for inspiraling compact bodies mov
in quasi-ellipticalorbits.

B. Future directions

There are several issues that remain open for further
vestigation. We list them below.

~1! The next natural step is to obtain evolvingh3 andh1 ,
08401
n-

er
m

g

n-

when lowest order radiation reaction effects are included
the evolution of orbital elements. This is currently under
vestigation@14#.

~2! There are tail contributions toh1 andh3 appearing at
1.5PN and 2PN orders. Though the formal expressions
tail terms are available in@32,10#, they need to be written
down in a form similar to ‘‘instantaneous’’ contributions t
h1 andh3 presented in this paper.

~3! After computing ‘‘ready-to-use’’ search templates f
inspiraling binaries in ‘‘quasi-elliptical’’ orbits, one will be
able to address a variety of data analysis issues related t
observations of gravitational radiation from eccentric bin
ries in great detail. These could include defining a ‘‘restrict
post-Newtonian’’ waveform, extending to 2PN accuracy t
-

er
tal

d
ll

al
ws
i-
d

FIG. 9. Plots of scaled GW polarization wave
form, H1

0 ( l ) as a function of mean anomaly,l
and corresponding normalized relative pow
spectrum for Newtonian and 2PN accurate orbi
motion. Givenet , we vary values form1 , m2

andn, to makek values the same in the 2PN an
the Newtonian accurate orbital motion. In a
frames, orbital inclination angle isp/3. Panels in
the 2nd and 4th rows are for Newtonian orbit
motion, whereas panels in the 1st and 3rd ro
are for 2PN accurate orbital motion. We see m
nor quantitative differences in the position an
strength of spectral lines at these two orders.
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FIG. 10. Plots for the scaled GW polarizatio
waveform,H1

0 as a function of mean anomaly,l
and the corresponding normalized relative pow
spectrum using 2PN and Newtonian accurate
bital motion. We vary the orbital inclination
angle,i keeping other orbital elements constant
Newtonian and 2PN level. Conclusions are sim
lar to Fig. 4.
w

ef
n

te
es

r

o
id
ur

-

led
a-
m-
ec-
S.

is
effect of eccentricity on detection discussed in@29,53# where
currently the orbital dynamics is restricted to leading Ne
tonian order only.

~4! Finally, the analysis of the present paper may be us
for detecting continuous gravitational waves from know
sources in binaries. Recent analysis@25# employing a Keple-
rian representation for the binary’s orbital motion indica
that the computational cost required to search such sourc
affordable. The present analysis and@14# may be crucial for
including the relevant relativistic effects.

Note added in proof. We observe that the results of ou
spectral analysis are in agreement with Ref.@30# for low
values ofk. Since the effect of the periastron precession
the amplitude of spectral lines is not fully taken into cons
eration in Ref.@30#, the strength of the spectral lines in o
u
e
/

//

y

r
e

r

s
b
G

08401
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ul

s
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n
-

analysis differs from theirs, for high values ofk. It should be
noted that for a givenk, both methods give the same fre
quency shift for spectral lines, for all values ofk.
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