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Second post-Newtonian gravitational wave polarizations for compact binaries in elliptical orbits

A. Gopakumar
Department of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, Missouri 63130
and Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India

Bala R. lyer
Raman Research Institute, C.V. Raman Avenue, Sadashivanagar, Bangalore 560080, India
(Received 13 August 2001; published 21 March 2002

The second post-Newtonid@PN) contribution to the “plus” and “cross” gravitational wave polarizations
associated with gravitational radiation from non-spinning, compact binaries moving in elliptic orbits is com-
puted. The computation starts from our earlier results on 2PN generation, crucially employs the 2PN accurate
generalized quasi-Keplerian parametrization of elliptic orbits by Damour,f&chad Wex and provides 2PN
accurate expressions modulo the tail terms for gravitational wave polarizations incorporating effects of eccen-
tricity and periastron precession.
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I. INTRODUCTION “instantaneous® 2PN contributions to the two gravitational

Inspiraling compact binaries containing black holes andwave polarizations for compact binaries movinggitiptical
neutron stars are one of the most promising sources of graverbits. On the one hand, these expressionsHarand h,
tational radiation for both, almost operational ground basedepresent gravitational waves from a binary evolving negli-
laser interferometric gravitational wave detectors such as thgibly under gravitational radiation reaction, incorporating
Laser Interferometric Gravitational Wave Observatoryprecisely up to 2PN order the effects of eccentricity and pe-
(LIGO), VIRGO, GEO600 and TAMA30Q1] and the pro- riastron precession, during that stage of inspiral when the
posed space-based Laser Interferometer Space Antenpebital parameters are essentially constant over a few orbital
(LISA) [2]. To obtain an acceptable signal to noise ratio forrevolutions. On the other hand, it is the fifaind the neces-
detection in the terrestrial detectors, one needs to kaow sary) step in the direction of obtaining “ready to use” theo-
priori the binary’s orbital evolution in the inspiral waveform retical templates to search for gravitational waves from in-
[3] at least up to third post-Newtonian order beyond thespiraling compact binaries moving guasi-elliptical orbits.
(Newtonian quadrupole radiation. However, for the mea- The effect of radiation reaction on orbital evolution and its
surement of distance and position of the binary, it may beconsequence on these gravitational waveforms for compact
sufficient to know the two independent gravitational wavebinaries in quasi-elliptical orbits is under investigation and
polarizationsh . andh, to only 2PN accurac§4]. Perturba-  will be discussed in the futurgl4].
tive computation via post-NewtonigPN) expansions of the Galactic binaries, in general, will be in circular orbits by
binary orbit and gravitational wau&W) phase are complete the time they reach the final stage of inspiral. However, there
to orderv® beyond the standard quadrupole formula. Exten-exist astrophysical scenarios where compact binaries will
sion of the PN perturbative calculations by another two or-have non-negligible eccentricity during the final inspiral
ders, to ordev’, is still not complete, because currently usedphase. We will next review various such scenarios, some of
PN techniqueg5] leave undetermined a physically crucial them speculative, relevant for both ground and space based
parameter entering at theé® level in the gravitational wave gravitational wave detectors.
flux [6]. More recently[7], it has been shown that by em-  Let us first consider cases that should be important for
ploying severalresummation techniquesto improve the ground based interferometers. Intermediate mass black hole
convergence of the PN series—one could make optimal useinaries—with total masses in the range NBg<M
of existing 2PN results to compute GW phasing. Resummegk (a few)x 10°M o—may well be the first sources to be de-
versions of 2PN accurate search templates majydtesuffi-  tected by LIGO and VIRG(15,16. Many recent astro-
cientboth for the detection and estimation of parameters ohomical observations, involving massive black hole candi-
gravitational waves from inspiraling compact binaries of ar-dates point to scenarios involving such compact binaries in
bitrary mass ratio moving imuasi-circular orbits For in-  eccentric orbits. The discovery of numerous bright compact
spiraling non-spinning compact binaries of arbitrary mass-ray sources with luminositiet >10*° erg/s in several
ratio in quasi-circularorbits, both the 2PN accurate gravita- starburst galaxies and rapid time variation of their x-ray
tional wave polarization§8] and the associated orbital evo- fluxes implies massive black holes as their central engines. It
lution have been explicitly computd®—11]. A 2.5PN accu- is suggested that these observations may be explained by the
rate formula for the orbital phase as a function of time has
also been obtaine[d 2]. These expressions are employed by
various data analysis packages like LAL3] to search for  IFollowing [10], we term contributions to the GW waveform
gravitational waves from inspiraling compact binaries. which depends only on the state of the hinary at the retarded instant

The purpose of the present work is to obtain theas its “instantaneous” part.
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merger of globular clusters, containing black holes vith The computation of the gravitational wave polarizations
>10°My, with its host galaxy[17]. However, 16 M h, andhy in terms of the orbital phase and frequency of the
black hole present in the center of the globular cluster willbinary was discussed by Lincoln and Wi6], using the
have to be created by many coalescences®b8M black  method of osculating orbital elements from celestial mechan-
hole with lighter ones and these binaries, in highly eccentridcs and the 2.5PN accurate Damour-Deruelle equations of
orbits, should be visible to ground based interferometersmotion[27,28. They studied the evolution of general orbits
This scenario may be contrasted with the one suggested @nd obtained 1PN accurate expressionstforand h, for

[18] which also involves compact binaries with high eccen-duasi-circular orbits. Later Moreno-Garrido, Mediavilla and
tricities. However, in this case, black hole binaries, weighingBuitrago obtained polarization waveforms for binaries in el-
a few solar masses and residing in star clusters, get ejecté'&t'c"?" orbits at Newtonian order vylth and without radiation
from the cluster by superelastic encounter with other clustef€action, studied the effects of orbital parameters and preces-

members. These escaping binaries will have short period%'on on gravitational wave amplitude spectrum af‘d implica-
and high eccentricities before merging. It is worth mention-U0NS for data analysi$29,30. Analytic expressions for

ing that numerical simulations dealing with supermassiv _ra_wta_tlongl wave polarl_zatlons and far-zone fluxes, for el-
: . L iptic binaries were obtained to 1.5PN order by Junker and
blackhole formation, performed in the eighties, from a dens

. ) ~'Schder, and Blanchet and Sctes[31,32. The 2PN accurate
cluster of compact stars also indicate creation of short perio

int diat black hole binaries in hiahl i ravitational wave polarizations for inspiraling compact bi-
intermediate mass black hole binaries in nighly €CCentric ofyavies moving in quasi-circular orbits was given by

bits [19]. _ _ __Blanchet, lyer, Will and Wisemaf8]. For the above calcu-
Recently, th_ere has been studies suggesting that_ SPINNifigion they employed the 2PN accurate expressionshﬁar,
compact binaries may become cha¢@0]. The analysis in-  yhe transverse traceless part of the radiation field representing
volves numerical evolution of two spinning point masses USihe deviation of the metric from the flat spacetime and
ing 2PN accurate equations of motion. The interesting resultqs/dt), the far-zone energy flux obtained independently us-
observed only for a very restricted portion of the parametefng two different formalism$33,9—11. In the limiting case
space, is that the outcome of the evolution is highly sensitives a test particle orbiting a Schwarzschild black hole, pertur-
to initial conditions. It is also observed that binaries whosepative calculations are extended to very high PN order. For
initial orbits are circular may later become highly eccentric.example, in the case of very small mass ratios, polarization
These preliminary results present yet another scenario whewaveforms are obtained to 4PN ord@&4]. For the case of
eccentricity may become important. spinning compact objects in circular orbits, precessional,
Many of the potential sources for LISR] will be bina-  non-precessional and dissipative effects on the gravitational
ries in “quasielliptical” orbits. We list them below, details waveform due to spin-orbit and spin-spin interactions were
and references to original papers may be founi®ij. First,  studied extensively35—-38. We note that using the frame-
LISA will be sensitive to massive black hol®BH) coales- work we employ here it may be possible to extend results of
cence involving 18to 10'M, black holes, up to 3 Gpc and these papers to compact binaries of arbitrary mass ratio mov-
beyond. It is likely that these binaries will be in eccentricing in elliptical orbits.
orbits during inspiral, as they will be interacting with dense  The basic aim of this paper is to obtain the instantaneous
stellar clusters in the galactic nuclei where they usually re2PN corrections to the “plus” and “cross” polarization
side. The second candidate involves compact objects orbitingiaveforms for compact binaries of arbitrary mass ratio mov-
MBH, where compact objects could be scattered into veryng in elliptical orbits starting from the corresponding 2PN
short period eccentric orbits via gravitational deflections bycontributions tdﬂT [11,39. As emphasized ifi7], the gravi-
other stars. Finally, LISA will be sensitive to thousands oftational wave observations of inspiraling compact binaries, is
binaries in our galaxy and many of these short period binaanalogous to the high precision radio-wave observations of
ries will also be in “quasi-eccentric” orbits. Interestingly, binary pulsars. The latter makes use of an accurate relativis-
LISA will be highly sensitive to black hole binaries contain- tic “timing formula” based on the solution—in quasi-
ing primordial black holes of mass0.5M, . These binaries Keplerian parametrization—to the relativistic equation of
are one of the speculative candidates for massive compauototion for a compact binary moving in an elliptical orbit
halo objectstMACHOSs) [22]. It is also shown thaf23,24  [40]. In a similar manner, the former demands accurate
the low frequency gravitational waves from black hole “phasing,” i.e. an accurate mathematical modeling of the
MACHO binaries in highly eccentric orbits would form a continuous time evolution of the gravitational waveform.
strong stochastic background in the frequency rangéhis requires for elliptical binaries, a convenient solution to
10" % Hz<f<10 ' Hz, where LISA will be most sensitive. the 2PN accurate equations of motion. A very elegant 2PN
Finally, we observe that eccentricity will be an important accurate generalized quasi-Keplerian parametrization for el-
parameter while searching for continuous gravitational wavdiptical orbits has been implemented by Damour, $eha
sources in binary systems. Recently, it was shown tha&and Wex[41—44. This representation is thus the most natu-
searching for gravitational waves from such systems, whosgal and best suited for our purpose to parametrize the dy-
locations are exactly known, is computationally feasiblenamical variables that enter the gravitational waveforms. The
[25]. For many such astrophysically interesting systems, weomplete 2PN accurate expressions ligr andhy consists
note that a post-Newtonian orbital description for genericof the “instantaneous” contribution computed here supple-
orbits will be required. mented by tail contributions at 1.5PN and 2PN orders. The
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’ terms of the dynamical variables of the binary, namely
N v2,G m/r,r,n;,v;,N-n,N-v, wherer andv are respectively,
; the relative position and velocity vectors for the two masses
- q m; and m, in the center of mass frame=|r|,v=|v|,n

=r/r,r=dr/dt and m=m;+m,. The unit vectorN lies
Py along the radial direction to the detector and is givenNoy
~7 '//?/ =R/R, R being the radial distance to the binary; aftl a
'. 2PN accurate orbital representation for elliptical orbits to pa-
/ rametrize these dynamical variables.
X ! Before explaining in detail the procedure to compute 2PN

contributions tah, andh.., we will first illustrate that com-
putation by presenting in detail the Newtonian computations

FIG. 1. The orientation of unit vectors, which definesand + for h, andh, .
polarization waveforms. The unit vectopsand q are the gravita-
tional Wa_ve’sprincipal axes_with_q: .NX p. Note thatN is a unit A. The Newtonian GW polarizations
vector lying along the radial direction to the detector gndies ) )
along the line of nodes. The Newtonian angular momentum vector At the leading Newtonian order, we have
L= urXv is normal to the orbital plane and helps to define orbital 4G G
inclination anglei. In this paper, the origin fob=\N+W is +ve Ty _ M o m -

. . (hgm)n 4 7)ukm(N Uij Nij | (2.2

x-axis, hence it is related t@gyw bY ¢= dgww— 7/2. c'R r

|
\ Line of nodes

tail computations are not considered here; they must be conjvhere P,,(N) is the usual transverse traceless projection
puted and included in the future. operator projecting normal td, v;;=v;v;, n;=n;n;; and

The paper is organized as follows. In Sec. I, we preseny, is the reduced mass of the binary, given iy m,/m.
the details of the Computation to obtain “instantaneous” ZPNNote that the above contribution arises from the mass quad_
corrections toh, and h, for inspiraling compact binaries rupole moment of the binary.
moving in elliptical orbits. Section IIl deals with the influ- There is no need to apply the TT projection in E2.2),
ence of the orbital parameters on the waveform. Section Nond Eqs(2.13,(2.1b at the leading order gives
comprises our concluding remarks.

