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The Debye-potential formalism is applied to perfect-fluid space-times with local rotational symmetry
which form a subclass of the generalized Goldberg-Sachs space-times. A decoupled equation for the
potentials is obtained. It is seen that this equation yields a considerable amount of information in its general
form without specializing to any example of the subclass. Finally some particular space-times, namely,
Kantowski-Sachs universes, Taub space, and anisotropic spatially homogeneous cosmological models, are

discussed in detail.

I. INTRODUCTION

In curved space-times the Maxwell equations
form a stronger coupled system of partial dif-
ferential equations than those in flat space-time.
This introduces difficulty in integrating these
equations as the usual methods, which are ade-
quate in flat space-time, fail when applied to
these equations. Cohen and Kegeles' have shown
that the Hertz-potential formalism can be ex-
tended to all curved space-times and the Debye-
potential (two-component Hertz-potential) forma-
lism may be extended to the generalized Gold-
berg-Sachs class, namely, the class that con-
sists of those space-times which admit a shear-
free congruence of null geodesics along the re-
peated principal null direction of the Weyl tensor.
We shall henceforth refer to the above paper by
Cohen and Kegeles! as paper L

We confine our investigations to perfect-fluid
space-times with local rotational symmetry as
given by Ellis? and by Ellis and Stewart,® which
form a subclass of the generalized Goldberg-
Sachs class of space-times. This subclass con-
sists of a wide range of interesting space-times
such as the Friedmann models, Kerr, Schwarzs-
child, Godel, Kantowski, and Sachs universes,
Taub-NUT (Newman-Unti-Tamburino) anisotropic
spatially homogeneous cosmological models, etc.
The solutions to the Maxwell equations by this
approach in curved space-times have been ob-
tained for the Friedmann models and the Kerr and
Schwarzschild solutions in paper I, while the be-
havior of electromagnetic fields in the Godel uni-
verse has been treated in detail by Cohen, Vish-
veshwara, and Dhurandhar.?

We adopt the Newman-Penrose formalism for
our study and use the equations given in paper I
and the null tetrad given by Wainwright5 for all
perfect-fluid space-times with local rotational

symmetry. In Sec. II we write down the equa-
tions governing a complex scalar function ¥ which
contains all the information about the electromag-
netic field, the components of the Maxwell field

. tensor being obtained by differentiation of the sca-

lar . In Sec. III we show that it is possible to
derive a considerable amount of information from
the governing equations without specializing to
any particular space-time, thus maintaining the
discussion at a general level. In Sec. IV we
treat some important space-times, namely, the
Kantowski and Sachs universes, anisotropic spa-
tially homogeneous cosmologies, and the Taub-
NUT space-time, which would supplement the
space-times mentioned above already studied by
this method.

II. THE GOVERNING EQUATIONS

The geometry of perfect-fluid space-times with
local rotational symmetry is described by the line
element

2 (ax?)? 20 3 1\2 4 172 202 4 42/ 7.3)2
ds® =~ 7 +X%(dx") +Y [ (dx®)? + P (dx®)]

+%2—(2dx° —ydx®)dx®~hX}(2dx" = hdx®)ax®
(2.1)
where F, X, and Y are, in general, functions of
x% and x!, and ¢, v, and % are functions of x* only.
Further, ¢, vy, and % satisfy conditions listed in
the referencés cited above.?'3
The null tetrad given by Wainwright for the gen-
eral line element (2.1) is

L (L y_>
ka_ ( ;—X:O,Xh F)’

1 (2.2)
ma=7—-2-—(0,0,Y,th) ,

1 .
ma='ﬁ(0, 0,Y,-itY).
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We have the following relations between the te-
trad components,

a, _ -~ a_
kna——mamu—_mam =-1.

All other scalar products vanish.

Here as in the rest of the paper we follow the
notation of paper I. We use the following corres-
pondence between the numerical indexing and the
contravariant tetrad vectors,

k%, e, me,mt—1,2,3,4.

The tangent vectors in the tetrad directions are
then

) 9
w, =k ax® * Wy =n ax® *
5 (2.3)
wy=m a—"c;—, w4=Wt“ pywra

The intrinsic frame derivatives which occur in
the equations are given by

D=w,, Azw, b=w, O=w,. (2.4)
The dual one-forms defined by w!(w,) =5} are then

wi=-ndx®, w?=-kdx®,

wi=m dx®, wi=ndx®.

