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Ensemble dependence in the random transverse-field Ising chain
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In a disordered system one can either consider a microcanonical ensemble, where there is a precise con-
straint on the random variables, or a canonical ensemble where the variables are chosen according to a
distribution without constraints. We address the question as to whether critical exponents in these two cases can
differ through a detailed study of the random transverse-field Ising chain. We find that the exponents are the
same in both ensembles, though some critical amplitudes vanish in the microcanonical ensemble for correla-
tions which span the whole system and are particularly sensitive to the constraint. Théppear as a
different exponent. We expect that this apparent dependence of exponents on ensemble is related to the
integrability of the model, and would not occur in nonintegrable models.
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. INTRODUCTION [Inh]y—[InJ]a

0= var(inh)+vaninJ)’ @

In the study of the critical behavior of disordered systems,
it is usual to pick the random variables from some distribu-For the microcanonical ensemble we consttgiandJ; such
tion. This allows sample-to-sample fluctuations in the sum othat the parameter
the interactionge.g., nearest neighboof orderN. We will

L L-1
call this the canonical ensemble of disorder, by analogy with 2 Inh — E InJ.—[Inh]
the canonical ensemble of statistical mechanics which allows 1 =1 =] : av
fluctuations in the energy. It is sometimes of interest to com- o= L1 var(inh) +var(in J) ()]

plete this analogy and define a microcanonical ensemble of
the disorder in which there is a strict constraint, for examplejs set to a prescribed value feachsample. The last term in
by fixing exactly the sum of thée.g., nearest-neighboin-  the numerator, which is not necessary to get the asymptotic
teractions in each sample. Our experience from conventiondiehavior, corrects for there being one mékethan J; with
statistical mechanics tells us that in the thermodynamic limifree boundary conditions. It ensures tﬁaf[g]av even for a
the choice of ensembles does not matter, but it is not veryinite system. In the canonical ensemble, the fluctuatiors in
clear that this is also true for random systems, especially fofrom sample to sample a@(1/JL). Pazmandget al® have
the case of quanium phase transitions. argued that it is precisely th@(1/yL) fluctuations that lead
There is a useful bound=2/d,""" on the f|n_|te-sé|ze COr-  to the inequalityp=2/d. It is known that a phase transition
{ﬁﬁtﬁ?slir;ﬁ];g de;(spag?:f. oHrg\l,vaevien nciifrrgstnigt tilé ilrgilrjss ir'occurs in this model a#= 0. All our numerical results in the
9 ' Raaper will be at the critical point.

Refs. 4,5, and that exponents in the microcanonical ensemb Using the Jordan-Wigner transformation, the Hamiltonian

need not satisfy this bound. In addition, Igloi and Riéger f the RTFIC can be mapped to a free-fermion problem and

claim that the exponents of a particular one-dimension his mapping is particularly useful in the context of numeri-

model can depend on the choice of ensemble. In this Papel computations. It can be shown that various physical

our main goal is to investigate these claims through a Ole('quantities can be expressed in a straightforward way in terms
trf]ucl)t(aj(;lstudy of the zero-temperature critical properties of thISof the eigenvalues and eigenstates of the free Hamiltonian,

In this paper we will study the simplest disordered modelWhlch are easy to evaluate numerically. These have been

with a quantum phase transition, the random transverse-fiel jscussed by several authors in earlier papeznd we will
Ising chain(RTFIC) (Refs. 1,2 with the Hamiltonian ot repeat the derivations here but will use those results in

our numerical calculations. In this paper we look at the sur-

L-1 L face and bulk magnetizations, the end-to-end correlation
H=— E Jiaizgizﬂ_z h,o?, (1)  function, and the energy gap. For the surface magnetization,
i=1 i=1 the free-fermion method leads to a simple form and it is
possible to obtain some detailed results analytically. We first
discuss this in Sec. Il and then present numerical results for
various other quantities in Secs. Il and IV. Our conclusions
are summarized in Sec. V.

where J;>0 andh;>0 are random variables chosen from
distributions p(h) and =(J) with averages[Inh],, and
[InJ],, and variances var(ln) and var(InJ). We usefree
boundary conditions, so the sum for thestops atL— 1.