2G u Gm
Il. THE 2PN GRAVITATIONAL WAVE POLARIZATION h,= W (pi P;—4q; Qj) Uij — Tnij )
STATES
To compute the two independent gravitational wave po- 2G u ) ,. Gm )
larization state$1, andh, , one needs to choose a conven- =g | (PV =V )+ T((p' n

tion for the direction and orientation of the orbit. We follow
the standard convention of choosing a triad of unit vectors

composed ofN, a unit vector along the radial direction to the —(q- ”)Z)J , (2.33
observer,p, a unit vector along the line of nodes, which
coincides with y-axis and, defined byg=NXp (see Fig.

1). The angle betweeN and the Newtonian angular momen- ho = 2G p a+p.a)l v — G_m .

. . . . L X 7 (pi q; T P; ai) Ujj njj
tum vector which lies along z-axis defines the inclination c'R r
anglei of the orbit. The orbital phas¢ is measured from the
positive x-axis in a counter clockwise sense, restricting the 4G pu Gm
values ofi from 0 to 2 7. The two basic polarization states =g | PV@V)=——=(p-n(an).
h. andh, are given by (2.3b

1
he=>(pipj—ai q)h’, (2.13 The convention we adopted to define the triad of

unit vectors implies p=(0,1,0), g=(—cosi,0,sini), N

=(sini,0,co$), n=(cosp,sing,0), and v=(rcosp—r¢sine,

hx=5(Pig;+p; aohy’, (21D rsing+r ¢cose,0), where p=de/dt. With these inputs,
Egs.(2.39,(2.3b become

[N

where hET is the transverse-tracele6ET) part of the radia-
tion field representing the deviation of the metric from the GmnC
flat spacetime. +T T AR

From Eqs(2.13,(2.1b it is clear that the explicit compu-
tation of 2PN corrections tb, andh, requires the follow-
ing: (@ The 2PN corrections td;", generally given in

((1+ CZ)KGTmHZ L;Sz—'rz)cos 2¢

+2rr1 ¢psin2¢

—SZ[GTm—rZLﬁZ—'rZH, (2.4a
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GmzyC[({Gm . . _ even a more involved one in terms wibnly, which may be
hy=2—20—1|——+r?¢?~r?|sin2¢ obtained by explicit elimination of, is inadequate. The clue
c'R r — ;
to the correct description follows from the analysis of
o Damour[45] for the 2PN accurate equations of motion of a
—2rr ¢cos 2¢’, (2.4b compact binary. Here it was shown that the basic dynamics

can be represented as a function of two varigblesnd |
where = u/m andC andSare shorthand notations for cos 2nd be 2r -periodic in both of them. The GW polarizations
and sini will inherit this double periodicity and we shall crucially

: exploit it as follows: We will split¢ into a part\ linearly

When dealing with elllpt!cal orbits, .'t IS convenle'nt and increasing with time and the remaining part denoted by)W(
useful to use a representation to rewrite the dynamical vari-

. S o which is a periodic function of.
ablesr,r,¢ and ¢ in terms of the parameters describing an

elliptical orbit. For example, in Newtonian dynamics, the d=N+W(l), 2.7
Keplerian representation in terms of eccentricity, semi-major .
axis, eccentric, real and mean anomalies is a convenient Sesv_here)\ and W() are given by
lution to the Newtonian equations of motion for two masses A= o+l (2.89
in elliptical orbits. The Keplerian representation reads
W(l)=(vlu(l)]—u(l)+esinu(l)). (2.8b
r=a(l—ecosu), (2.59
It is worth emphasizing followin¢45] that though one could
n(t—tg)=l=u—esinu, (2.5  consider\ to be a function ofl given by A= ¢o+1, it is
more advantageous to considgrand consequently the GW
d— po=v, (2.50 polarizations to be independently periodic in bathandl.
With this observation, as we will see below, it is natural to
where split the\ and W() dependence in the polarization and con-
12 sider the\ dependence as representing the harmonic time
1+e u . .
v=2tan ! (_ tar(— J , (2.50 _depende_nce and the W_(term as representing the time vary-
l-e 2 ing amplitude modulatior{*nutation”). This clean separa-

i ) tion also facilitates a simple and precise treatment of the
whereu,l,v are the eccentric, mean and real anomalies pagpeciral decomposition of the GW polarizations as shown in
rametrizing the motion and the constaa{®,n,to,$o repre-  gec, |i1. Finally, we note that this decomposition is not just
sent semi-major axis, eccentricity, mean motion, some initiagppropriate to discuss effects of eccentricity on the Newton-

instant and the orbital phase corresponding to that instanhn waveform and the periastron precession at 1PN order but
respectively. These constants which characterize a given eBowerful enough to analyze all PN effects up to the 2PN
centric orbit may be expressed, at the Newtonian order, iqer.

terms of the conserved enerfyand angular momentum per
unit reduced masgl| as

Gm 06
a= (_2 E)y ( . a
e=1+2Eh?, (2.6b
B (_2 E)3/2 -
~om (2:69
with h=|J|/G m. Note thatn=2 =/T, where T is the orbital
period.
In the case of circular orbits=0 andv=u=1, ¢ isthus

a linearly increasing function of time and=0, ¢=n

=2 x/T. The polarizations are uniquely given by the
straightforward substitutions of these simple limiting forms.

Armed with the above important conceptual input, the
computation oh, andhy involves a routine, albeit lengthy
algebra. It is straightforward to obtain Newtonian expres-
sions forr, r and ¢ in terms ofn, e and u using Egs.
(2.58—(2.50,(2.6a—(2.60 and relations foE andh?, given
at Newtonian order by £2E)=(Gmn?3 (—2Eh?)
=1-¢?. They are given by

Gml/3
rz(?) (1—ecosu), (2.99
. (Gmn™esinu
~ (1—esinu) ' (2.9
. nyl—e®
=—. 2.9
¢ (1—esinu)? (299

The only residual choice is whether one uses the gauge- Using Egs. (2.99—(2.99 and splitting ¢ as ¢=A\

dependent variable/=G m/c?r or the gauge-independent
variablex= (rmFgy)?>. The situation is more involved in

+W(l) in Egs.(2.49,(2.4b, we obtain, after some manipu-
lation,

the case of general orbits even at the leading Newtonian

order. Indeed, ie#0, thenv#u+#l, v(u) andu are more
complicated functions dfand thusg is not a simple linearly

2We denote by the variable denoted by in Ref.[45] to avoid

increasing function of time. This is why a straightforward confusion with the total mas®s in most current literature including

representation of the polarizations in termswofand u or

here.
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_Gmn/Gmn
+ CZR\ C3

213

) (1=ecosu)’ {(1+C?)[((ecosu)®—ecosu—2 e*+2)cos 2 W+ 2 e\/1— e? sinu sin 2 W]cos 2\
+(1+C?)[2ey1—e?sinucos 2 W- ((ecosu)?—e cosu—2 e+ 2)sin 2 W|sin 2\ + S? e cosu(1—ecosu)},
(2.108

_Gmy/Gmn|#
2R\ B (1—ecosu

)ZC{[—(4 eV1—e?sinu )cos 2 W (2(e cosu)?— 2 e cosu— 4 e?+ 4)sin 2 W|cos 2\

+[(2(ecosu)?>—2 ecosu—4 e*+4)cos 2 W+ (4 ey/1—e? sinu)sin 2 W|sin 2\ }. (2.10b

We observe that terms like sin2 W siN,2cos 2 W cos 2, K
and cos2Wsin2, sin2Wcos2 are generated respec- b— o= ( 1+ 2
tively from cos 2¢ and sin 2 terms in Eqs(2.49,(2.4b) due
to the ¢=W-+N\ split. The circular limit of Egs.
(2.103,(2.10h, obtained by puttinge=0, agrees with the
Newtonian terms in Eqg2), (3) and(4) of [8].

f
v+ ~Lsin2o+ Lsind, (2.123
c

Vi |

B. The 2PN GW polarizations In the abovev is some real anomalyp,,k,e, are some
initial phase, periastron precession constant, and angular ec-

The computation of 2PN corrections to, and h, is ~ Centricity respectively. -
similar in principle to the Newtonian calculation. However,  The main difference between the relativistic orbital repre-
there are subtleties and technical details which will be preSentation and the non-relativistic one is the appearance of
sented. in some detail. below. three eccentricitieg,, e, ande, compared to one eccen-
Fr0n,1 the Newtonia,n calculations, it is easy to note thalIricity in the Newtonian case. However, these eccentricities

we require a 2PN accurate orbital representation for compuf—irekrelated' The eXp“Cf't exprefssmns fo_r ;[he parfatrr?eters
ing 2PN corrections tdh, and hy . We employ the most o @r» €t €. €. T, Qi 1o NAG, I JErMS OTINE

L . . 2PN conserved energy and angular momentum per unit re-
Keplerian-like solution to the 2PN accurate equations of MOy ced mass are given by Eq88) to (48) of [44]. Though
fuon,hobtamedl by Dlamour, Sche, and Wex[42_—44(]j, gl\/_er? ndhe three eccentricities are related, there is the question of
In the usual polar representation associated With MQgecting a specific one to present the polarizations. We have
Arnowitt-Deser-Misner(ADM) coordinates. It is known as

; . . o chosen to present polarization waveforms in terms, gince
the generalized quasi-Keplerian parametrization and repreg explicitly appears in the equation relatihgo u, which we

Se.”ts the 2PN motion of a .bmary pon'galnmg tWQ COmp"?‘%vill numerically invert while computing its power spectrum.
objects of arb|trary mass ratio, moving In an elliptical _Orb't'_The question whether, as in pulsar timing, there is a particu-
The relevant details of the representation is summarized 1L combination of the three eccentricities “a good eccentric-

what follows. , , ity” in terms of which expressions take familiar Newtonian-
Letr(t),¢(t) be the usual polar coordinates in the plane"ke forms is interesting and open

of relat|¥i mot(qunl of the two compact .objlects in the AD(';/' Exactly as in the Newtonian case, at 2PN order too, one
gauge. The radial motion(t) is conveniently parametrize can split¢ into two parts; a park linearly increasing with

by time and a part W() periodic inl but with a more compli-
cated time variation:

l+e,

where v =2 tan !
1-e,

(2.12b

r=a,(l—e, cosu), (2.11a
d=N+W(l), (2.13a
L . fe Ot _ k
n(t—to)—l—u—etsmquFsmv+F(v—u), A=+ 1+? [, (2.13b
(2.11b
k .
W)= 1+ Ez)(v—u+et sinu)
whereu is the “eccentric anomaly” parameterizing the mo-
tion and the constants, , e, e, n andty are some 2PN 1 ) )
semi-major axis, radial eccentricity, time eccentricity, mean + g{qusm 20 +g4sin3v
motion, and initial instant respectively. The angular motion
¢(t) is given by —fysinv—gi(v—u)}. (2.130
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Note that complicated 2PN correctionsXoand W() also includek that represents the periastron advance.