We tabulate the nonvanishing spin coefficients for
the above tetrad which will be . used in setting up
the equations for the Debye potentials: :

1 1 i 1
==375 ¥ "oz e WHetht),
1 1¢ i 1
ooz 7t tavs fzr ONothh),
1 F F, 7 1 ( Y,2
Y= X Kot )*472 ve Kt )
1

- F ILL) v _1_._( 3’_2)
€=-35 X(X'O—F"’ T a2 1Y? Xh2=F )

1
T=92 ¥ X
i 1 [ (Fa X,l) <F,o X,o>]
TEE 1w [h(T"x N\TF "x /)
i X

The commas denote partial differentiation with
respect to the coordinates.

The perfect-fluid space-times with local rota-
tional symmetry may be reduced to three distinct
cases:

Case (i) X=1, Y-.:Y(xl), F=F(x1), h=0.

Case (ii) h=y= 0.

Case (iii) F=1, X=X(x°), Y=Y(x°), vy =0,

With these specializations Wainright has shown
that for all rotationally symmetric space-times
with perfect fluid which are not conformally flat,
the Weyl tensor is of type (2,2), with 2% and »n®
as the repeated principal null vectors. Further,
the last four of the spin coefficients tabulated in
(2.5) vanish, showing that the congruences of k¢
and n° are geodesic and shear free. The special-
izations mentioned above also simplify the ex-
pressions for the spin coefficients.

We use the decoupled equation for the scalar
for type (2, 2) space-times (Petrov-D), namely,
Eq. (5.10) in paper I. We give below the equation
and the null tetrad components of the Maxwell
field tensor in terms of §. In terms of the intrin-
sic frame derivatives given in (2.3) and (2.4) and the
the spin coefficients, the equation is

[(A-y-F+E-wWD-@-a+B-m-T)6]y=0, (2.6)

and the tetrad components of the Maxwell field
tensor are

Po=fin=[(6-T-B+T)D+ (D - €+T-D)OTP,

@123 Fon+fm)
=[(A-y-F+E-wWD+@-a+B+7+7)3Y,

Py=fan=[(A+y - T+ Do+ G+a+B-TA.  (2.7)

The tensor F,, in the standard basis is then
given by the expression

Fuu =2(¢1 +a1)"[ukv] +2902k[u-m4v1 +2¢2k[uﬁv1

+ 2(P077l[un,,] + 2(-ﬁom[u.nv] + 2(¢1 - 61)7”[“7'11;] .
2.8)

Equation (2.6) may be explicitly written in terms
of the coordinate basis by making use of the spin
coefficients listed in (2.5) and the intrinsic frame
derivatives given by (2.3) and (2.4). We write
the equation for each of the three cases separately.
The spin coefficients and the frame derivatives
then assume relatively simple forms:
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Case (i):

L A LA S
8(x0)2 "a(x1)? T1Y? Vr2px0 F Tiver Ve2)axl

Case (ii):

E

82 9 1 82 F/1 )

2_9° o 1 (1) 9

{F 8 (x) +X (XF),O ox° X2 8(x)? X (XF) 13x1
1

This equation can also be obtained by the ortho-
normal tetrad method described in paper I. The
choice of the orthonormal tetrad

() 0

1
W =2—dx’, w'=Xdx',

- w?=Ydx? wi=tYdx®
and the “diagonalized” Hertz bivector
P=Pw’A w'+P,w’a o®
lead to an equation for P, '
(d *d *+ xd xd)P =dG + *xdW , (2.11)

where d is the exterior derivative and * the Hodge
dual. G and W are gauge one-forms to be added
which reduce (2.11) to a single decoupled equation
satisfied by both P; and P,. The gauge one-forms
retain the property of the source-free Maxwell
equations. In this case one chooses

Y Y,

G =2Xl'; PEco"+2F'T"PEw1 ,
(2.12)

Yo

Py’ .

Y.l (o]
W=2 X.—Y uw +2F

Then each of the equations for P, and P, reduces
to (2.10).

