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Ensemble dependence in the random transverse-field Ising chain
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In a disordered system one can either consider a microcanonical ensemble, where there is a precise con-
straint on the random variables, or a canonical ensemble where the variables are chosen according to a
distribution without constraints. We address the question as to whether critical exponents in these two cases can
differ through a detailed study of the random transverse-field Ising chain. We find that the exponents are the
same in both ensembles, though some critical amplitudes vanish in the microcanonical ensemble for correla-
tions which span the whole system and are particularly sensitive to the constraint. This canappear as a
different exponent. We expect that this apparent dependence of exponents on ensemble is related to the
integrability of the model, and would not occur in nonintegrable models.
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I. INTRODUCTION

In the study of the critical behavior of disordered system
it is usual to pick the random variables from some distrib
tion. This allows sample-to-sample fluctuations in the sum
the interactions~e.g., nearest neighbor! of orderAN. We will
call this the canonical ensemble of disorder, by analogy w
the canonical ensemble of statistical mechanics which all
fluctuations in the energy. It is sometimes of interest to co
plete this analogy and define a microcanonical ensembl
the disorder in which there is a strict constraint, for examp
by fixing exactly the sum of the~e.g., nearest-neighbor! in-
teractions in each sample. Our experience from conventio
statistical mechanics tells us that in the thermodynamic li
the choice of ensembles does not matter, but it is not v
clear that this is also true for random systems, especially
the case of quantum phase transitions.

There is a useful bound,n>2/d,4–6 on the finite-size cor-
relation length exponentn. However, Pazmandiet al.3 argue
that this bound is not rigorous, in contrast to the claims
Refs. 4,5, and that exponents in the microcanonical ensem
need not satisfy this bound. In addition, Igloi and Rieg7

claim that the exponents of a particular one-dimensio
model can depend on the choice of ensemble. In this pa
our main goal is to investigate these claims through a
tailed study of the zero-temperature critical properties of t
model.

In this paper we will study the simplest disordered mo
with a quantum phase transition, the random transverse-
Ising chain~RTFIC! ~Refs. 1,2! with the Hamiltonian

H52 (
i 51

L21

Jis i
zs i 11

z 2(
i 51

L

his i
x , ~1!

where Ji.0 and hi.0 are random variables chosen fro
distributions r(h) and p(J) with averages@ ln h#av and
@ ln J#av and variances var(lnh) and var(lnJ). We usefree
boundary conditions, so the sum for theJi stops atL21.

Let us define the two ensembles, microcanonical and
nonical, precisely for this model. For the canonical ensem
hi andJi are chosen randomly. A parameter which charac
izes the deviation from criticality isd̄ where
0163-1829/2003/68~13!/134441~8!/$20.00 68 1344
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d̄5
@ ln h#av2@ ln J#av

var~ ln h!1var~ ln J!
. ~2!

For the microcanonical ensemble we constrainhi andJi such
that the parameter

d5
1

L21

(
i 51

L

ln hi2 (
i 51

L21

ln Ji2@ ln h#av

var~ ln h!1var~ ln J!
~3!

is set to a prescribed value foreachsample. The last term in
the numerator, which is not necessary to get the asympt
behavior, corrects for there being one morehi than Ji with
free boundary conditions. It ensures thatd̄5@d#av even for a
finite system. In the canonical ensemble, the fluctuationsd
from sample to sample areO(1/AL). Pazmandiet al.3 have
argued that it is precisely theO(1/AL) fluctuations that lead
to the inequalityn>2/d. It is known that a phase transitio
occurs in this model atd̄50. All our numerical results in the
paper will be at the critical point.

Using the Jordan-Wigner transformation, the Hamiltoni
of the RTFIC can be mapped to a free-fermion problem a
this mapping is particularly useful in the context of nume
cal computations. It can be shown that various physi
quantities can be expressed in a straightforward way in te
of the eigenvalues and eigenstates of the free Hamilton
which are easy to evaluate numerically. These have b
discussed by several authors in earlier papers7,8 and we will
not repeat the derivations here but will use those result
our numerical calculations. In this paper we look at the s
face and bulk magnetizations, the end-to-end correla
function, and the energy gap. For the surface magnetizat
the free-fermion method leads to a simple form and it
possible to obtain some detailed results analytically. We fi
discuss this in Sec. II and then present numerical results
various other quantities in Secs. III and IV. Our conclusio
are summarized in Sec. V.