Using Egs.(2.1139,(2.11b,(2.1239,(2.12b, and Eqgs{(38) to (48) of [44], it is straightforward to obtain the 2PN accurate
expressions for the dynamical variables in termstefG m 'c3, e, andu, using the following relations, easily derivable
from Eqs.(38) to (48) of [44]

§2/3 §4/3 1
_ _ ~2¢£213 s _ s _ Y A

2E=c?%¢ [1+ 5 [15= 71+ 57| (15-159—n*)+ \/1__(35(120—487;) } (2.143

5 §2/3 4/3 5

—2Eh?=(1-e’){ 1+ ———[—(17-7 n)e2+ 9+ n]+ —————[ — (360-1447)e’\1—e

t 4(1_et2)[ ( 7)€t 7] 24(1_63)2[ ( 7)€t t
+(225- 2777+ 297%)e*— (210—- 190+ 30 %) e,>+ 189— 45 »+ 7;2]] , (2.14b

352/3 54/3

{(51-267)e?+ (78— 28 )}, (2.140

T(1-€) 4(1-e))?

4/3

e¢=et{ 1+&34—n)+ [(—(1152- 6567+ 41 7%) e+ 196810887 —4 5?)

96(1—e7)3?

><\/1—etz+(720—28877)(1—et2)]}, (2.140

213 4/3
— g 2\a 2 2
er—et{ 1+ 7(8_3 n)+ 24(_‘]_——et2)3/2[(_(288_ 2427n+217n°)e +390-3087%+217%°)

><\/1—e?+(18(}727,)(1—e$)]]. (2.14¢

Using Egs.(2.149—(2.14¢ in Egs.(2.113,(2.11bh and(2.123,(2.12h, we obtain after some lengthy algebra, expressions for
r,r=dr/dt=(dr/du)(du/dt),s=\+W(I) and ¢=(d¢/dv)(dv/du)(du/dt), in terms ofé=G m ncde,u, ... given by

G 1/3 §2/3 64/3
r=|— l1—e/cosu)i 1— —— [(6—7 n)e;cosu+ 18— 2 n]+ —(72—-231
( nZ) ( t )| 6(1—etCOSU)[( 77) t 7]] 72\/(1_et2)3(1_etcosu)[( ( Y

+357%)(1—e?)e cosu— (72+ 757+ 8 %) e— 234+ 2739+ 8 7?)J1— e’ —36(1—e?)(5— 2 1)(2+e,cosu)] ¢,

(2.15a
d=1+W(l), (2.15h
_ &3 1 . ,
[=u—g smu—8\/1_et2 (1—e, cosu) {et3|nu\/1——et7;(4+ 7)+12(5—2 5)(u—v)(1l—e cosu)}, (2.1509
. 3 23 . 43
W=v—u+esinu+ (1_et2){v—u+et sinu}+ 1. Cosu)3{[4\/1—et2(l—et cosu)?({—(102—52 7)e?

— 156+ 56 77} €, cosu+ 7(4+ 7)e*+ (102— 60 7— 2 7?) e+ 156— 52 n+ %)+ (1—e?) ([ (3 e?+ 12) n— 8] (e, cosu)?
+[(8—6 n)e2+8—247](e cosu)— 127 e —(8—27 7)e?) nle; sinu+ (1— e, cosu)*[48(1—e?)?(5—2 7)
—8((51— 26 7)e2+ 78— 28 ) Ju+8(1— e, cosu)3[ (51— 26 ) e 2+ 78— 28 7)1 — &2
—(30-127)(1-2e*+e}) v}, (2.159
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B (G m n)1/3
~ (1—e,cosu)

2/3 4/3
r [ smu[ 1+ ?(6—7 7)+ ﬁ(l—etTu)?’ (—(72—2317%+35%°) (e, cosu)°+(216—-693 7

+105%%)(e; cosu)?+ (324+ 5137 — 96 5%) e, cosu— (36+9 5) ne,’>—468— 15+ 35 %)+

N

1-¢;

X ((1—e,cosu)?(4—e,cosu)(5—2 7))

] , (2.15¢9

\/1__et2 [ 52/3 54/3 1 [ 1

+ 1—- n)e cosu—(4—n)e’+3]+ —
—etCOSU)zl (1_et2)(1_etcosu)[( 7]) t ( 7]) t ] 12 (1—etcosu)3[(1_et2)3/2

1
X {18(1—e;cosu)?(e;cosu—2e2+1)(5—2 n)}+ (1_7)2{(—(9— 19 7—14 5% e®>—36+2 n—8 »?)(e,cosu)®
1

+(— (48— 149+ 17 p?)e* + (69— 79+ 4 n?)e’+ 114+ 2 5—5 5?)(g, cosu)?+ (— (6 — 32— 2 e’
+(93— 197+ 16 %) e’ — 222+ 50 5+ 7°)(e,cosu) — 6 7(1—2 7)el+ (54— 28 n— 20 n?)e*

—(153-617—2 n?)e+144— 487} } (2.15f
|
Note that the above 2PN accurate expressions\fand Gmr Gm . Gm

W(l) in terms ofé,e;, etc. are explicitly needed to explore Vp=Va— T{ 7v%+38——3r?|p+ 4—]r
the spectral decomposition of the polarization waveforms. cr r r
They are not meant to be explicated in the 2PN expressions Gm Gm Gm
for h, andh,, in terms ofA and W() in Egs. (2.249- __4( 502_9}2_34_},7_2_]\,, (2.160
(2.248 and (2.253—(2.259. 8cr r r

The 2PN corrections th, andh, in a form similar to
Egs. (2.103,(2.10b, are obtained using Eq$2.13,(2.1b.
However, we need the 2PN correctionshh' in ADM co-

ordinates, as the parametric expressionsfof, ¢ and the
¢=N+W(I) split, given by Eqs(2.159—(2.15f), are in the (2.160
ADM gauge. However, the 2PN correctionsith’, given by

Egs.(5.3) and(5.4) of [39], are available only irharmonic N . o

(de Donder)oordinates. Using, in a straightforward manner, | N€ subscripts “D” and “A” denote quantities in the de
the transformation equations of Damour and ‘3ehg46] to Donder(hgrmomc) and in the ADM coorqutes respectively.
relate the dynamical variables in the harmonic and the ApmNote that in all the above equations the d|ffe_rences_between
gaige, e obtan e 2PN ccul nsaanecus conkfls 0 s e 2P et e s o 0 o
tions toh;;’ in the ADM gauge. For completeness, we list i . )
below the”relevant transformation equations relating the harguracy. no suffix is used in Eqe2.163—(2.169 for the 2PN

. ; - terms.
monic (de Dondeyr variables to the corresponding ADM
( d P g Using Eqs(2.163—(2.16d, the 2PN corrections to/;" in

Gm 5 Gm -,
rD=rA+W 5nv +2(1+127;)T—1977r .

ones, ADM coordinates can easily be obtained from E@s3) and
(5.4) of [39]. For economy of presentation, we writg/(()
Gm . Gm in the following manner, I;") o= (h{|")o+ “ Corrections”

ro=rat gy ( (5o =1 n+2(1+127) ——|r where (1]") s represent the metric perturbations in the ADM

coordinates. mﬁT)o is a short hand notation for expressions

—1877rfv], (2.168 on the right-hand 5|de(5HS) of Egs. (5.3 and _(5.4)
of [39], where N,n,v,v5r,r are the ADM variables
Na,Na,Va,04,T o, respectively. The €orrections repre-
G sent the differences at the 2PN order, that arise due to the
m

(2.16b change of the coordinate system, given by Es163—

to=ta — —z 7T, ; :
DTIAT A (2.169. As the two coordinates are different only at the 2PN
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order, the ‘torrections come only from the leading New- schematically examining the functional forms in the interme-
tonian terms in Eqs(5.3) and(5.4) of [39] diate steps of the above calculation. The polarizations in
terms of ¢ have the form

(5v2—55r3)7

T i Gm
(hiNa=(hjDo+ GRS
2C%rp _ .
hy={a,,[(--)+(---)cos2p+(---)sin2¢]+ an[(---)
(14v3-6T13)7 +(---)cos2p]+an,[(---)+(---)cos2p
+(---)sin2¢]}, (2.21a

Gm|Gm T
A A

8(1+5 M ) T 10v2—18r2
+ ( + 7]) r I’A(n(lv]))A ( Ua I’A)77

hy={a,,[(---)cos2p+(---)sin2¢]+ an (- - -)sin2¢]

Gm
_(4+687]) (Ulj) ] (217) _|_anv[(...)C052¢—|—(...)Sin2¢]}_ (221b

To check the algebraic correctness of the above transforma-

tion, we compute the far-zone energy flux directly in theln the above and what follows (-) denotes a dependence

ADM coordinates using on variabless;, n, my, m,, i andu. The structure of the
PN expansion of the coefficients; above is the following:

3R2 -
dt) “50r6 Gf (A DA HARN). (218

1 1

After a careful use of the transformation equations, the ex- @~ 1+ [(---)cos+(- ')S'n¢]+g[(' )
pression for (£/dt), calculated above, matches with the
expression for the far-zone energy flux, E4.79 of [39] 1
obtained earlier. This provides a useful check on the trans- +(---)cos2p+(---)sin 2¢]+—3[(- --)cos 3p
formation from (i")p to (h{")a. ¢

We now have all the inputs required to compute the 2PN 1
corrections toh, andhy in terms of a elegant and conve- +(--)sin3p]+—[(---)+(---)cosdp
nient parametrization using Eq®.19,(2.1b. As mentioned 4
in [11,39, there is no need to apply the TT projection to
(h{i") given by Eq.(2.17) before contracting witip andq, as
required by Eqs(2.19,(2.1b. Thus, we schematically write

+(---)sin4g]. (2.22

an, has a similar expansiom,,, also has a similar expansion
but the leading order term is of ordercl/Using this infor-
The polarization states, andh, , for Egs.(2.19 are given ~Mation about the functional dependence grand elemen-
by tary trigonometry one can infer in detail the harmonicspof
appearing at each order and consequentlyxhend W()
dependence on display in Eq2.249—(2.24¢ and(2.259—
R =5 (Pi ;= 0i G)) (@y, Vij + ann Nij + an, NGivj)) (2.25@ below. The “instantaneous” 2PN accurate polariza-
tionsh, andh, in terms ofé=G m n/c3,m, 5,e, and sines
and cosines ok, W(l),u(l) andi, using Egs(2.203,(2.20h,
- (pv)?=(a v)2)+ ((p n)?—(q-n)?) (2.19, (2.153—(2.15h and (2.133—(2.139 are finally writ-
ten as

TT
hij" = v, vij + anpij + an,Nvj) - (2.19

“n)(q-Vv)), (2.203

Gmy
. (h+,x)inst——cz—R52/3{H$)?X+§1/2H(+1,/2x)+§| 10,
hx=5 (pi q;+ P Qi)(avvvii %nn MNjj no n(ivj)) +
2 fgle(+3,/§<)+§2H(Jr2,)><}’ (223

~((p-n)

= a,, (P-V)(q-V) + ann(p-n)(g-
where the curly brackets contain a post-Newtonian expan-
X(g-v)+(p-Vv)(g-n)). (2.20h  sion. The expressions for various post-Newtonian terms in
the “plus” and “cross” polarizations are shown below in a
Before proceeding to a lengthy but straightforward com-form emphasizing the harmonic content and the correspond-
putation of the “instantaneous” 2PN accurate polarizationsing amplitude modulation. The various post-Newtonian cor-
h, andh, , we anticipate the structure of the final result by rections to the “plus” polarization are given by
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HO ={[P2,.,c08 2 Wt PL,c,sin 2 W]cos 2\ + [ P2,5,c08 2 WH P2,c,sin 2 W]sin2\ + P°}, (2.243
HQS={[ P23, cos WH P22.,sin W]cos\ +[ P2>s,cos Wi P22 sin W]sin\ + [ P23.,cos 3 W
+ P23-5sin 3 W]cos 3\ + [ P2355c08 3 W P23g.sin 3 W]sin 3\ 1, (2.24b
H® ={[PL,c,C08 2 Wi PL,,Sin 2 W|COS 2\ + [ Ph,ys,C0S 2 WH PL,s,sin 2 Wsin 2\ + [ Pt,c,c08 4 W
+ PS4c4Sin 4 W|cos 4N +[ PL,5,008 4 WH PL,q,sin 4 W]sin 4\ + P, (2.249