Case (iii):
Lk, X) E

92 1 @ (X0 X\ 8
5(x°F X2 o(x)? \X 't Y?)ox°

b 0 1[( dh 3 8 i 8 t.)
LY et TYZ |\ Tt ot axz_tax3+t)

th 9 ] i 9
"(rax—ﬁax—ﬂzv)]}l/’—‘)-

(2.13)

III. GENERAL DISCUSSION OF THE GOVERNING
EQUATIONS

The general discussion of Egs. (2.9), (2.10), and
(2.13) falls into two distinct divisions as each of

9

i 9 iy 8 9 1 @
2—;5,73*'72)(7 w*m’*;aﬁ]}“"- (2.10)

r
these equations is separable into a “temporal-
radial” and an “angular” part. The temporal-
radial part, as the name suggests, involves the
operators 8/8x° and 8/9x!, while the angular part
involves essentially 8/8x2 and 8/8x%. In the equa-
tions for each of the cases, the angular part is
enclosed within square brackets, and the rest of
the operator contributes to temporal-radial de-
velopment of the Debye potential. Though the op-
erators 8/8x° in case (i) and 8/8x' in case (iii)
appear in the angular operator, they are Killing
vectors for each of the respective cases. The
solutions for 3 will then have dependence in the
former case of the type e“”"o, and in the latter
case of the type e***', where w and k are con-
stants. Therefore, the operators 8/9x° and 9/9x!
appearing in each of the respective cases are re-
duced to constants which merely multiply the sca-
lar function .

A. The solutions of the angular operator

We treat cases (i), (ii), and (iii) separately.
We observe that the angular operators appearing
in cases (i) and (iii) are of the same form if we
substitute in case (i) y=xe*“*°, x independent of
x°, and in case (iii) ¥= xe’*’, x independent of x*.
Therefore, it is sufficient to study only one of the
cases (i) and (iii). We choose to treat case (iii)
with hindsight as we will be investigating a speci-
fic example of this case in the following section.

The prominent function appearing in the angular
operator is #(x2). From the conditions on the
function £(x?) given in Refs. 2 and 3, it can as-
sume the following functional forms:’

(a) t =sinx?,
(b) ¢ =sinhx?,
(c) t=«2,

(d) t=const.

The functions % and y of x? are then obtained
from ¢ by the relations
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h,o=ct and y ,=c't,

where ¢ and ¢’ are constants.
Case (ii). We separate the xZ, x° dependence by
setting .

b=Z(x° x )x(x2, x3)

in Eq. (2.10). The separated equation for x is

1 9 ] 1 9?
[F o (t5) +7 s Jreex=0, G0

where a is the separation constant. We now pro-
pose to discuss the above equation for the various
functional forms of #(x?).

(a) t =sinx? The solutions of (3.1) are then the
familiar spherical harmonics Y, (x%,x%). The
separation constant a=1(l +1).

(b) t =sinhx®: The solutions to (3.1) are of the
form P™(coshx?)e'™’, The regularity requirement
condition at x2=0 excludes Q7 and the regularity
condition at x2=w restricts [ to lie in the range
—3<1<0. Here a is not an integer.

(c) t=x% In this case we use the Killing sym-
metry in the 8/08x® direction of these space-times
to simplify (3.1). We write the solution as

x(x2, %) =0 (x2)eim* |
and substitute in (3.1) to obtain an equation for

d% 1 do m? .
d(x?? "x% ax? * (oz T (x?)? )6 =0. (3-2)

The solutions of these equations are Bessel func-
tions of order m, with argument vax® The gen-
eral solution of (3.2) is a linear combination of
the Bessel functions J,(Vax?) and ¥,,(Vax?). In
particular, the “outgoing” and “ingoing” solutions
are the Hankel functions.

(d) t =const: The constant value of { may be
taken to be unity as any other value of the con-
stant may be effectively reduced to unity by re-
scaling the coordinate x3. Equation (3.1) reduces
to

9 ]

'(“”‘aw)z S +a>x=0. (3.3)
The solutions of (3.3) are plane waves and are of
the form

X = gtikgxieinge® ,

where &, and k; are constants. The separation
constant o has the form

a=k,2+ky%.
]

X =2 @8 20l 2(1 _ )8l 2ime {F(—n,n +a’ +pf" +1,a’ +1;2)
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Case (iii). Setting ¥ =Z(x°)x(x2 x%)e" in (3.1),
we obtain the equation for x(x?%,x%), i.e.,

9 h © @
X(————axz -k -Z—+t—-——--~ax3>x+ax=0, (3.4)

where o is the separation constant. We now con-
sider the different functional forms of # and % and
substitute them in Eq. (3.4).