Let us define the two ensembles, microcanonical and ca-
nonical, precisely for this model. For the canonical ensemble ll. SURFACE MAGNETIZATION
hj andJ; are chosen randomly. A parameter which character- The simplest quantity to calculate is the surface magneti-
izes the deviation from criticality i$ where zationm?®, which is defined with free boundary conditions in
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which we fix c* at one endi=L say, to be+ 1. The surface _
magnetization is then the expectation valuerbfat the other PS(B,L)=P(B,¢)=6(B) e (B-209)%4¢
end (=1). This is equivalent to deleting the transverse field (€m)Y?
on siteL, so of commutes with the Hamiltonian and the B B125¢
ground state igxactlydoubly degenerate, and calculating the — 5e2%Bgy ({_ (10)
expectation value of in the ground state wito?=1. Let 24172
us denote this state H9). So where erfc is the complementary error function.
For the microcanonical ensemble the distribution
ms=(0||0). (4 P™YB,L) can be found using the result that it is related to
P¢(B,L) through the general transformation E&6). One
This has a simple form? namely, then get&
1 - B
. 1+L§:1 i (m)z} 1/2. © Pmc(B’L):20(8)0(8_25€)<?_5)e_(32/L)+ZB§.
=1 j=1 Jj (11)

Igloi and Riegef used this to numerically compute the dis-  Note thatPS(B,L) is a function of the two scaling vari-
tributions of B= —In(n%), P(B), and P,(B) in the two  aplesh=B/¢Y2and5¢2 and similarlyP™(B,L) is a func-
ensembles. . _ o tion of 5¢%2 as well ah. According to finite-size scaling, the
However it is also possible to obtain the distribution func-scajing variable associated with the deviation from criticality
tions analytically® for L— and we rederive those regults (5 or 8 herd should be proportional th%””. Hence Eqs(10)
_kllﬁre. fF|rst EconS|der the canonical case. ket (h;/J))". and(11) show that the true correlation length, as determined
en from Eq.(5) we get from finite-size scaling, i3’=2.
L Now that we have the complete distributions Br=
BL=zIN[1+x1(1+xp{14Xa[1+ (14X, 1) ]})] —In(m®) we can calculate theneansurface magnetization.
= L[ 1+ x,e?Bt-1]~Linx, + By ;. 6 Even though we find thaf — In(m) ], ~LY? in both en-
sembles, the behavior of the meannot (rather than its log
The above approximation is good most of the time siBge  is quite different in the two ensembles. This is becamSe
is expected to be of the order b2 For smallB, we notice =€ ° and so the main contribution t* comes from the
that the increment ifB, is always positive and sB8, can  behavior ofP(B) at smallB (i.e., from rare samples with
never become negative. This and E8).mean thaB, canbe ~M°~1). For largeL we find the following asymptotic forms
effectively described by a biased random watkwhich L is ~ for the mean magnetization. In the canonical case

the time variablg with a reflecting wall at the origin. It is =y
. ) ) e~
convenient to introduce a scaled length variable [m*)5=———, — derfd 6¢*7] (12
(Wf)l 2
(= Lvar(ln h)42—var(InJ) , 7) while in the microcanonical ensemble we get
. . - . . . syjmc 2
in terms of which the probability distributioR(B,L) can [M°]ay :?_25 (6<0)
be written as
~ =e 29| 25+ 1 (6>0) (13
P¢(B,L)=P(B,{). (8) ¢ :
Then in the continuum limit, it is easy to see tHa¢B,¢) FO'@”ZM’ Eq. (12) gives [m°],~exp(~ /&) where &,
satisfies the following equation: =1/6°, in agreement withv=2 deduced earlier. However,
for the microcanonical distribution witl¢>1, we have
P 2P _JP [Me]n ~ exp(— /&y with &,.=1/8. This looks like an ap-