HS)={[ PLD,cos W P, Sin W]CoS\ +[ PE3s,008 WH Pirs;sin W]sinA + [ Pe5c5c0s 3 W
+ P&3c3Sin 3 W|cos 3\ + [ PL3g308 3 WH Pi3sosin 3 Wsin 3\ +[ PeSesc0s 5 W
+ Pg2csSin 5 W|cos 5\ + [ Piagscos 5 W Pias:sin 5 Wsin 5\ }, (2.249

H® ={[ P2,.,€08 2 Wt P%,¢,Sin 2 W]|cos 2\ + [ P2,5,C0S 2 WH P2,5,sin 2 W]sin 2\ + [ P2,.,c08 4 W
+P2,,4Sin 4 W|COS 4\ +[ P2,5,C08 4 WH P ,,5in 4 W]sin 4\ +[ P4gcsC0S 6 W
+ P25c65iN 6 W|COS BX + [ P2555C0S 6 WH PésgeSin 6 W]sin 6\ + P2}, (2.24¢
and for the “cross” polarization by

H(O ={X%,c,c08 2 Wi XZ,,8in 2 W]cos 2\ + [ X2,6,c08 2 W X2,c,5in 2 W]sin 2\ }, (2.253

HO9={X2>., cos WH X2 sin W]cosh +[ X225, cos W+ X256 sin W] sink + [ X25.;c0s 3 W
+ X %5.551n 3 W]cos 3\ +[ X2355c08 3 WH X 25<,sin 3 W]sin 3\}, (2.25D

H® = {[ X008 2 WH X3,6,8in 2 W]COS 2\ + [ XE05,C08 2 WH X3 56,8in 2 W]sin 2\ +[ X&,c,c08 4 W
+ X34c451N 4 W]COS 4N +[ X 454€08 4 WH X3 ,5,5in 4 W]sin 4\ + X1}, (2.250

HS = ([ XEDo1008 WH XE1e,5in W]CoSh + [ XE3s,€08 WH XE7s,5in W]sin\ + [ X&3:5c08 3 W
+ X E5551N 3 WS 3\ +[ XE353€08 3 WH X 356,8in 3 W]sin 3\ +[ XE2c5c08 5 W
+ XE5.55IN 5 W]Cc0oS BN +[ X&ag5C08 5 WH X £255in 5 Wsin 51}, (2.250

H () ={[ X2,0,008 2 Wi XZ,0,Sin 2 W]c0S 2\ + [ X2,5,C08 2 WH X3,5,8in 2 W]sin 2\ +[ X2,c,c08 4 W
+X3,c451N 4 W]cOs 4N +[ X2,5,08 4 WH X3,5,5in 4 W]sin 4\ +[ XZ5:5C0S 6 W
+ XZ5c65IN 6 W]COS BN +[ XZ655C08 6 WH X 34565iN 6 W]Sin 6\ + X2}, (2.25¢

where P’s and X’s are functions &, m;, m,, u(l) andi. The notation B, for instance, denotes the coefficient of
cosbWsina at “aPN” order and similar explanation holds fo2¥s.too. The explicit expressions for P’s and X's, i.e., the
coefficients of sine and cosine multiples)ofand W() appearing in Eqs(2.243—(2.24¢ and(2.253—(2.25¢ are given by

1
Ploc=— szsf(l_etTu)z{(H C?)[(e; cosu)?— (e, cosu)—2 e?+ 2]}, (2.26a
1 .
Plos Ploce Z(ZI.—etTu)z {(1+C?1—efesinu}, (2.26b
SZ
IDO:(1—et cosu)et cosu, (2.260
Sm;—my, 1 i
Pere=—PSis=5 —m (1=e, cosy (1~ 3 CHesinul, (2.260
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05 _ 05 :§ m;—m, 1
CIS17SICT 4 m  (1—e,cosu

2 {\J1—€?[2(e, cosu) +5— (6(e, cosu) —1)C2]}, (2.260

po5s _ _ pR5 __§ m,—m;
C3C3 ST 27 m (1- €, cosu

E {(14+C?)esinu[ (e, cosu)?>—2(e,cosu)— 4 e+5]}, (2.26

Smi—m
5 o5 _Smp—m
PR3s PScs 4" m (1-ecosu)’ {

(1+C?)yJ1—e?[6(e, cosu)?—7(e cosu) —8e?+9]}, (2.269

1 1
Peoco= ~Psosi g (1=e.cosus [~ (95 (e cosu)®+ (18— 107)(e; cosu)?+ (18— 10 7)e,*+ 20— 12 7)(e; cosu)

—(33+117)e’—14+3875]+[ — (3+ 13 75)(e, cosu)®+ (6+ 26 7) (e, cosu)?+ ((6+ 26 ) e >+ 33— 51 5)(e; cosu)
—(48—347)e2+6—227]C2+(1—3 5)[—6(e, cosu)®+ 12(e, cosu)?+ (12e,2— 13)(e, cosu) — e, 2+ 4]C*},

(2.26h
Plos— Ps 1__esinu I ! [((18—107)e’—6—2 n)( )—(39-7 n)e’+27+5 n]+ ! [(6
ces? Fsoci g 3 —1U7n)&"—0b—2 7)€ COSU)— (59— 1 7)€ T T
6 (1—e;cosu)®| \1—¢? 1-¢?
+267)e.2+6—387)(e cosu)—(30+ 20 ) e+ 18+ 32 7]C2+3 V1—e(1—3 n)[ —4(e cosu) + 5]C*},
(2.26i)
caca— — S4Sfﬂm{(l—3 7)(1+C%)[ —6(e,cosu)”+ 18(e; cosu)°+ (48e;°—61)(e, cosu)+ (65— 69¢e,°)
X (e cosu)—48e +117e2—64]}, (2.26)
82
PLiem Prucis — —————2{(1+C2)(1-3 7)1 e?e, sinu[ — 4(e, cosu)2+9(e, cosu) + 8 e2— 13]},
4 (1—e;cosu)

(2.26K

i 1
#z%m{[(%—z 7) (e, cosu)®—(60—4 ») (e, cosu)?— (57+5 5)(e cosu) + (87+3 n)e]+[(18—54 )

X (e, cosu)3— (36— 1087) (e, cosu)?+ (3—9 7)(e cosu) + (15— 45 5)e|C?}, (2.26))

5 s Smi—m, esinu 3 ) )
P&e=— ST T 1=e cosu)4{[48(e‘ cosu)®—144(e, cosu)“+ (33+22 7)(e; cosu) —(336+ 12 »)e“+ 399
t

—107]+[— (108+ 72 5)(e, cosu) >+ (324+ 216 ) (e, cosu)>— (12+2407)(e, cosu) — (144— 36 )e,>— 60
+607]C%+5(1—e,cosu)(1—2 7)[12(e, cosu)?— 24(e, cosu) +5]C*, (2.26m

S m—m 1
5 _pls _ 271 772
PélSl_PélCl 96 m (1_etcosu)4l \/1

1
5[ (48+487—96€°) (e cosu)®— (24+ 48— 72 7) (e cosu)*+ ((396

+1047)e,>—204— 296 7))(e; cosu) + (123— 198 ) e,*— (546— 220 7) e,>+ 303+ 98 ] +

[((216+1447)e?

1
Vvi- et2
—72—2887)(e, cosu)’— ((756+ 2407)e>— 444— 552 )(e, cosu)?— ((144+ 96 n) e, — 336+ 96 7)(e, cosu)

+(720+ 144 7)) e — (756+ 96 77) €2+ 12— 24 77]C?— \J1—e?(1—2 7)[ 120 & cosu)®— 276 e, cosu)?+ 52( e, cosu)
+105e?—1]C*¢, (2.26n
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pLS _ _pLs _E m;—m, e sinu
cscs $383°96 m  (1—e cosu

)4{[(108— 24 7)(e cosu)®—(324—727)(e, cosu)?— ((432— 96 7)e,>— 143

—2747)(e,cosu) +(1176-72 )e2— 671— 346 9] +[(72+ 48 ) (e, cosu)3— (216+ 144 7) (e, cosu)?— ((288
+1927)e,’>+ 88— 7367)(e, cosu) + (1152 24 y)e,>— 632— 424 7]C%+5(1— 2 7)[ 12(e, cosu)>— 36(e, cosu)?
+(77—48e?)(e cosu) + 72e2—77]C%4}, (2.260

S mi—m, 1
Pg%f4%§3:gz J

2__ 3_ _ 2_
- (1_etcosu)4l\/1_et2[((216—481;)et 120-487)(e; cosu)’— ((644—1207)e,”— 436

—887)(e;cosu)’—((288— 64 5)e*— (76+2327)e>— 340+ 424 7)) (e, cosu) + (719+ 2 n)e*— (510+ 436 7)e,2

1
— 225+ 4507 ]+ ———=[ ((144+ 96 )e,>— 48— 192 7)(e, cosu)>— ((504+ 160 7)e,>— 296— 368 7)(e, cosu)?

Ji-¢?

—((192+1287)e,*+ (96— 576 7)e,>— 416+ 576 9)(e, cosu) + (928— 416 7)e*— (1016- 576 5) e,>+ 72— 144 5] C?

—J1—e?(1—2 7)[120 e cosu)®— 276 e, cosu)?— (160e.>— 212) (e, cosu) + 185e,>—81]C* (2.26p

. s S°mi—m, esinu 5 4 5 5 5
P(l;'5C5=—Pé'555:% m (1—e cosu)5(1+c )(1—2 5){12(e, cosu)”—48(e, cosu)°— (144e,~—209) (e, cosu)
t

+(360e,°—394) (e, cosu) + 192e,*— 600e,°+ 413, (2.269
S m-m, i1-—€f
Peéss= Piies ~ 195 1m 2(1 eco;u)5(1+cz)(1—2 7){120e, cosu)*— 396(e, cosu)®— (480e,2— 808) (e, cosu)?
- %t
+(825e,2— 773 (e, cosu) + 384e,* — 11132+ 625}, (2.260
1 1 [ 2880
— — 2 _ 2/ _ 3 2 2
P(z:zcz Pézsz_5760(1—etcosu)5l\/1_e2(1+c )(1—e;cosu)<(5—2 n)[ —2(e,cosu)°+ 7(e,cosu) + (4 e+ 3)

t

1
X (e cosu)—16e°+4]+ (1_—62)[ —(1—e?)(7560- 157207—6007%) (e, cosu)°+ (1—e?)(30240- 628807
t

—24007%%)(e, cosu)*+ (— (15120~ 314405 — 12007%) e+ (7518- 660707+ 5670%2) ;> — 65838+ 821507
—68707%%)(e; cosu) 3+ ((28980+ 154207 — 3558072) e,*+ (64686- 1525507 — 60907?)e,>+ 126654 54307
+416707°)(e, cosu)?+ ((99585+ 209557 — 1975572) e,* — (293136~ 381607 — 1632007°) e,°— 26769+ 83445y
—1434455%)(e, cosu) + (10665- 11524575+ 6340572)e,5— (145440~ 2779205+ 13608072)e,* + (275607

— 2124357+ 2563572)e,>— 67392+ 22407+ 470407+

1
1-&) [((1—€f)(6120-219607
t

—1164072))(e, cosu)®— (1—e?)(24480- 878407 — 4656077) (e, cosu)*+ ((12240- 439207 — 232807°)e,*

— (75006~ 1297507 — 18105072)e,>— 10674 383107 — 15777072)(e, cosu)>+ (— (16020~ 1137007
—562207%)e,*+ (108018- 2026507 — 2132707%)e,°+ 128322- 536107+ 1570507%) (e, cosu)2+ (67455
+1189657+ 7995%?)e,*— (202608+ 1716007+ 8976077) e, — 8516 7+ 1951957+ 8176572)(e, cosu) + (12375
— 885157 —641257%)e,°— (100800- 768007 — 15144072)e,* + (188361 448357 — 3547575%)e,2— 26496

— 806407 —51840%2]C?+ 5[ — (1800~ 2856 7— 712877) (€, cosu)°+ (7200- 114247 — 2851277) (e, cosu)*
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P%zszz

Pg:4c4:

+((3600-57127— 1425677)e,>— 4746— 73427+ 6161472)(e, cosu)>+ (— (18684- 435005 — 344527°)e,>— 6
+233587— 67518%2)(e, cosu)?+ ((12909- 325297 — 168157%) e,>+ 8109- 306097+ 19281%2)(e, cosu) + (9045

—24345p—73357%)e,*— (15915- 434317y — 112897°)e,>+ 288— 118475+ 672 5*]C*+ 15(1—5 5+5 5?)
X[ —360(e, cosu)®+ 144Q e, cosu)*+ (720e,2— 2418 (e, cosu)®— (2124e,>— 2178 (e, cosu)?+ (1553e,2— 527)

X (e, cosu) + 345e,*— 839¢,2+ 32]C%} , (2.269
1 e sinu

1
192(1-¢, cosu)5l [(1-e?)?