II. SURFACE MAGNETIZATION

The simplest quantity to calculate is the surface magn
zationms, which is defined with free boundary conditions
©2003 The American Physical Society41-1
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which we fixsz at one end,i 5L say, to be11. The surface
magnetization is then the expectation value ofsz at the other
end (i 51). This is equivalent to deleting the transverse fie
on site L, so sL

z commutes with the Hamiltonian and th
ground state isexactlydoubly degenerate, and calculating t
expectation value ofs1

z in the ground state withsL
z51. Let

us denote this state byu0̃&. So

ms5^0̃us1
zu0̃&. ~4!

This has a simple form,7,9 namely,

ms5F11 (
i 51

L21

)
j 51

i S hj

Jj
D 2G21/2

. ~5!

Igloi and Rieger7 used this to numerically compute the di
tributions of B52 ln(ms), Pc(B), and Pmc(B) in the two
ensembles.

However it is also possible to obtain the distribution fun
tions analytically10 for L→` and we rederive those resul
here. First consider the canonical case. Letxl5(hl /Jl)

2.
Then from Eq.~5! we get

BL5 1
2 ln†11x1„11x2$11x3@11•••~11xL21!•••#%…‡

5 1
2 ln@11x1e2BL21#' 1

2 ln x11BL21 . ~6!

The above approximation is good most of the time sinceBL
is expected to be of the order ofL1/2. For smallBL we notice
that the increment inBL is always positive and soBL can
never become negative. This and Eq.~6! mean thatBL can be
effectively described by a biased random walk~in which L is
the time variable! with a reflecting wall at the origin. It is
convenient to introduce a scaled length variable

,5L
var~ ln h!1var~ ln J!

2
, ~7!

in terms of which the probability distributionPc(B,L) can
be written as

Pc~B,L !5 P̃~B,, !. ~8!

Then in the continuum limit, it is easy to see thatP̃(B,,)
satisfies the following equation:

] P̃

],
5

]2P̃

]B2
22d̄

] P̃

]B
, ~9!

whered̄ is given by Eq.~2!. The reflecting boundary condi
tion is imposed by requiring the current at the originB50 to
be zero, thus@] P̃/]B22d̄ P̃#B5050. This problem is math-
ematically equivalent to Brownian motion in a gravitation
field and its solution, for identical boundary conditions,
discussed in Ref. 11. With the initial conditionP̃(B,L50)
5d(B) we find that the solution of the above equation is10
13444
-

l

Pc~B,L !5 P̃~B,, !5u~B!F 1

~,p!1/2
e2(B22, d̄)2/4,

2 d̄ e2d̄BerfcS B12d̄,

2,1/2 D G . ~10!

where erfc is the complementary error function.
For the microcanonical ensemble the distributi

Pmc(B,L) can be found using the result that it is related
Pc(B,L) through the general transformation Eq.~A6!. One
then gets10

Pmc~B,L !52u~B!u~B22d, !S B

,
2d De2(B2/L)12Bd.

~11!

Note thatPc(B,L) is a function of the two scaling vari
ablesb5B/,1/2 andd̄,1/2, and similarlyPmc(B,L) is a func-
tion of d,1/2 as well asb. According to finite-size scaling, the
scaling variable associated with the deviation from critical
(d or d̄ here! should be proportional toL1/n. Hence Eqs.~10!
and~11! show that the true correlation length, as determin
from finite-size scaling, isn52.

Now that we have the complete distributions forB5
2 ln(ms) we can calculate themeansurface magnetization
Even though we find that@2 ln(ms)#av;L1/2 in both en-
sembles, the behavior of the mean ofms ~rather than its log!
is quite different in the two ensembles. This is becausems

5e2B and so the main contribution toms comes from the
behavior ofP(B) at smallB ~i.e., from rare samples with
ms'1). For largeL we find the following asymptotic forms
for the mean magnetization. In the canonical case

@ms#av
c 5

e2 d̄2,

~p, !1/2
2 d̄ erfc@ d̄,1/2# ~12!

while in the microcanonical ensemble we get

@ms#av
mc5

2

,
22d ~d,0!

5e22d,S 2d1
1

, D ~d.0!. ~13!

