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In this letter, we report a method of measuring the dynamic viscosity of self-propelled active
particles using an intensity-modulated optical tweezer. We have usedna ®apped polystyrene

bead suspended in a bath of motile bacterial cells as a probe. The response function amplitude of the
oscillatory bead directly measures the dynamics of the spatiotemporal structure of the motile
particles. We find that unlike passive systems, the viscosity is defined by distributions of response
function amplitudes that represent the long-range active temporal structures. Appropriate Langevin
equations are set up that capture all these essential featu@@)4American Institute of Physics

[DOI: 10.1063/1.1791325

Pattern formation of self-propelled active particles in al.4, Olympus, JapanA red diode laser5 mW,635 nm,
random media is of interest in biological systems and in thelhorlabs, Newton, NJwas aligned coaxial to the infrared
context of correlated dynamics in soft mattetin a recent laser for tracking the bead in the trap using backscattered
report, we studied the onset of dynamic correlation in selfdight collected on a quadrant detectoFhe laser power was
propelled system of motile bacterial cells using an opticamodulated at a predetermined frequengyby the internal
tweezef* These experiments used a dc optical tweezer anginewave generator of the lock-in amplifiitlA) (model
single particle tracking methods to analyze the time series 0pR830 DSP, Stanford Research Systems).Jhe time se-
the Brownian fluctuations of the trapped bead with and withties of the trapped bead fluctuations in the intensity-
out bacteria. In the absence of an appropriate theoreticdnodulated trap was obtained, with and without bacterial
framework for the dc experiments, we could only extract anPath, using onboard DAQdata acquisition card PCI-MIO
effective dynamic viscosity arising from the nonequilibrium ~16EX10 and analysis was carried out using Labview soft-
nature of active bacterial bath. However, as the active parvare (National Instruments, Austin, TXThe QD amplifier
ticles are known to form spatially coherent structures with €0UtPut was given as input to the LIA and the frequency of
finite lifetime, the dc optical tweezer experiments were inadraP modulation as the reference frequency. The lock-in am-
equate to capture the dynamical correlations arising fronP/fier gives the imaginary/; and realV, components of the

these structures of the active bacteria. In this letter, Wéesponse ?f the r?eﬁc:hfluctualt_;on ;f t\f/12e+\r;1201cjg)latlr(1jgth3|gnal
present a method of using an intensity-moduldsegl optical requency from which the amplitud®=(V; +V;)™*) and the

— 1/
tweezer to probe the temporal dynamics of the bacterial adghaseh(¢—dtar; (V'/.Vf)) of the bﬁad rssp or;)e a;e calc# Iaﬁi
gregates in the bath. Here, the response function amplitu ne hundred points were collected In S from the

: .__(with an averaging time of 0.2)swhich is adequate for sam-
(R) corresponding to- th? frequency of the modulated optlcaﬁ ling the dynamics, but is short enough to ensure that there is
tweezer probes the lifetimes of the coherent structures in thﬁ

. o o significant sedimentation of the bacteria in the medium.
local fluid ba?“- Thus,_the prob_ablhty dlstr|k_)ut|on .Of the re- The sample was stirred and then left for homogenization for
sponse function amplitudB(R) is used to differentiate and

: i ) _about 30 s between any two experiments. Each experiment
characterize the active and passive rheology, not accessiblecioq for 2 h from the time of resuspension of the cells in

through a dc optical tweezer. Langevin equations appropriatgye motility buffer. The motility buffer does not favor bacte-
to the situation are set up that capture all the essential fegjy) growth and thus the cell number remains unchanged. We
tures observed in experiments. . ~_ have also confirmed, by microscopy, that the cell shape and
Schematic of the experimental setup is shown in Figsjze is not changed during the experiment.
1(a). The optical tweezer was set up by focusing an infrared Figure Xb) shows plots of the histograms of the re-
laser beam(SDL-5400 series diode, 830 nm, 200 mW SDL sponse function amplitudéR) for various viscosities corre-
Inc. CA, USA, with L-3724B laser diode controller from sponding to different glycerol concentrations. Comparing the
ILX Lightwave Corporation, Montana, USA to a curves for water and glycerol, it is clear that for a given
diffraction-limited focus using an objective letB00X, N.A  frequency,R is viscosity dependent. In wateR has larger
mean and higher dispersion compared to that at higher vis-
Iauthor to whom correspondence should be addressed: electronic mai£OSities for which the peak is located close to zero. The mean
shiva@ncbs.res.in value of R in water (7,4e~=1) is 0.14 and in glycerol 70%
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L ) ’ | FIG. 2. Probability distribution of response amplitude of the trapped bead at
Oref 10 Hz laser intensity modulation (@ 70% glycerol,(b) 0% glycerol,(c)
active and passive bacterial bath is plotted. Two representative experimental

runs for ¢,.ive=0.01 are shown.