+1047%)(e, cosu) 3+ ((1584— 28007 — 448 ) e,*— (1536— 15687 — 416 77%)e,>+ 4272— 7847

P2ocm [(—(504—10487— 40 %) e + (144— 592 7+ 48 ) e, — 1080+ 2167

—54472)(e, cosu)?+ ((1956+ 908 7— 92 ?)e,* — (4584 17367 — 760 7%) e,>— 1692— 628 n— 92 7?)(e, cosu)
+(1359- 66997+ 171%%)e,b— (7113- 209415+ 13 %) e*+ (10053- 228097 — 711 5?) e, — 2859+ 78957

+3617%]+

V(1-¢€d)

—18647%)(e; cosu)®+ (— (1536—58247—20007%%)e,* + (3648— 114567 — 76487°%) e’ + 2208+ 36167

1
~[((408—14647—7767%)e*— (1296~ 28967 — 28327°)&,*—552— 7607
t

+50727%)(e; cosu)?+ ((1692+ 27407 — 30127?) e,*— (3096+ 57687 — 94807%) e,>— 2916+ 5044y
—58927%%)(e; cosu) — (1167— 987 p— 16057%) e, + (2937— 100615 — 3027 7%) e,* — (2757 1728975 — 151 7%) e/

+2427-88877n+ 10797%]C?+

[((600-9527—23767%)e2— 216— 584 7+ 35287%%)(e, cosu)®

1
Vi-ef
+ (— (2688- 54407 — 7296 7°)e,>+ 1440 448 n— 110407°)(e, cosu)?+ ((1684— 2596 77— 694077) e, — 340
— 27807+ 109727?)(e, cosu) + (975— 31957+ 7957%) e, — (1546— 44987 — 430 7°) e+ 91+ 6177

—26657?]C*+5(1—5 n+5 7?) y1— e[ — 72(e cosu) >+ 240 e, cosu)?— 22 e, cosu) + 3 &>+ 49]C°

e sinu )
(1—€?) (1—g cosu)"'{( &

+(1+C?)(5-27n) 2+1)(e cosu)—8e2+5}, (2.261

2
R D

$484~2880(1— €, cosU
+(— (17280~ 556807+ 57607?) e,°+ 14238 373707 — 253507°)( €, cosu)*+ ((63000- 1998007 + 2052072)e?
— 31314+ 781507+ 5985072)( &, cosu)?+ ((17280- 556807+ 576072) e,* — (24105~ 604357 — 4912577) e,

— 23661+ 1070555 — 1143757%)(e; cosu) — (49905- 1488757, + 715572) e*+ (43635- 1027057 — 6109572) e,

+ 14592 755207+ 806407?] +[ (1800 51607 — 1080%2) (e, cosu)®— (7200- 206407 — 4320%?) (e, cosu)*

+ (— (14400~ 412807 — 86407%)e,>+ 9660 144807 — 482407%)(e, cosu)>+ ((58140- 1755005 — 37807%°) e,

— 26400+ 535807+ 844207°)( e, cosu)?+ ((14400- 412807, — 864072)e,*— (21780~ 488107 — 6075077) e,

— 22080+ 991507 — 10647072)(e, cosu) — (62460~ 2116505+ 6993072)e*+ (74160~ 2553307+ 91530%2) e,

— 3840+ 166407 — 11520%2]C%+3(1—5 7+5 7%)[36Q e, cosu)®— 1440 e, cosu)*— (2880e,>— 4578 (e, cosu)®
+(7740e2— 7794 (e, cosu)?+ (2880e,*— 8885e,2+ 4979 (e, cosu) — 4245e,* + 6755¢,2— 2048|C*}, (2.260

[(2160- 69607+ 720%?) (e, cosu)®— (8640- 278407+ 288072) (e, cosu)*
)5
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S?  esinu

P(2:4s4: P§4c4:4_8 (1—e, cosu)5l \/1_ o

5[ (— (144~ 4647+ 48 n*) e+ 96— 2727~ 96 17°) (e, cosu)*+ ((558— 17907
t

+1987°)e,2— 402+ 11667+ 2707?)(e, cosu)?+ ((288— 9285+ 96 5?) e*— (680— 19367 — 632 7°)e,>+ 224
—3367— 12327%)(e, cosu) — (879 26657+ 93 7%)e,* + (1448— 40847 — 788 7%)e,>— 509+ 11797+ 1061%?]

1
+ —=[(—(120-3445— 72 p?) e+ 72— 152 — 216 °)(e, cosu) >+ ((486— 14307 — 162 7%)e,>— 330+ 806 7

Vi—ef
+6307%2)(e, cosu)?+ ((240— 688 p— 144 7?)e* — (540— 1236 — 133272) e, + 132+ 124 — 16927)( e, cosu)

—(936— 29507+ 3787%) e+ (1566- 46745 — 198 p2)e,2— 570+ 14847+ 756 n2|C2+ J1—eX(1-5 7+5 7?)

X[72(e, cosu)®— 240 e, cosu)?— (144e,°— 364) (e, cosu) + 249e,2— 301]C*} , (2.26V)
R Toao 1+ C?)(1-57+5 7% {120(e, cosu)®— 600 e, cosu)®— (2160e,’— 3206) (e, cosu)*

(1—e,cosu)®

+(7860e,>— 8444 (e, cosu)®+ (5760e,* — 191357+ 13051 (e, cosu)?— (11475e,*— 23240e,>+ 11269 (e, cosu)

—3840e,°+ 17235¢,*— 21325e?+ 7776, (2.26wW)
Vi—¢€? e sinu

_ _ 2001 _ 2
Paese= Paocs 192 S(1+C?)(1 57]+577)(1—etcosu)6

{72(e, cosu)*— 312 e, cosu)®— (384e.2— 844) (e, cosu)?
+(1053e,2— 1325(e, cosu) + 384e,*— 1437e,2+ 1105, (2.26%)

P2=%22(1_et%u)5{[(12m 1207%— 8 7?)(e, cosu)®+ (3360- 26087+ 416 7?) (e, cosu)*— (11058- 77187
+108672) (e, cosu)®+ ((168+ 12407+ 152 7%)e2+ 13710- 87467+ 7387%)(e, cosu)?+ (— (3441- 1397
—2777%) e~ 5181+ 27515 —4237?)(e, cosu) + (135— 477 p— 363 7%) e;*+ (3003- 425+ 297 7°) ;> — 816
+5287]+2[(180-5167— 108%?)(e, cosu)®— (720— 20647 — 432 7°) (e, cosu)*+ (678— 19287 — 504 ?)

X (e, cosu)3+ ((150— 4307 — 90 5?)e,>+ 336— 10107+ 90 %?)(e, cosu) >+ (— (930— 27055 — 31572)e,>— 96
+2837+9 7?)(e, cosu) +(378-11077— 81 ?)e*+ (24— 61— 63 °)€,2]C?+(1—5 5+5 %) [120 e, cosu)®
—480(e, cosu)*+ 566 e cosu) >+ (84e?—102) (e, cosu)?— (343e?— 1)(e, cosu) + 105e{ + 49e,2]C*

? 1

1 e; cosu
+— [((1—€?)(240- 19375+ 24 7%))(e,cosu) + 51— 33 ]+ ———=[ — (60— 24 ) e, cosu
12(1_etcosu)2{(1_et2)|. ( t ( 7 n ) ( t 77] 1_et2[ ( 77) N
+150-60 77]] , (2.26y)
o o N
Xeoc= — Xgog= —4 C———g;sinu, (2.273
(1—e,cosu)?
X2sm X0 =2 C(l—etTu)z{(e‘ cosu)?— (e cosu) —2(e2— 1)}, (2.27H
CSm;—m 1-¢°
X&er= —Xets=—5— — : {2(e; cosu) -3}, (2.270

2 m (1—e,cosu)?
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m;—m, 1
m  (1l—e;cosu)

Xc151 X5101 -CS e sinu, (2.270

CSm;—

X&3= — X2 — 2 T m (e Cosu)3{\/1—et2[6(et cosu)?—7(e cosu)— 8 &2+ 97}, (2.27¢
m;—m; 1 .
XBs=XL~=—-CS m (Ie COSU)3{et sinu[ (e, cosu)?—2(e, cosu)—4 e +5]}, (2.27h

C e;sinu J
1 t 2 2

— + + +(33+ —21—
Xcacr= ~X$2573 (T, cosu) | T ?[( (12+8 7)e®+20 7)(e; cosu) +(33+117)e? — 2123 7]

+31-e2(1-3 ) (2(e, cosu) — 3)C2}, (2.279
C 1
X&Eosm xgchg m{[— (12+8 7)(e, cosu)3+ (24+ 16 7)) (e, cosu)?+ ((24+ 16 n)e,>+ 53— 63 7)(€; cosu)
- %t

—(69+137)e°—20+52 5]+ (1—3 5)[ — 6(e, cosu)>+ 12(e, cosu)?— (13— 12e?)(e, cosu) — 21e?+ 16]C?},

(2.27hH
CS gsinu
XZac= — Xsasi > (I=e, cosu)“\/l_e?(l_g 7){4 (e, cosu)?—9 (e cosu)— 8 e+ 13}, (2.27j)
C Sz 4 3 2 2 2

XC4S4_XS4C4_ 12 (i-e cosu)‘“ —3 1){—6(e, cosu)*+ 18(e, cosu)+(48e, —61)(e, cosu) —(69e,~—65)(e, cosu)
—48e*+117e°>— 64}, (2.27)

CS gsinu
Xt= t 3\1-eX(1-37), (2.27K

2 (1l—ecosu)

) gt CSmi—m, 1 [ 1
Crer= — Xsis 48  m (1—etCOSU)4[\/1— z

[ —(96€e,°—48—487)(e cosu)®+ ((432—24 n)e’— 264
— 144 7)(e; cosu)?— ((84+ 88 5)e,>+ 108— 280 7)(e; cosu) — (477—1387)e*+ (702— 164 7)e,>— 153— 46 7]

+1—-e2(1—2 n)[24(e, cosu)3—84(e, cosu)?+ 68(e, cosu) — 3 e2—5]C?}, (2.27)

(1515 CSm—m, esinu
Cist=Asict 524~ (1—e,cosu)?

