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Isospectrality in chaotic billiards
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We consider a modification of isospectral cavities whereby the classical dynamics changes from pseudoin-
tegrable to chaotic. We construct an example where we can prove that isospectrality is retained. We then
demonstrate this explicitly in microwave resonators.
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Recently, it has been shown that it is possible to construct = Ut ot

. . Y=~ Yzt ot iy,
two drums which have different shapes but sound exactly the
same[1]. This answers the famous question asked by Kac

[2]: “Can you hear the shape of a drum?,” the answer being Yo=va— 1t s,
“no,” Gordon, et al. constructed an example of a pair of L
two-dimensional(2D) domains which had different shapes Ye=ts— Y~ s,
but had identical eigenvalue spectra for the Laplace operator

[3,4]. Since then, a large number of such isospectral pairs Ye=— Pst s,

have been obtained.

One common feature of all shapes constructed so far is ~ ~
that they are mostly polygonal. Hence, the classical dynam- V==t 5= . (1)
ics of a particle in billiards of these shapes is pseudointe: . . .
grable. A question of interest then is whether i:~3ospectralityThe nota:clon used requires some explanatlon.. To construct
can be achieved even for cavities with chaotic dynamics¥a= ¥2— ¥1+ ¢, we first move the three domains 1, 2, and
which is typical of domains that have convex pieces, andd SO that they are on top of each other and all similarly
hence are nonpolygonal. We address this question, viz. af@arked edges coincide. This may require us to flip the do-
there sound-alike chaotic drums, both theoretically andnains about one of the bases, and in such cases, we have
through experiments using microwave resonators. denoted the wave function with a tilde.g.,#,). The wave

Isospectrality is fundamentally a consequence of topolfunction ¢, is then obtained by addin@r subtracting the
ogy. The essential aspects of isospectrality can be proveghlues of the three functions at each point. It is easy to see
using the example of the two isospectral doma@isandC2  that ' = ya+ g+ e+ o+ e+ e+ g is an eigenfunc-
shown in Fig. 1. The proof consists in showing that givention for domainC2 with the same eigenvalue. For this, we
any eigenfunction in one domain, we can construct a correnotice that(1) Laplace’s equation is satisfied in every do-
sponding one in the other domain with the same eigenvalumain, and(2) it can be verified that the wave function van-
and vice versa. Each domain consists of seven distinct sulishes on the boundary and matches smoothly across subdo-
domains, each in the form of a triangle. We label these submains. For example, consider the subdomainsnd B that
domains in an arbitrary fashion, using numbers 1,2 ,7 for  are separated by a dashed line. The wave functions are given
domainC1l and the alphabet&,B, ... ,G for domainC2. by ¢y — Py + th, and grg= th3+ by + 5. The smoothness fol-
Note that the edges of the triangles are marked differentlyg\ys since from the wave function i61, we see thats,
(by dotted, dashed, and solid linesand this allow us to

make a unique correspondence between any pairs of tri-
angles. Consider any wave functignin domainC1, which
satisfies the eigenvalue equatierV2y=k?y with Dirichlet
boundary conditionsy vanishes on the boundary of the do-
main). Let us denote by); the restriction of the wave func-
tion ¢ in subdomairi [i.e., ¢;(r) = (r), if r is a pointin the
ith subdomain, elsg;(r)=0]. Similarly, we can define the
restricted wave function§fa, g, . . . g} from any wave
function in domainC2. Starting from the wave functiog in
C1, let us construct the following restricted wave functions
in domainC2:

FIG. 1. Isospectral cavitie€1 andC2. The outer edges of the

Yp= lﬁz‘@ﬁ' 7, polygonal structure constitute the boundary of the cavity. The inner
edges have been marked to show the seven triangular subdomains
Yg= Y3t 1+ s, within each cavity.
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FIG. 3. A schematic of the experimental cavity. This shows a
FIG. 2. Isospectral cavities with scatterers in the shape of disksprass plate in which a hole of the desired cavity shape has been cut.
The wave function vanishes on the boundary and inside of everyhjs plate is sandwiched between two other brass plates to form a
scatterer. closed cavity.

matches smoothly withy; across the dashed boundary, simi- g¢ripes, for example, vibrations of a drum. Using this equiva-
larly i, matches withys and — 7, matches withy;. lence, various phenomen@uch as quantum chgokave

Similarly, one can construct an eigenfunction @t start-  been studied. Isospectrality has earlier been demonstrated by
ing from any given eigenfunction iI€2. Thus, we have Sridhar and Kudroll{8] using microwave cavities shaped as
demonstrated a one-to-one correspondence between tire Fig. 1. In the experiments, one obtains the resonance
states in the two cavities and hence proved isospectrality. modes of the cavities. Thus, the microwave transmission