=——25—, (9) parent correlation length exponent of 1 rather than 2. How-
at B2 JB ever, it is worth investigating the origin of this discrepancy
o between the apparent exponents in the two ensembles. For
whered is given by Eq.(2). The reflecting boundary condi- poth ensembles the scaling variablesigor 5) L¥2 In the
tion is imposed by requiring the current at the origir0 to  canonical ensemble, the distribution in EG0) has a con-
be zero, thu§dP/dB—26P]g_o=0. This problem is math- stant weight atB=0, which leads to the expecteéd.
ematically equivalent to Brownian motion in a gravitational = 1/52. However, for the microcanonical ensemble, there is a
field and its solution, for identical boundary conditions, is “ngle” in the distribution for B<245¢. The average is domi-
discussed in Ref. 11. With the initial conditid?(B,L=0) nated by the part of the distribution with the smallBstso
= §(B) we find that the solution of the above equatiolfis this difference in the distributions for smal accounts for

134441-2



ENSEMBLE DEPENDENCE IN THE RANDOM . .. PHYSICAL REVIEW B8, 134441 (2003

the difference in the behavior of the average. Since the 0.5
weight of the distribution for the microcanonical ensemble =
vanishes at smalB, we argue that theamplitudeof the ex- N
pected 142 divergence of the correlation length fan®]0.° is <
zero, and that the resulting behavier1/5, is really acor- e ™
rectionto scaling. In the rest of this paper we shall reinforce i
the conclusion thatr=2 in both ensembles but with the

leading amplitude vanishing, in the microcanonical case, for . N
certain quantities that are particularly sensitive to the micro- :m;g”'gf;'nonical ‘\ N
canonical constraint. This point of view is different from that e 01e7 008 AR
of Igloi and Riegef who argue thav is different for the two ———- slope= 0.202+/ 0.002 i\

ensembles. - 0.3 : : ~
ForL—o andé (or ) <0, we gef mg],,=—26 in both 50 100 L 200 400

ensembles, giving a magnetic expongrt 1. At the critical
point we find that the mean magnetization decays with sys-
tem size as

[ml,,

FIG. 1. Mean of the bulk magnetization, as defined in @),
for different system sizes, evaluated in the two ensembles. The ex-
pected slope from finite-size scaling #¢r=0.191.

[ms]g\pim, (14 o e :
L magnetization and also its distribution in the two different
ensembles. Here we will only examine the data at the critical
1 point.
[mS]or~ r (15 Since the spin at one end is fixed, there are equal numbers

of h; and J;, so the definition ofs in Eq. (3) is slightly

From finite-size scaling we expect a decay. ~#/” wherep ~ Modified, which leads to the condition

is the correlation length exponent. While this might suggest L1

that v=2 in the canonical ensemble ame-1 in the micro- D B

canonical case, we feel, as discussed above, that a more con- “ (Inh;=InJ;)=0 (17
sistent picture is that the amplitude of the leading divergence

of the correlation length appropriate fon®], vanishes for  for criticality (i.e., 5=0) in the microcanonical ensemble.
the microcanonical ensemble and that the true exponent ig/e setJ=1 and allowh to take values 2 and 1/2. In the

v=2 in both cases. canonical case eadh takes one of its two values with equal
probability. In the microcanonical casxactly half of the
IIl. BULK MAGNETIZATION sites, chosen at random, are assighed® and the other half

) . ) are assigneth=1/2, which clearly satisfies Eq17).
In the preceding section we saw that the correlation length  The numerical results for the decay of the mean magneti-
exponent for the surface magnetization seems, at first glancgation with system size are shown in Fig. 1. The mean is
to be different in the canonical and microcanonical en-seen to behave similarly in both ensembles and the system-

sembles, but we argued that the correct interpretation is thajjze decay is consistent with the form expected from finite-
the exponents are the same, i 2, but the amplitude of  gjze scalingm],,~L 4 with B=(3—5Y3)/2 andv=2, so

the expected divergence of certain quantities is actually zerghat g/,~0.191.