{[48(e, cosu)®— 144(e, cosu)?+ (33+22 7)) (e, cosu) + (216+ 36 7)e;>— 153
—587]+(1—2 7)[12(e, cosu)®— 36(e, cosu)?+ 29 e, cosu) + 24e,2— 29]C?}, (2.27m

Y15 _ _y15 CSm;—m, 1
C3c3™ TASIST T 33 T m (1—e cosu) l\/l

[(( 168+ 48 7)e,2— 72— 144 5)(e, cosu) 3+ (— (540+ 88 p)e,?

+332+ 296 7)(e; cosu) 2+ (— (224+ 64 n)e*— (60— 504 ) e, >+ 412— 568 ) (e, cosu) + (725— 10 ) e*— (570

+3167)e2— 171+ 342 9]+ J1—eZ(1—2 7)[ — 72(e, cosu)3+ 172 e, cosu) 2+ (96 €2 — 140) (e, cosu) — 191e,2

+135]C?¢, (2.27n
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L5y ~CSmy—m;  esinu
C3S3-7S3C8 48 m  (1—e cosu

)4{[(84+ 24 77) (e, cosu)3—(252+ 72 ) (e, cosu)?— ((336+ 96 )e2+ 11

—5827)(e; cosu) + (1080+ 1207)e,2— 565— 558 7]+ 3(1— 2 5)[12(e, cosu)®— 36(e, cosu)?— (48e2—77)
X (e, cosu)+88e2—93]C?}, (2.270

C§ ml_m2 1
XEoes= — Xsoee= % (1_etcosu)5(1—2 7){V1—e[120(e, cosu)*— 396 e, cosu)®— (480e,>— 808) (e, cosu)?

+(825e,>°— 773 (e, cosu) + 384e,*— 1113e,°+ 625}, (2.27p

w15 __ x5 CSm-m, esinu
C5S5 *S5C5 48 m (1_et COSU)5

(1—2 7){12(e, cosu)*— 48(e, cosu)®— (144e.>— 209) (e, cosu)?+ (360e?

—394)(e, cosu) +192e,*—600e,+ 413, (2.279
NI P e sinu [S—an o2t ger_c +C e, sinu [ 1 ”
cocz MS2SZT % (1-ecosu)d| 1—ef" (2 +1)(ecosu) +8e° 5] %(1—etcosu)5l(1_et2)3/2[( (

—5687—8 n?)e*+ (720—18725— 720%2) e >+ 744+ 632+ 520 7%)(e, cosu) 3+ ((336— 30567+ 352 7%) e,
—(1728-78407— 15047%%)e,>— 2928- 27687 — 1280%7)(e, cosu)?+ (— (2652— 988 — 852 7?)e,* + (5400
—32247—40087%%) e+ 1572+ 2207+ 258072)(e, cosu) — (885— 514575+ 297 ) e,5+ (4995 139357

—3217%) e — (7047- 1269179 —23337?) e 2+ 1497 322979 — 15237 + [(—(216-5687—2647%)e?

2
Vi-e?
+120- 184 —5527?)(e, cosu) 3+ ((936— 25527 — 8407?)e,>— 600+ 12087+ 1848%2)(e, cosu)?+ (— (868
—22207—12207%)e,>+ 484— 684 77— 23727%)(e, cosu) — (597— 17377—3037%) e*+ (1342— 37107

—1250%?)e?— 601+ 1397+ 13797?]C%+ J1—e(1—5 n+5 7%)[ 120 e, cosu)®— 432 e, cosu)?+ 484(e, cosu)

+75e2—247|C*}, (2.27p

w _x2 _C 1
Casz"71s2CZ 2880(1— e cosu)®| (1—e7)

[((1—e?)(360—85207—12077))(e cosu)®— ((1— e?)(1440- 340807

—480%2))(e, cosu)*+ ((720— 170405 — 240 7%)e,* — (43158 789107 — 462907%2)e,>— 31002- 143507
—4605072)(e, cosu)3+ (— (16020~ 1463407+ 2154072)e,*+ (119994 2958907 — 797107?) >+ 116346

+ 69907+ 10125072)(e, cosu)?+ ((110835- 109355 — 1810572) e,*— (276384+ 124807 — 1456807°)e,>— 54771
+ 1659757 — 1275757°)(e, cosu) + (26955- 1617757+ 451357?) e,° — (176400~ 3669607+ 955207%) e,*

1
+(279333- 2303057 + 2350572) &2 — 56448 224007+ 2688072 + —————[ (— (1—?)(28800

—115207))(e; cosu)®+ ((1—e?)(158400- 633607))( e, cosu)*— (57600~ 230407)e,* — (244800~ 979207) ;>
+187200- 748807) (e, cosu) 3+ ((345600- 1382407)e*— (417600~ 1670407)e,>+ 72000~ 288007)( e, cosu)?
+ (—(518400- 2073607)e,*+ (590400~ 2361607) ;2 — 72000+ 288007)( e, cosu) + (230400- 921607)e,*

— (288000~ 1152007)e,%+ 57600 230407 ] + 2[ — (3240- 85207 — 3960%7) (e, cosu) >+ (12960~ 340807
—1584072) (e, cosu)*+ ((6480- 170407 — 7920%?)e,>— 12582+ 240707+ 437707?)(e, cosu)>+ (— (35820
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—1013407— 210607?) e, + 6846+ 45307 — 789307%) (e, cosu)?+ ((28455- 744157 — 3382572)e,>+ 12159
— 646957+ 8557572)(e, cosu) + (20655 685357+ 217357%) e, — (40425 127185z + 227857°)e,>+ 4512
—68807—168007%]C2?+15(1—5 5+5 5?)[ — 120 e, cosu)°+ 480 e, cosu)*+ (240e,>— 806) (e, cosu)®

—(900e,2—918) (e, cosu)?+ (955e,>— 613)(e, cosu) — 45e,* — 205e,>+ 96]C* ¢ , (2.279

CS esinu
XéACAZ - X3454—
24 (1—e,cosu) l‘/ —¢?

—14007—1927%) e+ 324— 776 77— 6607?)(e, cosu)?+ (— (240— 6887 — 144 7%)e*+(518— 11267
—144279%)e2—110- 2347+ 1802%%)(e, cosu) + (831— 24257 — 147 ) e;*— (1340~ 35447 — 13287?) e, >+ 449

[((120-3447—T72 %) e— 72+ 1529+ 216 5%)(e, cosu)>+ (— (480

—8797— 136172+ \1—e?(1—5 5+5 ?)[ — 48(e, cosu)3+ 162 e, cosu)?+ (96e.2— 250) (e, cosu) — 201e,2
+241]C?%¢, (2.27h

C& 1
2 _ 2 5 _ 2 4 _
X267 X3 720 (1=, Cosu)s{[(gotyzsson 5407%)(e, cosu)®— (3600~ 103207 — 2160%) (e, cosu)*+ (— (7200

— 206407 — 432072) e+ 4830- 72407 — 241207°)(e, cosu) 3+ ((27990- 823507 — 7290%?)e,>— 12120
+213907+ 47610%2)(e, cosu)?+ ((7200- 206407 — 43207°) e,*— (8430~ 121057 — 426757%)e,>— 13500

+ 618757 — 6553572) (e, cosu) — (24930~ 743257+ 346572)e,*+ (23100~ 577657 — 241355%)e,2+ 5760

— 300807+ 326407%]+3(1—5 5+5 7?)[120 e, cosu)®— 480 e, cosu)*+ (1526— 960e,?) (e, cosu) >+ (2700e?

—2718 (e, cosu)?+ (960e,* — 3235e,>+ 1933 (g, cosu) — 2115e*+ 3805¢,2— 1536/C?}, (2.27v
5 cs e sinu . 5 ) )
XEece= — Xiese= % ——(1+57?-57)y1 W{ 72(e;cosu)”+ 312 e cosu)”+ (384e“—844) (e, cosu)
—(1053e,2— 1325 (e, cosu) — 384e,*+ 1437¢,2— 1105, (2.27V

st
XZss=Xisc= 960(1—5 7+5 nz)m{ﬂ(mt cosu)®—60Q e, cosu)®— (2160e,>— 3206) (e, cosu)*+ (7860e,>

—8444) (e, cosu)®+ (5760e,*— 191352+ 13051 (e, cosu)?— (11475e,*— 23240e,2+ 11269 (e, cosu) — 3840e,°
+17235e,*— 213252+ 7776, (2.27w

CS gsinu

x2
24 (1—e,cosu) [\/1

2[(—(36— 1167+ 12 7%)e2+ 24— 68 p— 24 7?)(e, cosu)?+ ((174— 538+ 10 %) e,
— 150+ 4427+ 62 7%)(e, cosu) — (153— 459 — 21 %) e, + (168— 496 — 40 7% e, — 27+ 85— 17 7]

+V1—e(1+5 7?—5 n)[6(e, cosu)?>—22(e,cosu) + 15e.2+ 1]C? |, (2.27%

whereC = cosi andS=sini. The relations between the coef-  To compare with the earlier 2P&tcurate gauge indepen-
ficients like Ptycn=PsnsnOF Xtnsi= —Xspcp are a trivial  dent expressions for,hand h. for binaries in circular or-
trigonometric consequence of tkle=\ +W split in the ex-  bits, we proceed as follows. First, we sgt=0 in Eq.(2.23
pression for GW polarizations in terms ¢f and rewrite the resulting expressions For andh, in terms
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of the “gauge independent” orbital angular frequensyfor  presentationh , the Newtonian part oh,(t), is written
circular orbits. The 2PN accurate relation connecting the;ompactly below as
mean motiom to w may be derived from Eq$39), (44) and

(46) of [44] and it reads Gmn/Gmn 23
QZCZ_RW( 3 ) @, (3.1a
[ 3 .23 4/3
=1 1- + [(51—267;) 0)_ :
(1_et2) 4(1_et2) HY ={A,ql)sin 2\ + A,(l)cos 2}, a1b
- —1T(69— 54 77)” , 2.28  where Agl)=A,qu(l))=X2,s£052W() + X2, sin2W(),
(1-ed) and A1) =Ancu(1))=Xpe£0s2W() + XS sin2W( ).

Note that A1) and A(l) are real and periodic functions
where 7=G mw/c®. Next, we use the following angu- Of | with period given by Zr/n. The spectral analysis &f,
lar transformation relationg=A+W(1)=(pgww— m/2), Wil be performed usingH!?), the scaledx polarization
where¢gww the orbital phase variable appearind®). The ~ waveform because since we are dealing with non-evolving
expressions foh, and h, thus obtained agref47] with  binaries, G m7/c?R)(G m 'c?)?? essentially remains a
Egs.(2), (3) and(4) of [8] modulo the tail terms. constant over a few orbital periods. Similar arguments hold

All the computations to obtain Eq2.23 are performed for h too.

usingMAPLE [48]. This completes the calculation of the 2PN
accurate GW polarizations for compact binaries moving on A. Newtonian orbital motion

elllpt_lc orbits, modulo the ta Ferm%?l’hou_gh in principle the In this section, we restrict the dynamics of the binary to
required equations for the tails are availabld 32], the ex- ; SRR .
Newtonian order. This implies we are using Egs.

plicit expressions for the tail contribution to, andh, for . _ ) i
eccentric binaries have not been obtained. As mentioned ea(rg.Se),(Z.Sb)'for A and W(I).m the¢—A+W('I) split. H.OW
lier, this should be computed and included to write down the V" following]29,3(), we introduce an arbitrary periastron
cor,n lete 2PN polarizations advance parametérinto the definition ofA so thath = ¢
P P ' +(1+Kk)| and W(Q) = (v —u+esinu)(1+K). Note that with
these forms forn and W(), the scaled GW polarization
Ill. INFLUENCE OF THE ORBITAL PARAMETERS waveforms are entirely specified gy k and ¢,.
ON THE WAVEFORM As mentioned earlier, &) and Ay (1) are periodic
) ) , ) ) functions ofl =n(t—tgy), wheren=2=f,, f, being the fre-
In this section, we investigate the dominant effects of eCy,ency associated with the “radial periofd2] i.e. the time
(r:}erz:?c:ﬁdohrbl(t{a)l Irllglrn?r:gnpzl?;og;hirhgrglrtgl :ilggjer;tswoer: of rgtudrn to the periastronf. ﬁ:onsequently, they can be ex-
x +\H)- ' anded inFourier seriesas follows:
spectral density of the Newtonian contributions to the polar—p

ization waveforms are computed, by taking the squared- * -

modulus of their respective discrete Fourier transforms, AZC(I)=_E Cje”', (3.29
sampled over an orbital period. The results thus describe the ===

influence of orbital elements on the power spectrum of New-

tonian waveforms when gravitational radiation-reaction is - i

L . = @il
negligible and referred to here as a “non-evolving” wave- Azd(l) ].Zw Siel. (3.2b
form.