For d̄,1/2@1, Eq. ~12! gives @ms#av
c ;exp(2,/jc) wherejc

51/d̄2, in agreement withn52 deduced earlier. However
for the microcanonical distribution withd,@1, we have
@ms#av

mc;exp(2,/jmc) with jmc51/d. This looks like an ap-
parent correlation length exponent of 1 rather than 2. Ho
ever, it is worth investigating the origin of this discrepan
between the apparent exponents in the two ensembles.
both ensembles the scaling variable isd ~or d̄) L1/2. In the
canonical ensemble, the distribution in Eq.~10! has a con-
stant weight atB50, which leads to the expectedjc

51/d̄2. However, for the microcanonical ensemble, there i
‘‘hole’’ in the distribution for B,2d,. The average is domi-
nated by the part of the distribution with the smallestB, so
this difference in the distributions for smallB accounts for
1-2
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ENSEMBLE DEPENDENCE IN THE RANDOM . . . PHYSICAL REVIEW B68, 134441 ~2003!
the difference in the behavior of the average. Since
weight of the distribution for the microcanonical ensemb
vanishes at smallB, we argue that theamplitudeof the ex-
pected 1/d2 divergence of the correlation length for@ms#av

mc is
zero, and that the resulting behavior,;1/d, is really acor-
rection to scaling. In the rest of this paper we shall reinfor
the conclusion thatn52 in both ensembles but with th
leading amplitude vanishing, in the microcanonical case,
certain quantities that are particularly sensitive to the mic
canonical constraint. This point of view is different from th
of Igloi and Rieger7 who argue thatn is different for the two
ensembles.

For L→` andd ~or d̄) ,0, we get@ms#av522d in both
ensembles, giving a magnetic exponentb51. At the critical
point we find that the mean magnetization decays with s
tem size as

@ms#av
c ;

1

L1/2
, ~14!

@ms#av
mc;

1

L
. ~15!

From finite-size scaling we expect a decay;L2b/n wheren
is the correlation length exponent. While this might sugg
that n52 in the canonical ensemble andn51 in the micro-
canonical case, we feel, as discussed above, that a more
sistent picture is that the amplitude of the leading diverge
of the correlation length appropriate to@ms#av

mc vanishes for
the microcanonical ensemble and that the true exponen
n52 in both cases.

III. BULK MAGNETIZATION

In the preceding section we saw that the correlation len
exponent for the surface magnetization seems, at first gla
to be different in the canonical and microcanonical e
sembles, but we argued that the correct interpretation is
the exponents are the same, i.e.,n52, but the amplitude of
the expected divergence of certain quantities is actually z
for the microcanonical ensemble. In this section
strengthen this argument by investigating the magnetiza
in thebulk of the sample, when a spin at the end is fixed. W
see thesameexponentn52 in both ensembles, clearly ind
cating that a correlation length with an52 divergence does
exist for the microcanonical ensemble. Its absence in
surface magnetization presumably indicates that the lea
amplitude vanishes for this quantity.

We again consider an open chain with the spin at one
fixed tosL

z51 and look at the magnetization at the middle
the chain:

m5^0̃usL/2
z u0̃&. ~16!

Using the free-fermion method this can be expressed as
determinant of a matrix whose elements are expresse
terms of eigenstates of a quadratic Hamiltonian. We evalu
this numerically and compute both the mean of the b
13444
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magnetization and also its distribution in the two differe
ensembles. Here we will only examine the data at the crit
point.

Since the spin at one end is fixed, there are equal num
of hi and Ji , so the definition ofd in Eq. ~3! is slightly
modified, which leads to the condition

(
i 51

L21

~ ln hi2 ln Ji !50 ~17!

for criticality ~i.e., d50) in the microcanonical ensemble
We setJ51 and allowh to take values 2 and 1/2. In th
canonical case eachhi takes one of its two values with equa
probability. In the microcanonical caseexactly half of the
sites, chosen at random, are assignedh52 and the other half
are assignedh51/2, which clearly satisfies Eq.~17!.

The numerical results for the decay of the mean magn
zation with system size are shown in Fig. 1. The mean
seen to behave similarly in both ensembles and the sys
size decay is consistent with the form expected from fin
size scaling@m#av;L2b/n with b5(3251/2)/2 andn52, so
that b/n.0.191.

FIG. 1. Mean of the bulk magnetization, as defined in Eq.~16!,
for different system sizes, evaluated in the two ensembles. The
pected slope from finite-size scaling isb/n.0.191.

FIG. 2. The distribution of the bulk magnetization for differe
system sizes for the canonical ensemble.
1-3
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ABHISHEK DHAR AND A. P. YOUNG PHYSICAL REVIEW B68, 134441 ~2003!
We now look at the distribution ofm. We use the variable
b52 ln(m)/L1/2 since this has good scaling properties. T
details of the distributions ofm, shown in Figs. 2–4, are
different in the two ensembles; in particular the microcano
cal distribution falls off faster at large argument. However,
can be seen in Fig. 4, the behavior at small values of
argument is the same in both ensembles, which leads to
same asymptotic behavior for@m#av.