for the microcanonical ensemble. In this section we

strengthen this argument by investigating the magnetization

in the bulk of the sample, when a spin at the end is fixed. We 10

see thesameexponentr=2 in both ensembles, clearly indi-

cating that a correlation length withia=2 divergence does

exist for the microcanonical ensemble. Its absence in the

surface magnetization presumably indicates that the leading =

amplitude vanishes for this quantity. a 10
We again consider an open chain with the spin at one end

fixed too{ =1 and look at the magnetization at the middle of

the chain:

Canonical

m=(0|o?,|0). 16 10° :
(Oloi210) (18) 0.0 0.5 1.0
Using the free-fermion method this can be expressed as the b=-In(m)/L
determinant of a matrix whose elements are expressed in

terms of eigenstates of a quadratic Hamiltonian. We evaluate FIG. 2. The distribution of the bulk magnetization for different
this numerically and compute both the mean of the bulksystem sizes for the canonical ensemble.

12
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9 IV. END-TO-END CORRELATIONS AND GAPS
10 Micro—Canonical . . . . .
In this section we investigate numerically the energy gap
5 A and the end-to-end correlation function
10
C1.=(0[o70([0) (18
E/ 10™ in the canonical and microcanonical ensembles to compare
the results of the two ensembles with each other and with
analytical resultsfor the canonical ensemble.
1072 We take the following rectangular distribution for the
bonds and fields at the critical point:
10° 1 for0<J<1
0 0.5 1 m(J)= i
T 0 otherwise,
b=-In(m)/L
1 for0O<h<l1
T o . p(h)= . (19
FIG. 3. The distribution of the bulk magnetization for different otherwise,
system sizes for the microcanonical ensemble. . .
which gives
We now look at the distribution ah. We use the variable [Inh],=—1, vallnh)=1,
b= —In(m)/L'? since this has good scaling properties. The
details of the distributions ofn, shown in Figs. 2—4, are [InJ]a=—1, va(lnJ)=1. (20)

different in the two ensembles; in particular the microcanoni-rom this it follows that
cal distribution falls off faster at large argument. However, as
can be seen in Fig. 4, the behavior at small values of the =L, (21

argument is the same in both ensembles, which leads to the, -, is defined in Eq(7). We use free boundary condi-

same asymptotic behavior fpm],. _tions without constraining either of the end spins. From Egs.

Thus, unlike the surface magnetization, the bulk magnetitg) a0 (20) the condition for criticality in the microcanoni-
zation shows theamecritical behavior in both ensembles. In cal ensemble is

particular, the results of this section indicate that there is a
correlation length which diverges with exponent 2 in the L
microcanonical ensemble. It is not seen in the surface mag- > Inhj— >, InJ;=—1 (microcan). (22
netizationm®, for which the correlation length diverges less - 1
strongly with an exponent=1, but this must simply indi- We initially generateh; andJ; in an unconstrained way, as
cate that the amplitude of the=2 divergence vanishes for for the canonical ensemble, but then resdalby an appro-
ms. priate factor so that the above condition is satisfied.

The distributions ofC;;, and A were studied earlier by
Fisher and Youngand we summarize some of their main
results forL — oe:

L-1

10'
c 1
o [Cila™ L’ (23
— 3 77.2|_ 1/3
Q 16,
a 10" [Alg~L* exr{—g( 5 ) } (24)
5 A——a Canonical: L=201 ) L L-1
107 - = = Microcanonical: L=201 ] IN(A)—In(Cy)=2, In(h)— > In(Jp). (25)
. =1 =1
107 ; Iul In Fig. 5 we compare the system-size dependence of the
10 i 10° average correlation function and the gap in the two en-