To relate earlier studies done at Newtonian order to the  gmploying Egs.(3.2a,(3.20 and A= ¢o+(1+K)I, in
present one, we proceed in two stages. In the first instance, E’qs.(3.1a,(3.1b), we get
compare with the results di29,30, the orbital motion is
restricted to the leading Newtonian order, and the periastron o
advance is mimicked by the introduction of an arbitrary con- HO= > (§jeiwf'+6jeiwf'), (3.3
stant shift parametdt in the ¢ variable. In the second case, j=—e
the orbital motion is taken to be 2PN accurate. In this case,
the periastron advance is fully included in the formalism andwvhere
explicitly defined in terms of the binary’s parameters like the

masses and eccentricity. In both the cases mentioned above, S— ei2¢o(c._i ) (3.43
only the leading Newtonian part of the GW polarizations is ) I 7 '
considered.
Let us begin with the X" polarization. For the ease of _ e i2do
3A ¢ or FORTRAN version of the abové, andh, expressions is .
i 0 =(j+2p) (3.40
available on request from gopu@wugrav.wustl.edu j =UTzp), .
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(3.40
(3.48

w; =(j—2p),
p=(1+k).

Equation(3.3) may be re-written as

HQ’):;O [Se“'+C_je'*'+S e ' '+ Cielvi ']

—[Spe' 2P+ Ce 2PN, (3.5

Recallingl =n(t—tp), with n=27 f,, the frequency content
and the associated intensities may be read off from th
above. From Eq3.5), it follows that the Fourier spectrum of

H(1) consists of lines at frequencies” f, andw; f, with
powers (Sj|?+|C_j|®) and (S_j|>+|C;|?) respectively.
Using the reality ofy, Ajsand Ay, thoughS; andC; are
complex numbers, it is easy to show th&f|?=|C_;|? im-
plying that power in the line with frequenayr f, will be
2|s;|?. Similarly, |C;|>=[S_;|?, and power in thev; f, line
is 2|C;|2.

Thus, the Fourier series for Newtonian parthof effec-
tively reduces to

0= 7] 3, (50 G 1450 (a6

=1

The “one sided power spectrum” for the Newtonian may
be written as

HO= ﬁ[goempur]zl [gjei(j+2p>l+Ejeil<i—2p)|l]} ,
(3.7)

PHYSICAL REVIEW D 65 084011

to values ofk equal to 0, 0.25 and 0[50]. For these values
of k, power in a given spectral line will have contributions

both from C; and S; for different values ofj given by j.
—js—4=4k. These special values kfare interesting in that
they can provide useful checks on the numerical accuracy of
the analytical procedure outlined above. This is because for
values ofk=0,0.5,0.25, the full time domain waveforfand
not just the parts A41),A,c(1)] H%(!) is exactlyperiodic
over 2w, 2 and 4 intervals respectively. Consequently,
one may alternatively compute the desired power spectrum
by a direct Fourier transform of the fub{®)(1), without
oing via Eq.(3.7), which exploits double periodicity ap in
and\. Similar arguments hold true for the polarization.
It is clear from Eq.(3.7) that the strengths of the different

Fourier components are determined by the coeffici@]ts

and S; which are given in terms of; andS;, the discrete
Fourier transforms of A1) and A4(l).* This has become
possible since we have exploited the double-periodicity of
the motion in anglesand\. Thus the calculation reduces to
the numerical implementation & andC; which we turn to
next.

Though the power spectrum for the Newtonian par of
can be obtained using E@3.7), its implementation is not
straightforward due to following reasons. First, the discrete
Fourier transform€; andS; can be evaluated using standard
fast Fourier transform routines as Mumerical Recipef51]
only after Ay and Ay are written as explicit functions df
However, in our analysis they are explicit functionsucdind
thus implicit functions ofl via | =u— e sinu. Consequently,
we must first computeu(l) and substitute it in Egs.
(3.19,(3.1b to proceed. Secondly, W= (v —u+esinu)
will not be a smooth function ofi if we numerically imple-
mentv =2 tan Y{((1+e)/(1—e))Y4anu/2)}. We will also
need to use a smooth functional relation connectirendu

where explicitly the sum is over positive frequencies. In theto obtain a well behaveblig(u(l) and H?r(u(l).

generic case, th@j*:(j +2p) part gives lines at frequen-
with strengths

ciei(1+_2 p)fL,(2+2 p)f,,(3+2p)f,, ...
~[S1|%,|S,[2[Ss1% - . . respectively. Similarly, they; = (j

’

—2p) part of Eq.(3.6) creates lines at frequencies (1
—2p)fr,(2—_2 p)f£(3—_2 p)f,, etc. with strengths pro-
portional to|C,|?%,|C,|?,|C5|?, etc. respectively. There will

be also a line at frequency 2f, with strength ~ | So|?
=|Col? [49].

These observations are easy to understand. At Newtonian

order, in the absence of the periastron precessionk e,

Let us first consider the implementationudfl). There are
two independent ways to obtair{l) from | =u—esinu. The
first method is widely used, for analytical treatments, in stan-
dard textbooks of celestial mechani&2]. The idea here is
to expand the eccentric anomalyin terms of the mean
anomalyl. At the Newtonian order, it is given by

u=|+2l (E)Js(s e)sinsl, (3.9

there is only one time scale in the problem, given by theynhere (s ¢ is the Bessel function of the first kind of order
orbital period and the spectrum consists of lines at multiples; yith s=1.

of the orbital frequency. When periastron precession is intro-

Alternatively, we can numerically invert Eq2.5 con-

duced k0, a second slower time scale enters the problempecting the mean and eccentric anomalies, using the Newton-
which splits and shifts original spectral lines from their ear-Raphson method implemented kysaFeroutine ofNumeri-
lier positions, thereby lifting the degeneracy associated with, 5 Recipeg51], and obtainu(l). We computeu(l) using

the non-precessing orbit.
A caveat is worth noting: The discussion after E8}7) is

valid only if all the terms corresponding to frequencigs (

+2p)f, and (j.—2p|)f, are linearly independent, whejg
andjs are summation indekfor C; andS;. This is in gen-

4Using the Fourier integral theorem, it is easy to show tha{A
may be written in terms of the Fourier transform ofcl), the
discretized version of which allows us to expresg@) in terms its

eral true except whep,+2p=|j.— 2p|, which corresponds discrete Fourier transform. Similar arguments apply ta(A.
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both methods to make sure that they give consistent resultgerm in H% (1). The values ok=0,0.25,0.5 are special and

for the parameter values we are dealing here. require a treatment analogous to the corresponding one in the
We now turn to the numerical implementation of My( cross polarization case.

In textbooks of celestial mechanics, the transcendental rela- Using the above inputs, we plot the time-domain wave-

tion connecting true and eccentric anomalies is expressed ?@rmng&(l) and the associated normalized relative power

a series given by spectrum H?,)I/=;(H?,)) in Figs. 2—6. The combined
= (g influence of the orbital parameters like eccentri@tyerias-
v—u=2> (.—sinj u), 3.9 tron advanpe parametdr and orbital |n_cI|nat|on|, on the
i= time-domain waveform and the associated power spectrum

of the Newtonianh,, andh, using Newtonian accurate or-
where 8= (1/e)(1— J1—€?). We use the above expansion bital motion is summarized below.

of v —u in W(u)=v—u+esinuto circumvent artificial dis- Eccentricity e. The effects ofe on H% are explored in
continuities in W() as a function of the eccentric anomaly Fig. 2. In the limit of low values of eccentricitg, as ex-
u pected, the dominant contribution to the power spectrum,

Using the above inputs, we comput@l) and Wu(l)) at  comes from the second harmonic. However, as the eccentric-
a finite number of points by samplirig Next, we use the jty eincreases, higher harmonics appear in the spectrum with
REALFT routine of[51] to compute the discrete Fourier trans- comparable strengths. For a given value of the periastron
forms S; andC; of the discretely sampled periodic functions a4yancek and inclination anglé, the position of the domi-
Az«(l) and A(l). We then compute the “one sided power pant harmonic changes as the value afcreases. The shape
spectrum” for the Newtoniai. using Eq.(3.7) for various ot the waveform also changes significantly as we increase
values ofe, k andi. We now have all the inputs to Invest- £or moderate and high values®there is a stronger burst of
s . P2, diation near valuek=0 and 27 corresponding to the pe-
of the X polarization waveform._ The r_esults and d'SCUSS'OnSriastron passage, since near the periastron, the two masses
areTEgsézzgﬁiltgrfgli/ 58,2? d(':i tihslssisrgitlzgf?o. that forh,, and are closest to each other and. thei'r relative yelocity is a maxi-
we only quote the main results without any further details: ?O%Téirl]?ngeﬂ:;i?/“?;%{)ggg?:: EH']SG rﬁizltfse:tj?ee li)rrof;\i pf?:_k
quency domain on the other hand corresponds to the average
orbital motion of the binary.

The *“arbitrary” periastron advance parameter, Khe ob-
servation made here are based on Fig. 3. A careful inspection
of Hg,+(|) with k# 0 indicates that in general they are not
2 7r periodic. This is expected &sis a measure of the angle

o of return to the periastron. As mentioned earlier, in the power
HO= > [§j+eiwfl+61_+eiwfl+5?eiil], (3.1)  spectrum, the main effect of including an arbitrdyis a
j=—e “splitting” and subsequent “shifting” of the position of each
spectral line from its integer multiple value in unitsfoef, the
whereS;” andC;" are defined similar t&; andC; but with ~ radial frequency. The shift is appreciable for medium and
A,s and A, replaced byP; and P,. Similarly, 5}0 is the high eccentricities and leads to a shift of the dominant har-

; : ; L monic in the spectrum.
discrete Fourier transform &f,(l). Using arguments similar L, . e
h d for tha® OI( )_ g | g§+ c* and Orbital inclination, i. A change in the orbital inclination
to the ones used for the, analysis, we relat®; , C_jand  panges only the magnitude B, and its power spectrum,

S%;, C; and obtain the “one sided power spectrum” for keeping the relative distribution of spectral lines the same.
Newtonianh, as This is easy to see as the dependence of orbital inclination
B anglei is easily fact(c))red out in the expression for . How-
HO— \/§| Jz::l [Sfei("”p)'ﬂtCj*e““*z")“JrE?e”'] E;eirgtshgezr;]aﬁ]e;ij;ll.and its power spectrum is influenced
If the polarizations of the gravitational wavg, andh
. are available, the orbital inclination can be inferred by com-
+C§e'2pl} +Pp. (3.12  puting the ratio of the total power measured in each polar-
ization. For circular orbits, the result analytically follows
since |hY|?/|h\|? is only a function ofi and is given by
4 cogil/(1+cogi)? In the general eccentric case, to explore
F2p)f, . |2—2plf 2, (242p)F . ... with relative this, we plot|h.§|2/_|h§|2 as a function of for various values
15012 (o2 |mH2 (502 (S22 of thee andk in Fig. 5. The plots are identical for different
strengths ~,3|Pol* [Sol* |C1I% [P1l% [S11% IC31%  values ofe andk but vary with the inclination angle provid-
IPSI2, |SS|?, ... respectively. Note that there are lines un-ing support for the claim made in the beginning of this para-
affected by introduction ok. These arise from the nan- graph.