(a) t=sinx?, h=—-c cosx® Then (2.4) reduces to

9 i 9
[~ s + 1 - ecor=]

9 ] 9
X(axz +ﬁ W+Ck cotx"’)x +ax=0. (3.5)

- Setting u =cosx? and x = (1 - %)/ 2(1 +x)8/ 2y (u)ei™=’,

we obtain

a
du

+nlr+a’+p +1)y=0, (3.6a)

2,
(1 -u?) Zu% +[B —a' —(a’+B" +2)u]

where o’ = |ck—m|, B’ =|ck+m|, and « is the
solution of

nn+a’ +8 +1)+3(a’ +8')
+3(a@’ +8")2+ck(l —=ck)=a . (3.6b)

Regularity restricts » to be a non-negative inte-
ger and then the solutions to (3.6a) are the Jacobi
polynomials P®*#"(u). The restriction on the
value of # brings constraints on the allowed values
of the separation constant . Four cases arise -
accordingly as o' =+(ck —m) and B’ =x(ck +m).  We
may write all the cases concisely by setting
a’ =¢,(ck -m) and B’ =€,(ck +m), with €,,€,=+1.
Then,

a=m+s+1)n+s)+ck(l-ck),
where

s=-3€,€,(a’ +5').
(b) ¢t =sinhx®, h=-c coshx® The substitutions
z = —sinh%*?
and
y = 2e B2 @] Z)B'/Zy(z)eimxs ,

where @’ = |ck—m| and B’ = |ck+m |, yield the
solutions in terms of hypergeometric functions,

(3.7)

U(-n,n+a’+p +1,a’ +1;2),
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where n satisfies Eq. (3.6b). The regularity condi-
tions impose constraints on the parameters ap-
pearing in the solutions. We shall not discuss the
details here.

(c) t=x% h=3%(x®)?2+B: For this case and the
next, we simplify (3.4) by using the additional fact
that 9/0x%, is a Killing vector. The solution may
then be written in the form

D=Z(x°)yx(x2)ett gim=® (3.8)

Equation (3.4), with the use of (3.8), gives the
equation for

(d
dx®
d 1
X(Ex—z—-'t—(kh+m))x+ax=0. (3.9)

»2

Substituting for ¢ and % we obtain

d’x 1 dx_
d(x?)? *? ax?

m]2>x =0 .
(3.10)

Setting y =3%(x2)?, we obtain the two linearly in-
dependent solutions in terms of confluent hyper-
geometric functions:

2 &?)?/4,2m >({F(l +m —a/2k, 1+m;3k(x?%)?)
U(l+m — a/2k, 1+m;3k(x%)?).

(d) t=const=A, h=Bx%+C: Equation (3.4) re-
duces to

1 1 2)2
(a—k— T2F [3R(x?)%+

x=e

( 2)2 +[a-A’ - (A’x? +B')2] (3.11)

where
=kB/A, B'=(EC+m)/A.
In the particular case wherein 2 is a constant,

e., A’ =0, the solutions for x are of the form
“(a_Brz)l/z >

e %% In the general case we define a new
coordinate z by

z=A'x*+B.
Then the equation assumes the form

d2

dz)ﬁ +2°X = BX, (3.12)

where u is a constant. Substituting x = —iz%, it is
possible to convert (3.12) to a confluent hypergeo-
metric equation whose solutions are the following:

3

m .
F(K T4 5 _zzz)
eizzlzzs/z x

.U(%‘ZL;—’ % —izz)-

Case (i). The discussion of case (i) would run
on similar lines with %(x?) replaced by y(x?) and

x:

with 2 replaced by w. This concludes the general
discussion of the angular operator in the govern-
ing equations.

B. The solutions of the radial-temporal operator

These solutions represent the part complemen-
tary to the angular operator solutions already dis-
cussed. The separation constant &, which occurs
in each of the operators, is in some cases re-
stricted to a fixed set of real values as it is the
eigenvalue of the angular operator. This will
have to be taken into account when one looks for
solutions to the radial-temporal part of the op-
erator.