1
/ . .
b=—|n(m)/L1 2 sembles. For the canonical case, the data agree well with the

analytic predictions in Eqg23) and(24), as was also found
FIG. 4. Comparison of the distributions of the bulk magnetiza-IN Ref. 2. However, if we fit the data for the gap to ER4)
tion in the two ensembles for a chain of lendth-201. On this adjusting only the overall amplitudg? is 150 which is very
log-log plot they appear to have the same slope at small values dfigh. Hence there must be systematic corrections toZ.
the argument. However, at large argument, the microcanonical digvhich are larger for the sizes studied than the very small,
tribution falls off faster. statistical errors.
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107" ‘ ‘ , P
I\\ | 0_
107 &__ !
¥ s T = | 0_3 E|
‘0-3 f::‘\\\\ 4
v s ”
e T 10
107 i e mc
®C, (Can) - ~o [ — [C ]
W Gap (Can) - M ] 0—5 | 1S L avs e
5 | #C, (Miro) =—a[m,m ]
10 E V-V Gap(Micro) ) $ me, 2V
—— slope=—0.977+/-0.01 e, . ¢ ([m’.]
16 113 14 av.
— —- 3.556L"exp(-3/2(’L/2)") [ 0—6
-6 . ) t 1 L L i
0 16 32 64 128 16 32 64 128
L L

FIG. 5. Plot of the mean values of the end-to-end correlation FIG. 7. Plot of the mean correlation functip@,, 1%, vs system
function C;, and the energy gap for both the canonical and size compared withmim; 1% and (m3]3,)?, for the microcanoni-
microcanonical ensembles. In the canonical case, the fits are clogal ensemble. The data fofrg;]n)? decays as 17 as expected
to those predicted analytically and given in E¢&3) and (24). For from Eq. (15).
microcanonical ensemble, the lines are just guides to the eye.

ical case. This is becauseim; can be obtained directly
from Eq. (5) and thus be accurately computed numerically
for bigger systems. We assume the same form as in the exact
result for the gap in the canonical case, H84), i.e.,

s s s , su - o alLPexp(~bL*), and takeu=1/3, the same value as in Eq.
[mim; ], Wherem; (m}) is the surface magnetization at (24). The data shown in Fig. 8 is fitted &1 Pexp(—bL*3) by

site 1 (L) with the spin at sitd (1) fixed. This can be seen varyinga andb for severalfixed) values ofp. The minimum

in Figs. 6 and 7 where we plot both these quantities, as well 2 "¢ 3.9, which is quite acceptable for three degrees of
as[m3]2,, for different system sizes. Especially in the Ca-freedom, is obtained fop=0.44. It we assume thap
nonical casef,Cy ]y and[mim; ], are almost indistinguish- = 1/6, as for the canonical case thegf= 1380 which is ex-
able. Note that for the microcanonical, but not the Canonicaltreme|y h|gh However, we noted for the canonical case, that
ensembld m;13, is much greater thafm;m¢],,. The reason  there appear to be corrections to the scaling form in(E4.

for this is that[m3],, is dominated by a few rare samples Hence we cannot rule out the possibility thet 1/6 also for
where the bonds are bigger than the fields at the free enghe microcanonical ensemble.

(and hence, for the microcanonical ensemble, must be less From Figs. 5 and 7, it seems plausible that;m; "

than the fields at the other end because of the cons)traint[cll_]gﬂvcl and[A]%¢ all vary in the same way in the rﬁ\i/c’ro-

Hence for these samples; is smaller than the typical value canonical ensemble. If this is so then the data for the gap is
in the microcanonical ensemble. consistent with the stretched exponential forel'®
Since[ Cy; 1oy and[ mim; 1., behave similarly we can ob- x exp(~bLY3), for both canonical and microcanonical en-
tain a better estimate for the decay law in the microcanonsembles, though there are some systematic corrections to this
for the range of sizes that can be studied. This is known to be

For the microcanonical ensemble, the data fwth
[Cy ]0’ and [A]RS in Fig. 5 appear to decay as stretched
exponentials, and we will discuss fits to this data below.