HO=pPy(1)+Py()sin2\ +Py(I)cos A,  (3.10
where Py = P,c,008 2 WH Pgg,8in 2 W, P,=Pgyc,c08 2 W

+Psycsin2W  and Py=P°=(1—C?)e cosu(1—ecosu).
The Fourier series for E43.10 is given by

From Eq.(3.12, it follows that for the “+” polarization
there will be lines at frequencies @Z,,|1—2p|f,,f,,(1
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FIG. 2. Plots for scaled GW polarization
0 5 i0 waveform, H‘i as a function of the mean
e=04 anomaly, | and the corresponding normalized
relative power spectrum using Newtonian orbital
’ ] L motion, for various values of eccentricigy Note
in H2(1) a “burst” of GW emission near perias-
tron passage and a shift in the position of the
dominant harmonic in the power spectrum es
| | ’ l l l " incregses. In the Fourier d.omain, the former re-
| ' | | ! | sults in a broad fr_equency rich pgak. In all panels,
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/3 respectively.
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Even though in general, an arbitrary periastron advancend via Eq.(3.7) is possible. The results fd&e=0, 0.25 and
parametek at Newtonian order destroys therperiodicity 0.5 via these two methods are compared and found to be
of Hgﬁ(l), we may choosé valuesexactlyequal to O or identical up to numerical errors as seen in Fig. 6, providing
0.5 so thatH% (1) is still 2 7 periodic. These particular val- important checks on our analysis and routines that compute
ues ofk allow us to perform useful numerical checks on ourthe one sided power spectrum via E§.7). We observe a
analytical procedure. In this case, we can compute the poweimilar behavior forH? .
spectrum directly fronH‘i(I) by numerically implementing
the discrete Fourier transform of Eq8.13,(3.1h. We can ) o
also implement Eq(3.7) to obtain the power spectrum, after B. The 2PN accurate orbital description
adding contributions from variou; andS; to a givenhar- The spectral analysis discussed in the previous section
monic, which is now some integer multiple of the radial may be extended to 2PN accurate orbital motion with minor
frequency,f, . The results are displayed in Fig. 6. For bettertechnical modifications. The expressions forljVand\ in
comparison, in these figures, we normalize relative to théhe ¢=N+W(I) split are now given by Eqgs(2.139-
power in the dominant harmonic rather than relative to the2.139. Moreover, the orbital elements appearing-li@) and
total power as in other figures. We next choése0.25, so H(+°) are now 2PN accurate. These changes will modify ex-
thatH2 (1) is now 47 periodic. Again, comparison with the pressions fo5;, C; in Eq. (3.7) for the “x” waveform and
power spectrum computed directly from Ed8.19,(3.1b  the corresponding expressions for the ™ waveform.

{e=0.5,i=n/3, §, =n/500}

04
F k =0.01
02 ’
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IO OO ST SO SN A S S SN N NN ST
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0 E | 1 I 1 FIG. 3. The configuration is similar to Fig. 2,
S r of- | Ly o but in the panels, the (arbitrary) periastron pre-
°r 4 (YU DU YU AN TN NN S S W M| Eo b vy oo by e by °: . . . . ..

0 i 2 3 4 s s 04— s 10 5 = cession constant is varied for fixed eccentricity
4 “E k=04 E e=0.5 and orbital inclination angle= /3. Note
oL 02 E the splitting and shifting of spectral lines from

- OE ‘ | 1 | |1, . = integer multiple values of, ask is increased.
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{ =05,k =0.1, m=n/50}
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o 0 5 10 58 spectrum for Newtonian orbital motion, when the
02 orbital inclination angle is varied. In all frames,
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To implement the 2PN accurate spectral analysis, we note We explore the effects of 2PN accurate orbital motion on
the following: First, at the 2PN level the simpler approach tothe power spectrum for X " polarization in Figs. 7 and 8. In
obtain theu(l) relation, connecting the mean and eccentricFig. 7, we explore the influence ef on the relative power
anomalies, is to numerically solve fon(l) from Egs. spectrum and the behavior is qualitatively similar to the
(2.113,(2.11b because 2PN accurate analytic expression foNewtonian case. We explore, in Fig. 8, the effect of changing
u(l) similar to Eq.(3.8) is not available in the literature. Values fork by varyingm,, m, andn after fixing the value
However, we may employ Eq3.9) with e, in the placee to of ;. We see that the behavior is similar to the Newtonian
getv—u at 2PN order. This is because in the generalizeccase when we vary values kfor a givene. This is required
quasi-Keplerian representation, the relation connecting trués at 2PN order, for a gives, k is uniquely determined by
anomalyv to eccentric anomaly has the same structural My, M, andn. However, there are quantitative differences
form as for the Keplerian case. Secondly, there are posin that positions and strengths of various harmonics are dif-
Newtonian corrections to the relations connectingande,, ~ ferent in the Newtonian and the 2PN cases.
toe, my, my, andn. In our analysis, only those values of A quantitative comparison between the spectral analysis
e, are considered which lead &, e, less than one. Finally, With Newtonian and 2PN motion is presented in Figs. 9 and
in this 2PN accurate orbital description, the periastron prel0. Note that we can perform this comparison as we are
cession constark is no longer arbitrary but uniquely deter- using scaled polarization waveforns?, andH? . In Fig. 9,

mined bym,;, m,, n ande, as given by in Eqs(2.143—  we plot bothH% (1) and its power spectrum using Newtonian
(2.149. and 2PN accurate orbital motion. We choose the arbitrary
r e=0.1,k=0.1 r =04,k =02

0.8 08

0.6 0.6

0.4 04

LI L L L
LN LA LI L

02 FIG. 5. The ratio of the total power measured

in X and + polarization for Newtonian motion

0.2

I” for Newtonian motion.

2

= % l s o l 18 as a function of orbital inclination angle for
= various values of periastron precession condtant
§ I 1 =08,k =05 and eccentricitye. From the plots, it is clear that
“é L the ratio is independent of the orbital elements
T 08 08 like e andk.
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FIG. 6. Plots ofH%I, A1), Ax(l) as a
function of mean anomaly, and their relative
power spectra constructed using E8}.7) and di-
rectly usingH%(1). The orbital motion is New-
tonian accurate and we employ certain specific
values ofk=0, 0.5 and 0.25. The relative power
spectra, plotted in third column, are numerically
identical, hence indistinguishable. Note that plots
in second column are always2 periodic, while
those in the first column are 2, 2 7 and 47
periodic for k=0, k=0.5 andk=0.25 respec-
tively. We also observe that féde=0, the relative
power spectrum depends on the position of peri-
astrongy.

parametek, introduced in the Newtonian case to match themodulates the spectral lines for Newtonian and 2PN orbital
2PN accuratek associated with the generalized quasi-motion.
Keplerian representation. In this manner, we force orbital
elements for Newtonian and 2PN dynamics to be the same.
Though, qualitatively similar, the plots for the Newtonian

and the 2PN orbital motion are quantitatively different in that

strengths of spectral lines are different by a few parts in

thousand in most cases.

2PN accurate orbital motion. The valuelofor the Newton-

IV. CONCLUSIONS

A. Summary of results

In this paper we have computed all the “instantaneous”

2PN contributions td, andh,, for two compact objects of
Finally, in Fig. 10, we ploH® (1) and its power spectrum arbitrary mass ratio moving in elliptical orbits, using 2PN
as a function of orbital inclination angle for Newtonian and corrections tohﬁT and the generalized quasi-Keplerian rep-

resentation for the 2PN motion. The expressionshforand

ian runs are again chosen so that it is comparable to thk, obtained here represent gravitational radiation from an
actual 2PN accuratevalue. It is clear from these figures that elliptical binary during that stage of inspiral when orbital
inclusion of PN corrections to orbital motion changes distri-parameters are essentially the same over a few orbital peri-
bution of spectral lines, though the position of the dominantods, in other words when the gravitational radiation reaction
(maximum amplitude harmonic is roughly the same. This is negligible. We investigate the effect of eccentricity, ad-

figure also shows how the orbital inclination anglslowly

B0
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vance of periastron and orbital inclination on the power spec-

FIG. 7. Plots for scaled GW polarization
waveform,H2 (1) and corresponding normalized
relative power spectrum using 2PN accurate or-
bital motion, for various values o, . Unlike in
Fig. 2, the value ofk cannot be independently
chosen since it is uniquely determined by the val-
ues of m;, m,, n and e;. The observations
from plots are similar to Fig. 2, as variation kn
is small compared to that ie,. In all frames,
m;=m,=1.4My, orbital inclination anglei
= /3 and mean motiom= 100 radians per sec-
ond.
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trum of the Newtonian part di,. andh, . The 2PN accurate when lowest order radiation reaction effects are included in
generalized quasi-Keplerian representation is used in corthe evolution of orbital elements. This is currently under in-
junction with two angular variabldsand\ chosen to facili-  vestigation[14].

tate the subsequent analysis of the waveform evolving under (2) There are tail contributions to, andh, appearing at
gravitational radiation reaction. These expressions thus forr-5PN and 2PN orders. Though the formal expressions for
the first step in the direction of obtaining “ready-to-use” tail terms are available 32,10, they need to be written
theoretical templates for inspiraling compact bodies movingﬂown in a form similar to “instantaneous” contributions to

in quasi-elliptical orbits. + andh, presented in this paper.
(3) After computing “ready-to-use” search templates for

inspiraling binaries in “quasi-elliptical” orbits, one will be
able to address a variety of data analysis issues related to the
There are several issues that remain open for further inebservations of gravitational radiation from eccentric bina-

B. Future directions

vestigation. We list them below. ries in great detail. These could include defining a “restricted
(1) The next natural step is to obtain evolvihg andh,_, post-Newtonian” waveform, extending to 2PN accuracy the
{5 =m3.0;=n/50}
6 2PN
4 m=my=1 4, e,20.4, k =0.0485 0.4 |~
oF L
o r 02—
2k | | 1 ok | - FIG. 9. Plots of scaled GW polarization wave-
o — = l, S 1]0’ E— form, HO(l) as a function of mean anomaly,
. 04 - " and corresponding normalized relative power
) ol = spectrum for Newtonian and 2PN accurate orbital
2 o L | | 3 motion. Givene,, we vary values fom;, m,
T o2 R A S P R andn, to makek values the same in the 2PN and
0 5 10 Is 3 the Newtonian accurate orbital motion. In all
5 02— frames, orbital inclination angle is/3. Panels in
0 0.1 b the 2nd and 4th rows are for Newtonian orbital
5 ol l]l A motion, whereas panels in the 1st and 3rd rows
10 I AT I S are for 2PN accurate orbital motion. We see mi-
100 2 Newtonian 4 6 0 10 20 30 40 tt t dﬁ . th t d
o7 s oo . nor quantitative differences in the position an
3 L strength of spectral lines at these two orders.
0 0.1
; E Ll
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=8 o C bital motion. We vary the orbital inclination
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41 02r angle,i keeping other orbital elements constant at

0 e ’ | Newtonian and 2PN level. Conclusions are simi-
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effect of eccentricity on detection discussed28,53 where  analysis differs from theirs, for high values kflt should be
currently the orbital dynamics is restricted to leading New-noted that for a giverk, both methods give the same fre-

tonian order only. guency shift for spectral lines, for all values kof
(4) Finally, the analysis of the present paper may be useful
for detecting continuous gravitational waves from known ACKNOWLEDGMENTS
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