Thus, unlike the surface magnetization, the bulk magn
zation shows thesamecritical behavior in both ensembles. I
particular, the results of this section indicate that there i
correlation length which diverges with exponentn52 in the
microcanonical ensemble. It is not seen in the surface m
netizationms, for which the correlation length diverges le
strongly with an exponentn51, but this must simply indi-
cate that the amplitude of then52 divergence vanishes fo
ms.

FIG. 3. The distribution of the bulk magnetization for differe
system sizes for the microcanonical ensemble.

FIG. 4. Comparison of the distributions of the bulk magnetiz
tion in the two ensembles for a chain of lengthL5201. On this
log-log plot they appear to have the same slope at small value
the argument. However, at large argument, the microcanonical
tribution falls off faster.
13444
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IV. END-TO-END CORRELATIONS AND GAPS

In this section we investigate numerically the energy g
D and the end-to-end correlation function

C1L5^0us1
zsL

z u0& ~18!

in the canonical and microcanonical ensembles to comp
the results of the two ensembles with each other and w
analytical results2 for the canonical ensemble.

We take the following rectangular distribution for th
bonds and fields at the critical point:

p~J!5H 1 for 0,J,1

0 otherwise,

r~h!5H 1 for 0,h,1

0 otherwise,
~19!

which gives

@ ln h#av521, var~ ln h!51,

@ ln J#av521, var~ ln J!51. ~20!

From this it follows that

,5L, ~21!

where, is defined in Eq.~7!. We use free boundary cond
tions without constraining either of the end spins. From E
~3! and ~20! the condition for criticality in the microcanoni
cal ensemble is

(
i 51

L

ln hi2 (
i 51

L21

ln Ji521 ~microcan.!. ~22!

We initially generatehi and Ji in an unconstrained way, a
for the canonical ensemble, but then rescalehi by an appro-
priate factor so that the above condition is satisfied.

The distributions ofC1L and D were studied earlier by
Fisher and Young2 and we summarize some of their ma
results forL→`:

@C1L#av
c ;

1

L
, ~23!

@D#av
c ;L1/6expF2

3

2 S p2L

2 D 1/3G , ~24!

ln~D!2 ln~C1L!5(
i 51

L

ln ~hi !2 (
i 51

L21

ln ~Ji !. ~25!

In Fig. 5 we compare the system-size dependence of
average correlation function and the gap in the two
sembles. For the canonical case, the data agree well with
analytic predictions in Eqs.~23! and~24!, as was also found
in Ref. 2. However, if we fit the data for the gap to Eq.~24!
adjusting only the overall amplitude,x2 is 150 which is very
high. Hence there must be systematic corrections to Eq.~24!
which are larger for the sizes studied than the very sm
statistical errors.

-

of
is-
1-4
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ENSEMBLE DEPENDENCE IN THE RANDOM . . . PHYSICAL REVIEW B68, 134441 ~2003!
For the microcanonical ensemble, the data forboth
@C1L#av

mc and @D#av
mc in Fig. 5 appear to decay as stretch

exponentials, and we will discuss fits to this data below.
Interestingly, the value of@C1L#av is found to be close to

@m1
smL

s #av, wherem1
s (mL

s) is the surface magnetization a
site 1 ~L! with the spin at siteL (1) fixed. This can be see
in Figs. 6 and 7 where we plot both these quantities, as w
as @m1

s#av
2 , for different system sizes. Especially in the c

nonical case,@C1L#av and@m1
smL

s #av are almost indistinguish
able. Note that for the microcanonical, but not the canoni
ensemble@m1

s#av
2 is much greater than@m1

smL
s #av. The reason

for this is that@m1
s#av is dominated by a few rare sample

where the bonds are bigger than the fields at the free
~and hence, for the microcanonical ensemble, must be
than the fields at the other end because of the constra!.
Hence for these samplesmL

s is smaller than the typical valu
in the microcanonical ensemble.

Since@C1L#av and@m1
smL

s #av behave similarly we can ob
tain a better estimate for the decay law in the microcan

FIG. 5. Plot of the mean values of the end-to-end correlat
function C1,L and the energy gapD for both the canonical and
microcanonical ensembles. In the canonical case, the fits are
to those predicted analytically and given in Eqs.~23! and~24!. For
microcanonical ensemble, the lines are just guides to the eye.