Interestingly, the value dfC;, ],, is found to be close to

4
0.04 ¥ o~
r . w41 5L *exp(-3.95L")
0.02 | ¢ 107
I o[C,L, ﬁ 100
Afmem L, E 107 |
001 [ & &(m L) * E 8T
slope=-0.977+/-0.01 L | o bl
(fit to [C,I}, data) 107 T ) '
0.005 : : 5 ‘ .
16 32 64 128 10™" 032 04 p 048 056 . p
L 16 32 64 128 256 512

FIG. 6. Plot of the mean correlation functipgy, 15, vs system
size compared withmim¢]S, and (m3]5,)?, for the canonical en-
semble. The[(m3]5,)? data falls as 1/ as expected from Ed14).
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for the microcanonical ensemble. A best fit to the famiPe
with p=0.44 (y®=3.9) is shown. The inset plotg> againstp.
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L
® 16
= 32
+ 64
v 128

Analytic

P(x)

10 ; X .
9 1 S

‘ ‘ 2
x=[In(A)-In(C,)+11/(2L)"* x=-In(y)

o s FIG. 11. Probability distributions of,. andmim; for system
FIG. 9. Distribution of[In(A)—In(C,)+1]/(2L)"* for the ca- sizeslL =32 and 128 for the canonical ensemble.
nonical case. The analytic form, deduced from &%), is a Gauss-

ian with variance unity. This is shown by the solid line. I .
an with vart dnty. This wn By ol tributions of \ and d are different at large arguments, but

they match very accurately at small values of the argument
Sading to the same behavior for the averap@s, ];, and
mim;]5, shown in Fig. 6. In the microcanonical case, the
overall distributions are quite similar but the agreement at
small values of the argument is not as good as in the canoni-

plotted in Figs. 9 and 10. In the canonical case, E2.and cal case. This leads to a greater difference, shown in Fig. 7
' : ' : ¢ than in the

mc S ASTM
(20) predict a Gaussian distribution with zero mean and stanP€tween the averagg<,, J,,” and [mim( ],
dard deviation\2L for large L. Figure 9 shows that this Cc&nonical case. , .
works very well for the full range of sizes studied numeri-  T0 summarize this section, for the canonical ensemble,

cally. Equations(22) and (25) predict that Ind)—In(Cy) the. end_—to-end correlation functit_ilclL]a\, fallg off at criti-
+1 should be identically zero in the microcanonical en-Cality with a power ofL, as predicted analytically, see Eq.

semble forl. — and hence its distribution should be a delta(23)' However, for the microcanonical ensemble it falls off
function at the origin. Indeed the distribution in Fig. 10 is much faster, as a stretched exponential function of distance.

narrow and sharply peaked at zero with a width that deceas?-@e average gapA ], falls off with a stretched exponential
asL increases, consistent with these expectations. orm at criticality in both ensembles, with probably th@&me

Finally we look at the distributions o€, and mim . dependence oh.
The scaling variables &re A=—In(Cy)/LY? and d
= —In(m;n)/LY2 and relevant plots are shown in Figs. 11 V. DISCUSSION
and 12 for the canonical and microcanonical ensembles, re-

spectively. We see that in the canonical case the overall dis- In this paper we _have Iooke@ numerically at the finite-size
dependence of various quantities for the random transverse-

field Ising chain(RTFIC) at criticality, for both the canonical

exact for the canonical ensemble, see &4). It would be
interesting to see if the dependence of gap on system si
couldbe determined analytically for the microcanonical en
semble using random-walk arguments.

The distribution of the difference IAjJ—In(Cy)+1 is

and microcanonical ensembles of disorder. For quantities
10°
107" | s
X 10
o y L
*—xC 32
107 " 128 5
‘ ] o —em'm’ 32 <
0 0.05 o1 0.15 > —o 128
x=[In(A)-In(C,, )+11/2L)" 10 |
0 1 2 4
FIG. 10. Distribution off In(A)—In(Cy, )+ 1]/(2L)"? for the mi- . x=-In(y)/L .