We now modify the domain geometry so as to make thespectra directly yields the eigenvalues of the cavity being
dynamics chaotic. It is expected that making a part of themeasured. The advantage of this approach is that it can be
boundary convexinwards into the domajrshould make the easily applied to arbitrary 2D domains for which numerical
dynamics chaotic. This is related to the fact that on suclsimulations are very hai®,10] and may sometimes be prac-
boundaries, any two particle trajectories which are close taically impossible.
each other diverge rapidly after being reflecf&dl A well In our experiments, we consider the same set of cavities
known example of a chaotic billiard is the Sinai billiard ob- (Fig. 1) as the ones considered by Sridhar and Kudf@&]i
tained by placing a circular scatterer inside a square. In ousnd investigate the question of isospectrality in the presence
case, to obtain the modified geometry, we first place a scabf scatterers placed in the specified way inside the cavities. A
terer of arbitrary shape inside one of the triangular subdoschematic of the experimental cavity is shown in Fig. 3. The
mains of any one domain and then place one in a similadesired domain is cut out from a brass plate of thickriess
position in every other triangle. An example with disc- =6 mm. Two other brass plates are placed on top and below
shaped scatterers is shown in Fig. 2. The identification of thene hole to form a closed cavity. As shown in the figure,
edges on the two domains makes this construction uniguenicrowaves were coupled in and out using loops terminating
Thus, note that in every triangle, the scatterer is placed closeoaxial lines that enter through the sides of the cavity. The
to a vertex where a solid and dotted edge meet. The waviength of bases of the triangular subdomains was taken to be
function in each domain now changes, since it has to vanisa=8 c¢m and the thickness of the cavity wés 6 mm. The
on and inside the boundary of the scatterers. Our construgmall thickness of the cavity makes it essentially two-
tion of the modified geometry with scatterers is such that thelimensional and the correspondence between Maxwell's
proof for isospectrality given above can be repeated, sincequations and Schdinger’s equation is good for frequencies
the wave functions still satisfy the relations given by EL.

A direct physical proof of isospectrality can be obtained 0.18

by experiments utilizing microwave cavitig$,7], which 0.6l

provide a simple and powerful method of simulating single- '

particle time-independent quantum mechanics in two dimen- ~ 0.14¢

sions. This follows from the fact that under appropriate geo- 042l

metrical constraints, Maxwell’'s equations in a cavity reduces

to the Schrdinger equation of a free particle inside a two- 01l €2

dimensional domain of arbitrary shape and topology. In fact, c,ST'O.OS- \

one can show that for a cavity with small thicknéssthe z

direction, say compared to the dimensions in the other trans- 0.06\ . .
verse directiongin the x-y plane, the z-component of the 0.04| ¢ U ]
microwave electric field¥V(x,y)=E, satisfies the time- /
independent Schdinger wave equation —((92+(9 A4 0.02 tj %u T
=k?¥ (with the identificationk=2f/c, f being the fre-

0 7
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qguency andc the speed of lightand ¢ vanishes on the freq in MHz

boundary of the domain. This correspondence is exact for all
frequencies <c/2d, whered is the thickness of the cavity. FIG. 4. Comparision of spectrum of isospectral cavits and
We note that this is also the Helmholtz equation which de-C2 in the absence of scattereB, is the transmission amplitude.
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TABLE |. The first 33 resonances in the two cavities. 0.09
Resonant frequency Resonant frequency Percentage 008
in C1 (MHz) in C2 (MHz) discrepancy 0.07-
1902.500 1903.750 0.0657 0.06¢
2271.250 2274.375 0.1374 0.05}
2700.625 2719.375 0.6895 ;;&0.04»
3045.625 3062.500 0.5510
3217.500 3215.000 —0.0778 0.03f
3612.500 3631.250 0.5163 0.02|
3892.500
4054.375 0.01 U
4184.375 4200.625 0.3868 0 : : :
4303.125 4328125 05776 1000 1500 2000 2522q i3no§\>/|o|_|23500 4000 4500 5000
4488.125 4528.125 0.8834
4743.750 4756.250 0.2628 FIG. 5. Comparision of spectrum of the isospectral cavities with
4898.750 scatterers placed as in Fig. 2.
5026.875 5031.875 0.0994
5171.875 5194.325 0.4322 ResultsWe first attempt to reproduce the results in Ref.
5426.250 5474.325 0.8782 18] for the cavities shown in Fig. 4. We show in Fig. 4 the
2488.750 traces of the spectrum for the two cavities in the frequency
g?gg'ség ggg;?gg 8'2233 range 1—5. GHz. The first 30 resonances of.the two cavities
' 5903_i25 ' are listed in Table | and one sees that the eigenvalues n_1atch
5928.750 5040.625 0.1999 to bgtter than ;%. One sees t@ch resonance present in
6085 one is present in the otheh few lines are missing and this is
6222 500 6242 500 0.3204 attributed to the fact that the particular coupling positions we
6312.500 6352.500 0.6297 Used may not excite some modes. The remaining inaccura-
6497.500 6492.500 ~0.0770 cies are due to imperfections in the machining and in the
6680.000 6707.500 0.4100 clamping together of various parts of the cavity. Note that the
6750.000 6775.000 0.3690
6790.000 TABLE Ill. The first 22 resonant frequencies in the cavities with
6855.000 6877.500 0.3272 scatterers.
6930.000 6992.500 0.8938