FIG. 6. Plot of the mean correlation function@C1,L#av
c vs system

size compared with@m1
smL

s #av
c and (@m1

s#av
c )2, for the canonical en-

semble. The (@m1
s#av

c )2 data falls as 1/L as expected from Eq.~14!.
13444
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ical case. This is becausem1
smL

s can be obtained directly
from Eq. ~5! and thus be accurately computed numerica
for bigger systems. We assume the same form as in the e
result for the gap in the canonical case, Eq.~24!, i.e.,
aLpexp(2bLm), and takem51/3, the same value as in Eq
~24!. The data shown in Fig. 8 is fitted toaLpexp(2bL1/3) by
varyinga andb for several~fixed! values ofp. The minimum
x2 of 3.9, which is quite acceptable for three degrees
freedom, is obtained forp.0.44. It we assume thatp
51/6, as for the canonical case thenx251380 which is ex-
tremely high. However, we noted for the canonical case, t
there appear to be corrections to the scaling form in Eq.~24!.
Hence we cannot rule out the possibility thatp51/6 also for
the microcanonical ensemble.

From Figs. 5 and 7, it seems plausible that@m1
smL

s #av
mc,

@C1L#av
mc, and@D#av

mc all vary in the same way in the micro
canonical ensemble. If this is so then the data for the ga
consistent with the stretched exponential formaL1/6

3exp(2bL1/3), for both canonical and microcanonical e
sembles, though there are some systematic corrections to
for the range of sizes that can be studied. This is known to

n

se

FIG. 7. Plot of the mean correlation function@C1,L#av
mc vs system

size compared with@m1
smL

s #av
mc and (@m1

s#av
mc)2, for the microcanoni-

cal ensemble. The data for (@m1
s#av

mc)2 decays as 1/L2 as expected
from Eq. ~15!.

FIG. 8. Plot of@m1
smL

s #av
mc againstL for different system sizes

for the microcanonical ensemble. A best fit to the formaLpe2bL1/3

with p50.44 (x253.9) is shown. The inset plotsx2 againstp.
1-5
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exact for the canonical ensemble, see Eq.~24!. It would be
interesting to see if the dependence of gap on system
couldbe determined analytically for the microcanonical e
semble using random-walk arguments.

The distribution of the difference ln(D)2ln(C1L)11 is
plotted in Figs. 9 and 10. In the canonical case, Eqs.~25! and
~20! predict a Gaussian distribution with zero mean and st
dard deviationA2L for large L. Figure 9 shows that this
works very well for the full range of sizes studied nume
cally. Equations~22! and ~25! predict that ln(D)2ln(C1L)
11 should be identically zero in the microcanonical e
semble forL→` and hence its distribution should be a de
function at the origin. Indeed the distribution in Fig. 10
narrow and sharply peaked at zero with a width that dece
asL increases, consistent with these expectations.

Finally we look at the distributions ofC1L and m1
smL

s .
The scaling variables are2 l52 ln(C1L)/L

1/2 and d
52 ln(m1

smL
s)/L1/2 and relevant plots are shown in Figs. 1

and 12 for the canonical and microcanonical ensembles
spectively. We see that in the canonical case the overall

FIG. 9. Distribution of @ ln(D)2ln(C1L)11#/(2L)1/2 for the ca-
nonical case. The analytic form, deduced from Eq.~25!, is a Gauss-
ian with variance unity. This is shown by the solid line.

FIG. 10. Distribution of@ ln(D)2ln(C1L)11#/(2L)1/2 for the mi-
crocanonical case. Equations~22! and ~25! predict that ln(D)
2ln(C1L)11 should be identically zero in the thermodynamic lim
The data seem to be tending towards this for largeL.
13444
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tributions of l and d are different at large arguments, b
they match very accurately at small values of the argum
leading to the same behavior for the averages@C1L#av

c and
@m1

smL
s #av

c shown in Fig. 6. In the microcanonical case, t
overall distributions are quite similar but the agreement
small values of the argument is not as good as in the can
cal case. This leads to a greater difference, shown in Fi
between the averages@C1L#av

mc and @m1
smL

s #av
mc than in the

canonical case.
To summarize this section, for the canonical ensem

the end-to-end correlation function@C1L#av falls off at criti-
cality with a power ofL, as predicted analytically, see Eq
~23!. However, for the microcanonical ensemble it falls o
much faster, as a stretched exponential function of dista
The average gap@D#av falls off with a stretched exponentia
form at criticality in both ensembles, with probably thesame
dependence onL.