crocanonical case. Equatior®2) and (25) predict that Inf)
—In(Cy)+1 should be identically zero in the thermodynamic limit. FIG. 12. Probability distributions of,, andmimj for system
The data seem to be tending towards this for ldrge sizesL =32 and 128 for the microcanonical ensemble.
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that span the system® andC, , finite-size scaling appears, between the critical behavior and finite-size effects of the
at first glance, to indicate different correlation length expo-canonical and microcanonical ensemb(adich they term
nents for the two ensembles=2 for canonical andv=1 grand canonical, and canonical respectiyely

for the microcanonical. However, in contrast to Igloi and

Rieger’ we conclude that the correct interpretation is that the ACKNOWLEDGMENTS

true scaling exponent is the same for the two ensembles, ) ) )

=2, but that the amplitude for the leading=2 piece is ' We would like to thank D. S Fisher for helpful discus-
zero, in the microcanonical ensemble, for quantities that spap{©ns and correspondence. This work was supported by the
the system and are thus sensitive to the microcanonical cofyational - Science Foundation under Grant No. DMR

straint. Our reasons for this are two fold. 0086287.
(1) For the “bulk” magnetizatiorm, which does not span APPENDIX
the system, the same correlation length exponen2 was ) )
found for both ensembles, indicating that thése correla- Measurements made in the two ensembles are in fact re-

tion length in the microcanonical ensemble which divergedated to each other by a simple transformation at ldrgéo
with the larger exponent=2. Hence, if this is not seen for See this note that

guantities that span the system, the explanation must be that L
the amplitude is zero, not that this larger length scale does 5:2 &, (A1)
not exist. i=1

(2) The analytical expressions for the distribution of thewhere

R . .
surface magnetizatiom®, first obtained by Fishéf show 1 Inh—Ind,

that the scaling variables ag 2 (canonical and 5L Y2 (mi- &=— . (A2)
crocanonical demonstrating that the true correlation length L var(inh) +var(in J)
exponent isv=2 in both cases. Thus 6§ is a sum ofL uncorrelated random numbegs, i

. . . _ =1,... L, with mean
Our interpretation of the data implies that the inequéfity

v=2/d is satisfiedas an equalityfogr the RTFIC, in contrast [&é]a=0IL (A3)
to the conclusion of Pazmandit al. :

We have also looked at the energy gap between th'eazlnd vanance
ground state and first excited state at criticality. For both the 1 1
canonical and microcanonical ensembles, a stretched expo- [0 —[&12=— _
nential decay describes the data. For the canonical case, the L2 var(inh)+var(inJ)
exponentu (the power ofL in the equnentlal IS exactly Using the central limit theorem and the definitionfoin Eq.
1/3, and our numerical data are consistent witk 1/3 for . . : o =
the microcanonical case too. (7) we f|_nd that in a mnp_mcal reallza_t|on with glvemthe

The present model, the RTFIC, is integrable and thus relapmbablllty P3(8) of obtaining the precise valugis
tively simple. In particular, the existence of the simple ana-
lytical expression for the surface magnetizatiof, Eq. (5), P3(6)=
is surely related to the integrable nature of the model. Fur-
thermore, the microcanonical constralbit; =11J; enters di-  for L— 0.

rectly in this expression. Thus one can plausibly see how the Now let Pc(A,g) andP™Y(A, §) be the probability distri-
constraint might affect quantities that span the system anftions of some observablein the canonical and microca-

cause amplitudes for these qu_antities to va_nish_. Howe\_/er, f¥onical ensembles, respectively. The two are related by
nonintegrable models, including models in higher dimen-

sions, one would not expect the microcanonical constraint to A= ® e

enter in a direct way even for quantities that span the whole P(A,0)= fop (A,6)Px6)dé. (AB)
system. Thus it seems unlikely to us that there would be even

an apparentdifference in the critical behavior of noninte- Correspondingly, expectation values in the two ensembles
grable models in the two ensembles. We also note that thare related by

microcanonical and canonical ensembles of disorder have .

been investigated for finité-transitions in random systems c o :J mc

by Aharonyet al? They find no difference asymptotically [Alaf9) —m[A]aV(é) Pa(6)do. (A7)

(A4)

¢ 1/2 o
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