60 (b)* n::01 e 0/ 1 was chosen such that the dynamic viscosity arising due to
{170% g N their presence is similar to that of 70% glycerol. Interest-
a0l /’ . 0.01 "~ ingly, for the same concentration of passive bacteria, we find
3 il '\\.\‘ F:eoquency [LOZ(]’ that the behavior oR is similar to that of water implying the
o ‘/‘- \* 60% absence of aggregation.
200 1 1% e, . 1 In order to understand these results, we first model the
I _,.i"\.\ " .,”0/" power spectrum of the trapped bead in a bacterial bath with-
O_j.‘.-' e ""'--.m out modulatiorf: The motion of the bead trapped in a har-
0.0 R[um] 0.4 monic potential embedded in a viscous medium is usually

described by ignoring the inertial effects using an over-

FIG. 1. (a) Schematic of the experimenth) Histograms of the response damped Langevin equation:
function amplitude of a bead trapped at different passive viscodities dx
different glycerol concentrationst trap modulation frequency,=10 Hz. Y /dt— —kx+ fl(t) +Fg. 1)
;Eiiti'olhoe} fr:;ifné/; lues for 0% and 70% glycerol concentration as & ooy is the displacement of the bead in the trapis the
viscosity term given byy=6myr (r is the bead radius ang
the bare viscosity k is the trap stiffnessé(t) is the thermal
(7giycero=23) is 0.02 and thus the response function ampli-white noise andFg is the average external force imparted by
tude is a good measure of these changes. In kiy.(Ihse, the bacterial clusters on the bead. The bacterial clusters of
we plot the mean response function amplitéB¢ as a func-  varying sizes are subject to viscous damping and thermal
tion of the trap modulation frequency. In general for anyfluctuations described by
given viscosity, as expected, meRrdecreases with increas- o
ing frequency. We note that the time scales of the forcing Fg=m™"/g =~ o+ &(1), (2)
frequency is long enough to allow the bead to relax comywherem is the mass of the bacterial clusi@ssumed to be
pletely in the trap potential. composed of a few bactejig3 is the damping constant re-

In experiments on bacterfawe have used the time |ated to the bacterial cluster viscosity, i.85 67 7R (Ris the
scales of measurement Bfto be ~20 s intervals, which is  cluster sizg and&,(t) is the thermal white noise as experi-
much smaller than the sedimentation time scales. In this consnced by the bacterial cluster. The statistical properties of
text, it is pertinent to note that in the absence of sedimentangjse satisfy
tion, one should expect to probe all allowed configurations in
the stationary state by monitoring the system over long time ~ (&(t)) =0,
scales instead of the 20 s periods. However, as sedimentation 3)
is unavoidable, in each run lasting 20 s one expects to (&(t)§(t')) = 2¢;GkgTA(t - ),
sample different coherent configurations present due to the . . .
active bacterial dynamics during this period. In order toWheréi.j=1,2 anda;=yanda,=g. UsingFg=-pv in Eq.
show the effect of correlated bacterial dynamics, a compara(l)' and going through a simple calculation gives the power
tive plot of the distributions oR for motile (active) bacteria, Spectral density o,
dead (passive bacteria, along with watefnyse~=1) and 29k T Jes 1
glycerol (7gycero=23) is presented in Fig. 2. It is clear that Sp(@) =75 S| 1l+———>——|.

gly: . Yo +k y W’ + B
runs 1 and 2 are very different. Further, from the trend seen
in Fig. 1(b) namely, the shift in the peak of the distribution of We note here that the effect of the bacteria enters through the
R to lower values for higher viscosity, one can conclude thatmass factor oB. Thus, form=0, (or 8=0), we recover the
these two responses should correspond to two distinct corpower spectrum density of the bead in the absence of the
figurations of the active bacterial dynamics. This also showdacteria, i.e.g=0. Further, we note that the effect of bacte-
that different structures of the coherent bacteria lead to difrial concentration is reflected in the zero frequency limit of
ferent viscosities in different runs, showing variability in the the power spectral density for any givefto that at¢=0
structure density, dynamics, and interaction with the probaiven by Sg,(¢,0=0)/Ss,($=0,0=0)=1+p/y. This rela-

particle. Note that the concentration of the active bacteridion can be used to get an estimate of the mean size of the
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100_' R ' T T T from simulations. are prpcessed exqctly as in experiments,
(@) i.e., the output time series of the simulation go through a
virtual LIA and we extract the response function amplitude at
the given frequency,. The averaging is carried out over a
comparable number of histori€30). The distributions of the
amplitudeR are plotted for different experimental conditions
F$=0.001 : namely, for glycerol-70%, bacterigp=0.01), and for water.
i ] As shown in Fig. &), the distributions obtained from simu-
lations are qualitatively similar to those seen in experiments
[Fig. 2b)] including the range and positions of the maxima.
In summary, we have developed an approach of using an
intensity-modulated optical tweezer to probe the distribution
in the effective dynamic viscosity arising due to long-range

PSD [ nm?/Hz ]
[}

W Freduenéy [ IHZ.] 10 ordering of bacterial cells. The study shows that the variabil-

ity in the Fourier amplitude of the bead displacement at the
ol 4 (t;) | driving frequency(wg),R, is a good measure of the local
\ rheological properties of the fluid bath. Bacterial cells dy-
/ namically form multiple temporal structures of short life-
6ok 70% times(~1 s) and our probe directly captures the presence of
/ % - 0.01 these short-lived bacterial structures. Using the Langevin ap-
/ bactve = O- proach, we have captured all the dominant features of the
30F 1. — 0% i long-range active correlations in the motile bacterial bath.
/ A e The study demonstrates that fluctuations of a particle trapped
J«" ' . BN in an ac trap provide an improved method of measuring

P(R)

',
Aacal)

0 Lt R PO frequency-dependent phenomena at increased signal to noise
0.0 R [um] 0.5 ratio. Such an approach has applications in probing local
microrheological properties using a Brownian particle em-

FIG. 3. (a) The power spectrum density for the fluctuation time series of apedded in a suspension of diverse viscous solutioils.
particle in a dc tragwy=0 Hz) with different volume fractions of bacteria

(Ref. 4. The solid lines are a fit to E@4). (b) The simulation result of the The authors thank Professor J. S. Parkinson, University
ac trap experimenmonzerow,) using the model Eqsd), (2), and(). of Utah, Salt Lake City, for providing us with the bacterial
strains used in this work.
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