V. DISCUSSION

In this paper we have looked numerically at the finite-s
dependence of various quantities for the random transve
field Ising chain~RTFIC! at criticality, for both the canonica
and microcanonical ensembles of disorder. For quanti

FIG. 11. Probability distributions ofC1L andm1
smL

s for system
sizesL532 and 128 for the canonical ensemble.

FIG. 12. Probability distributions ofC1L andm1
smL

s for system
sizesL532 and 128 for the microcanonical ensemble.
1-6
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ENSEMBLE DEPENDENCE IN THE RANDOM . . . PHYSICAL REVIEW B68, 134441 ~2003!
that span the system,ms andC1L , finite-size scaling appears
at first glance, to indicate different correlation length exp
nents for the two ensembles:n52 for canonical andn51
for the microcanonical. However, in contrast to Igloi a
Rieger,7 we conclude that the correct interpretation is that
true scaling exponent is the same for the two ensemblen
52, but that the amplitude for the leadingn52 piece is
zero, in the microcanonical ensemble, for quantities that s
the system and are thus sensitive to the microcanonical
straint. Our reasons for this are two fold.

~1! For the ‘‘bulk’’ magnetizationm, which does not span
the system, the same correlation length exponentn52 was
found for both ensembles, indicating that thereis a correla-
tion length in the microcanonical ensemble which diverg
with the larger exponentn52. Hence, if this is not seen fo
quantities that span the system, the explanation must be
the amplitude is zero, not that this larger length scale d
not exist.

~2! The analytical expressions for the distribution of t
surface magnetizationms, first obtained by Fisher,10 show
that the scaling variables ared̄L1/2 ~canonical! anddL1/2 ~mi-
crocanonical!, demonstrating that the true correlation leng
exponent isn52 in both cases.

Our interpretation of the data implies that the inequality4,5

n>2/d is satisfied~as an equality! for the RTFIC, in contrast
to the conclusion of Pazmandiet al.3

We have also looked at the energy gap between
ground state and first excited state at criticality. For both
canonical and microcanonical ensembles, a stretched e
nential decay describes the data. For the canonical case
exponentm ~the power ofL in the exponential! is exactly2

1/3, and our numerical data are consistent withm51/3 for
the microcanonical case too.

The present model, the RTFIC, is integrable and thus r
tively simple. In particular, the existence of the simple an
lytical expression for the surface magnetizationms, Eq. ~5!,
is surely related to the integrable nature of the model. F
thermore, the microcanonical constraint)hi5)Ji enters di-
rectly in this expression. Thus one can plausibly see how
constraint might affect quantities that span the system
cause amplitudes for these quantities to vanish. However
nonintegrable models, including models in higher dime
sions, one would not expect the microcanonical constrain
enter in a direct way even for quantities that span the wh
system. Thus it seems unlikely to us that there would be e
an apparentdifference in the critical behavior of noninte
grable models in the two ensembles. We also note that
microcanonical and canonical ensembles of disorder h
been investigated for finite-T transitions in random system
by Aharonyet al.12 They find no difference asymptoticall
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between the critical behavior and finite-size effects of
canonical and microcanonical ensembles~which they term
grand canonical, and canonical respectively!.
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APPENDIX

Measurements made in the two ensembles are in fac
lated to each other by a simple transformation at largeL. To
see this note that

d5(
i 51

L

j i , ~A1!

where

j i5
1

L

ln hi2 ln Ji

var~ ln h!1var~ ln J!
. ~A2!

Thus d is a sum ofL uncorrelated random numbersj i , i
51, . . . ,L, with mean

@j i #av5 d̄/L ~A3!

and variance

@j i
2#av2@j i #av

2 5
1

L2

1

var~ ln h!1var~ ln J!
. ~A4!

Using the central limit theorem and the definition of, in Eq.
~7! we find that in a canonical realization with givend̄ the
probability Pd̄(d) of obtaining the precise valued is

Pd̄~d!5S ,

p D 1/2

e2,(d2 d̄)2
, ~A5!

for L→`.
Now let Pc(A,d̄) andPmc(A,d) be the probability distri-

butions of some observableA in the canonical and microca
nonical ensembles, respectively. The two are related by

Pc~A,d̄ !5E
2`

`

Pmc~A,d!Pd̄~d! dd. ~A6!

Correspondingly, expectation values in the two ensemb
are related by

@A#av
c ~ d̄ !5E

2`

`

@A#av
mc~d! Pd̄~d! dd. ~A7!

du/
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