In case (i), 8/8x° is a Killing vector, so the
operator reduces to one which is purely radial
in character. The solution has the simple time
dépendence of the form e?“*°, where w is a con-
stant. The operator essentially describes the
space development of the Debye potentials. In
case (iii), 8/8x' is a Killing vector and the solu-
tion has x' dependence of the form e®**'. The
operator reduces only to a temporal operator.
The solutions describe the time development of
the Debye potentials. In case (ii), there is no
reduction of the operator to a case which is purely
temporal or radial in character and, in general,
one has to treat the interlocked space-time de-
velopment of the electromagnetic field. But in
some of the particular cases that we investigate
in the following section, which fall into this cate-
gory, the symmetry inherent in geometry reduces
the operator to a case which is purely temporal
in character.

The radial-temporal equations for cases (i) and
(iii) have the same mathematical form although the
physical content differs. As before, we discuss
case (iii) in detail and then indicate the changes
in the solutions of case (iii) to be made in order
to obtain the solutions of case (i). We first list
the radial-temporal equations for the three cases.
The similarities in the form of the equations for
the cases (i) and (iii) will become immediately
apparent on listing the equations.

Case (i). Setting w=e""”‘°Z(x‘)x(x2,x3), we have
a separated equation for Z(x'), i.e.,

d*z (Fl ic )dZ (2 . CW a)
“——-—)Z=0.
2wy ~\F TRy )ar T\ e
(3.13)
Case (ii). Setting p=2Z(x°,x*)x(x2 x°%), the sep-
arated equation is
927 zZ 1 9z
2 —_—
. F 3( 0)2 + (XF)O ax Xz B(xl)z
F 1 YA VA
<XF> Wty =0. (3.14)
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Case (iii). Setting ¥ =Z(x°)e** x(x2, x°), the
separated equation is

d‘ij)z +(X +ic=; )ZZO+(’;; ;’Z+%)Z =0. (3.15)
Equation (3.13) can be transformed fo (3.15) by
making the following changes:

x -0,

F-1/X,

c—-=-c,

w-k,

a-—a.

Hence, it is sufficient to discuss only one of Eqgs.
(3.13) or (3.15). We discuss Eq. (3.15) of case (iii).

Case (ii7). Defining a new time variable u by the
relation

0
dx°

m, (3.16)

U=

and substituting in (3.15), we have the equation
2 2 2

42 %92, (ka—x——(ck oz))Z 0.  (3.17)

The term involving the first derivative in # can be

“transformed away” by defining a new dependent
variable Z, where

Z-= Zexp( f deu) (3.18)

The transformation (3.18) reduces Eq. (3.17) to an
“effective potential” type. The transformed equa-
tion assumes the form

az [, xX? c®\ icd (X
du2+[k Yz(ck—‘a—‘l) T dn )]Z 0. (3.19)

We remark that the above equation poses diffi-
culties when one attempts to solve it by the con-

ventional effective potential methods. If we write ,

the expression multiplying Z in (3.19) as k*-V,,,,
then V_,, has the following properties:

(i) V¢ is complex.

(ii) V,, depends on & through the separation
constant a.

A possible interpretation of (ii) is that it is velo-
city dependent. It is possible to obtain solutions
to (3.19) by the WKB method in the special case
wherein condition for the validity of the WKB
approximation is satisfied; that is, if we write
the equation (3.19) as

dz
ey +p2Z=0, (3.20)

where

X° c? zcd( )
pe=w s (o= ) -5 1l

then |(1/p®)dp/du|< 1. This condition is satisfied
if the functions X, Y are slowly varying functions,
in which case we may write p?=pe®, where p and
6 are functions of . The WKB solution of (3.20)
is then

Z~ exp(i i f p*2(costb+i sin%@)du) ,

and hence the temporal part of case (iii) has the
solution

Z~exp[iif(p‘/2cos294=zc )du]
xexp[;fp”zsinéedu] .