Resonant frequency

Resonant frequency

Percentage

in C1 (MHz) in C2 (MHz) discrepancy
f<c/2d=25 GHz. For all metallic objects in the 2D space 2181.875 2175.000 ~0.3161
between the plates, Dirichlet boundary conditions apply in- 2330.000 2338.875 0.3795
side the metal. _ _ 2906.250 2933.125 0.9163
All measurimentls were h(_:ar:rled out u;mrgi; an HP8f51(_)B 3303.750 3311.250 0.2265
vector network analyzer which measured the transmission 3346.875 3361875 0.4462
(S,7) parameters. The typical values of quality factor ob-
. ’ 3746.875 3766.250 0.5144
tained range from a maximum of 850 at the lower end of the 4135.625
spectrum to a minimum of 250. 4175.625 4175.625 0.000
4207.500 4222.500 0.3552
TABLE II. The table gives a comparison of the cumulative fre- 4645.000 4666.250 0.4554
quency in the cavities with the Weyl estimate. 4966.875 4956.250 —0.2144
. 5056.250
Frequency Cumulative
. 5106.250 5101.250 —0.0980
(GH2) resonant frequency Weyl estimate
5148.750 5124.375 —0.4757
1 0 0 5540.000 5576.875 0.6612
2 1 0.8 5603.125 5633.125 0.5326
3 3 3.4 5889.375
4 7 7.5 6045.000 6002.500 —0.7080
5 13 13.1 6435.000 6450.000 0.2325
6 21 20.4 6490.000 6505.000 0.2306
7 30 29.2 6850.000 6872.500 0.3274
8 38 395 6955.000 6995.000 0.5718
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TABLE IV. Comparison of Weyl estimate and cumulative fre- 0.14
quency obtained experimentally after placing the scatterers.
0.12}
Frequency Cumulative 04
(GH2) resonant frequency Weyl estimate o
1 0 0 ‘_008 i C2 _ (scat. configuration changed)
N
2 0 0 “2 0.0}
3 3 0.9
4 6 4.5 0.04}
5 11 9.7 0.02
6 17 16.3 |
7 22 24.5

0 L h i 1
1000 1500 2000 2500 3000 3500 4000 4500 5000
freq in MHz

amplitudes themselves may be different, as they depend on
the location of the coupling, and hence to the way the modes
are excited. Thus, we have obtained the energy spectrum for

the given set of isospectral cavities and verified that eachh;n n;asythbeetgoéfg th:ft t';]hee dg]r'[rz:?nu?rt:)%‘ g);r':hessncalttecrg:]s_
eigenvalue in one is present in the other at the same resG- 29 pology g Py

nected to now being multiply connected. We now have a
nance value.

A check n th sty of e specrl dta, e comparfN007 X WG, T S tole i s case e
the cumulative number of resonance levels as a function o pology y 9 y

frequency, obtained experimentally with the Weyl formulaStates is given by
for the integrated density of states in a two-dimensional do-

FIG. 7. Spectrum of the cavities in Fig. 6.

main[11]: — i TP
K Z 24( ai w| 6°
N(k ——Ak2 Sk+K 2
(k)= A 4w ' @ The comparison with Weyl's formula is given in Table IV.

The agreement is not very good at low frequencies and the
whereA andSare the area and perimeter of the domain, anchumber of levels seems to be somewhather than that
K is a correction term associated with its topology. For agiven by the Weyl estimate.
polygonal billiard with inner angleg;, this is given byK To make the demonstration more convincing and illustrate
=S. & (mla;—a;l7). In the present case, we fingk  the nontriviality of the isospectral construction with scatter-

—0.42. We show in Table Il a comparison between the ex&rS, We consider another geometfyg. €) where the scatter-

perimental results with the above formula. The agreement i§'S In the second cavity are placed in a somewhat different
quite good. manner. The arrangement still seems to follow the folding

Results for the chaotic geomethle place the scatterers construction and ngively one Woulq expect isospectrality.
inside the cavity following the prescription outlined above. However, on closer inspection, one finds that the correct cor-

The scatterers are taken to be metallic cylinders of diametdeSPondence between the edges of the subdomains has not
1.0 cm and height equal to the thickness of the cavities. Th@€en satisfied and the wave function matching condition in
modified spectrum from the two cavities is shown in Fig. 5@ct no longer holds and so vefould notget isospectrality.

and we list the first 22 resonances in Table IIl. We again find/Vé plot the spectrum for this case in Fig. 7. We see a marked

that the eigenvalues in the two cavities match to within 1% difference from that in Fig. 5, namely, we find that there is
Thus, there is clear evidence that isospectrality is retained iRC correspondence between the spectral lines from the two
the modified chaotic geometry. cavities. This shows clearly that isospectrality is indeed ob-

tained only for the special arrangement of scatterers in Fig. 2.
In conclusion, we have demonstrated that isospectrality is
) unrelated to the underlying classical dynamics of a particle.
We have shown a simple way of introducing scatterers of
arbitrary shape into polygonal cavities in such a way that
oe isospectrality is retained. This leads us to a new class of
Qe isospectral scatterers and also a better understanding of the
essential features necessary for isospectrality.
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