The factor exp[* [ p'/?sin6du] in the solution
describes the damping or the amplification ac-
cording to whether the sign in the exponent is
negative or positive, respectively. The particular
cases which we consider in the next section are
cosmological models and consequently the func-
tions X and Y, which are functions of the time,
vary on the cosmological time scales. So if we
consider waves short as compared to the cos-
mological time scales, the WKB approximation is
fully justified. In this approximation the damping
(or amplification) factor is also very close to unity.
In fact, the exponent in the damping factor may be
approximated to d X

‘Y’

36p'/2 ~ =
4|h2-w(ck -a-%c?)

which is close to zero since (d/du)(X*/Y?) < 1.
Case (ii). Equation (3.14) is more complicated
than in the other cases being a partial differential
equation in x° and x’. The functions X, Y, and F
are, in general, functions of x° and x!. The equa-
tion can be solved and useful information obtained
if we introduce slight specialization. The full
general case seems too general to be tractable.
If we assume F=F(x°), X=X(x'), and Y as a func-
tion of either x° or x' but not both, the equation
may be solved by the separation of variables x° and
x'. If we assume for the sake of definitiveness
Y= Y(x'), and write Z(x°, x')= L(x°)M(x") in (3.14),
the equation may be separated as follows:

1 (F &L . dF dL
A6 T A0 A
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where 8% is a separation constant.
The equation for x° may be further simplified by
redefining the time parameter u,

d 0
u= f -2y (3.22)
which gives
d?L/du® + 8L =0, (3.23)

whose solutions are e**¥,

The equation for x! is a little more involved due
to the presence of the additional term /Y?, where
Y is a function of x*. The equation may be simpli-
fied as before by making a similar transformation

= fdel, (3.24)
which gives
2
%‘f—+ (BZ -%)M -0. (3.25)

This equation is in the form of the effective po-
tential one, with the effective potential a/Y?. This
could be easily solved with the aid of standard
methods in certain special cases. For example,
when 3 is large and Y is slowly varying, the WKB
method is useful and the solutions are of the form

/2
exp[ii f (Bz—%)1 dv] .

For 82>a/Y?, the solution is oscillatory; other-
wise, it is damped.

IV. SPECIFIC EXAMPLES

In this section we treat a few particular space-
times which will supplement those already in-
vestigated by the authors mentioned above. The
specific examples are specializations of cases
(ii) and (iii). There is an important example of
case (i), that of the Godel universe, but this
has already been studied in detail.* The following
are the space-times at which we direct our at-
tention: (1) Kantowski-Sachs universes. (2)
Spatially homogeneous anisotropic cosmologies.
(3) Taub space. The first two of these are ex-
amples of case (ii), while the third comes under
cases (iii).

A. Kantowski-Sachs universes

Kantowski and Sachs obtained solutions of Ein-
stein’s equations (for dust) which are homogeneous,
irrotational, and anisotropic. There are essen-
tially two types of solutions corresponding to
closed and open universes. The solutions are
described by the following metrics #.

Case 1:
ds®= —di* + X2(t)dr? + Y2 (1)(d6” + sin*6 d¢?)
where
X(¢)=€+(en+b)tann,
Y(¢{)=acos’,
t=t,=a(n+3sin’n);
where a, b, and € are constants satisfying

—0<a<w, a#0, —%<b<0, e=0orl.

These solutions represent closed universes.
Case 2:

ds? = —dt? + XD + Y(1)(d6° + sinh®0 do) .
The solutions are further divided into two classes:
(a) X=¢ - (em+b)tanhn,
Y =acosh’n,
t —t,=a(n+3 sinh?n),
(b) X=¢ - (en+b)cothn,
Y = a sinb®7,
t—t,=a(n - % sinh®n),
where ;
—w<a<w, a#0, 0<b<wo, €=0orl.

These solutions correspond to open universes. It
is easily seen that all these solutions are speciali-
zations of case (ii) discussed in the previous sec-
tion. The equations for the Debye potentials sim-
plify a great deal as X,Y are functions of ¢ only,
and F=1. Also, the metric tensor is independent
of 7, so that 8/9y is a Killing vector and the »
dependence of ¥ is simply e**”,

Case 1. We have in this case the functional
form of ¢ as ¢#(f) = sinf. From the foregoing the
angular operator solutions are Y,, (6, ¢), and the
separation constant « is I(I+1). The complete
solution for ¥ may be written as

Zb:Z,k(t)e‘k'Y,m(G, ®), (4.1)

where Z,,(¢) satisfies the equation

a*z 1 dxXdz B2 I(1+1)
_Etzﬁ+—)z——d? dtxk +(—X—2+-—1—/2——- Z,,=0. 4.2)

We have used (3.14) to arrive at the above equa-
tion. We again make the familiar transformation
of the time coordinate t. We define u as u= [ dt/
X(¢), which immediately transforms the equation
to the effective potential form



2
%;—Zzﬂ+<k2+l(l+ 1)—);—:)Z,,,=O. (4.3)

We notice that the term multiplying Z,, is non-
negative, from which we may conclude that the
solutions of (4.3) are always oscillatory. If % is
sufficiently large, that is, during one oscillation
period of the solution X and Y change very little,
then one may apply the WKB method to obtain the
solution.

In the Kantowski-Sachs solution, we assume the
range for 7 to be (-7/2,7/2). The 2-spheres
v =const, {=const, expand from zero radius at
N=-71/2 to a maximum radius at 7=0, and again
contract to zero radius at n=7/2. In Fig. 1 X?/Y?
is plotted as a function of 1 for €e=0 and € =1 over
the entire range of n, for typical values of a and b,
a=1, b=~1. One sees from the figure that X?/Y?
- as N - ¢1r/2, and reaches a maximum at 7=0.
This shows that Z,, oscillates rapidly when the
radius of the 2-spheres is small, that is, during
the beginning and at the end of the universe. The
oscillations slow down when 7 is close to zero.
The behavior is more pronounced for € =1 than
for € =0. In the case € =0, when 7= 0 the solution
for Z,,~ e as X?/Y2~0. The behavior of Z,,
also depends significantly on the angular momen-
tum [. The oscillation of Z,, accelerates with
increasing angular momentum.

Case 2. The function #(6) in this case is sinhf.
From the discussion of angular solutions of Sec.
III we may write the solution for ¥ in the form

d) = Zlk(t)eikrylm(—igy ¢) . (4.4)

-2 n 2

FIG. 1. The figure shows the plots of X%/¥? as a func-
tion of n for the values of €=0,1 of the case (i) of the
Kantowski-Sachs universes, with the parameters a=1
b=-—1. X%/¥? tends to infinity as n appraoches * /2 for
both the cases, the difference being that in the e=1 case,
the curve is asymmetric about n=0 and steeper in the
event of n tending to + /2. The actual effective potential
is scaled by the factor I(Z+1).
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The separation constant @ =~I(+1).
Redefining the time parameter » as in case 1,
we have the equation for Z,,() in this case as

2 2
id;z,'m (kz—l(l+ 1))—;,)zw=o. 4.5)

A considerable amount of information may be
obtained by examining the effective potential
curves plotted in Figs. 2(a) and 2(b) of the function
X2/Y2vsm, witha=1, b=-1. The parameter 7

3.0 4.0 E) 5.0

%
N

|

<
~

0.5

0.4

0.3

o 1 L 1 )
o | 2 3 4 m 5

FIG. 2. (a) The figure depicts the plots of X2/¥? (un-
scaled effective potential) as a function of 1 for €=0,1
of case 2(a) of the Kantowski-Sachs universes with the
parameters a=1, b=-1. In the €e=0 case the curve has
a maximum for an intermediate value of n and tends to

. zero when 7 tends to infinity or zero. In the e=1 case,

X2/Y? monotonically decreases to zero as 7 ranges from
zero to infinity. (b) The unscaled effective potential
X?%/Y? is drawn as a function of 7 for each of the cases
€=0,1 of case 2(b) of the Kantowski-Sachs universes.
The parameters a,b have the values a=1, b=~1. In the
€=0 case, X2/Y? decreases monotonically from infinity
to zero as 7 ranges from zero to infinity. The e¢=1 case
shows more interesting behavior in that the potential has
a maximum and a minimum for intermediate values in
the range of 7. As 7 tends to zero, X%/¥? tends to infini-
ty, and as 7 tends to infinity, X%/¥? tends to zero.
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ranges from 0 to «». A glance at the figures in
question shows that as 7 -, X2/Y2~0 and hence
the solution for' Z,, at large times may be written
as e*** for all four cases: €=0, 1 for cases 2(a)
and 2(b). In case 2(a), where €=0, the effective
potential has a maximum, and hence for a small
enough value of # and a sufficiently large value of
1, B2 - 1(1+1)X?/Y? is negative in some interval
I=(n,n,). Z,, which is oscillatory in nature in
the beginning (n=0), will get damped during the
time interval I and after n=1,, will begin oscillat-
ing. For €=1, X2/Y? monotonically falls off as 7
ranges from 0 to «». The oscillations of Z,, will
slowly increase in their rapidity until they asymp-
totically approach the frequency of the wave e*#*,

In case 2(b), it is the €=0 case which behaves
more like the 6 =1 case of 2(a), except that in this
case X2/Y2~ as -0 and decreases monotoni-
cally to zero as N —«. The decrease is more
dramatic than in case 2(a), where €=1 for the
same values of the parameters a and b. For a
given 2 and !/ and for sufficiently small 1, the
solution for Z,, is damped. After the parameter
7 attains a certain value 7,, the root of k2 —I(l+
1)x2/Y?=0, Z,, will start to oscillate and will _
rapidly reach the asymptotic wave form e**, In
the € =1 cases, X2/Y? has both a maximum and a
minimum which accounts for a more interesting
behavior of the Debye potential. There will be
essentially be two types of behavior depending on
the values of / and &:

N X2

(i) mémax?g

.. kZ X2

(ii) m > maxF .

The max(X2/Y?) does not mean the maximum
value of X2/Y? in the entire range of 1 considered,
but denotes the value of X?/Y? attained when the
function X?/Y? has zero slope. In the former case
there will be four zones along the 7 axis: (0,7,),
(M, M), (Mg, my), and (m,,«), where 0<n, <n,<n,
< . In the zones (0,7,) and-(n,, 1), k2/1(+1)
<X?/Y? and consequently, the solution will be
damped. For the other two zones, where %%/1(l+1)
>X?/Y?, the solution will be oscillatory.

In the latter case, i.e., case (ii), there are only
two zones (0, n,) and (7, =), ‘accordingly as %2/

11 +1)<X?/Y? or R?/1(1+1)>X?/Y2. In the first
zone the solution will be damped and after 1 has
exceeded 7,, the solution will become oscillatory
and approach the solution e*#¥,

For case (2), in general, the angular momen-
tum has a damping effect on the wave, that is,
large values of angular momentum tend to slow
down the oscillations and may later cause damp-

ing. This effect is the opposite of that observed
in case (1).

B. Spatially homogeneous anisotropic cosmologies

These are cosmological models which differ in
symmetry properties from the above discussed
models. The geometry is described by the line
element i

ds® = —dt®+ X?dx® + Y2dy® + Z%dz*? , 4.6)

where X, Y, and Z are functions of {. The space-
time described by this line element does not in
general possess local rotational symmetry unless
at least two of the functions X, Y, and Z are equal.
Without loss of generality we may assume Y =Z.
This introduces rotational symmetry in the geo-
metry, thus making it possible to study the be-
havior of the Hertz potential by the methods
described above.

The functions X, Y have the following functional

- form:

X=tgMt(t+2)]1/3,
Y =[§Mi(t+2)P/3,

4.7)

where Z >0 and represents departure from iso-
tropy. The metric (4.6) fits the form of the metric
given by (2.1) if we setF=1, t=1, h=y=0, and
X,Y as defined in (4.7). We use Eq. (3.14) of case
(ii) with the above simplifications, and write the
solution for the scalar function ¥ as

b=e®FZ(p), (4.8)

where k= (ky, By ks) and T= (x,,2). As done
earlier, Eq. (3.14) may be written in terms of the
parameter # defined by

dt

“=Jxay
which immediately yields the following equation
for Z,

d*Z

X2 .
d7+ (klz +F(k22+k32)>vZ=0, (4-9)

where

X2 1 2
A ey
Yy? [QM(t+Z)] '

Since the coefficient of Z appearing in (4.9) is al-
ways non-negative, the solution is always oscilla-
tory. For large ¢, X?/Y?~0, and hence the solu-
tion has the form e***1%, The anisotropy parameter
Z is important only when the value of ¢ is not large
compared to it. Its effect is to slow down the os-
cillation. When ¢ -0, ‘the solution for Z is simply
given'by
expizi[k,®+ (2/9MZ 2 (2,2 + B2 ]/ 2u} .
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C. Taub space

The Taub space is a vacuum solution of Ein-
stein’s equations. It is described by the line ele-
ment

ds?= --—ll-]-dt2 + (2n)2U(dX + cosb dg)?

+ (P +n2)(d6? + sin®0dp?), (4.10)

where U(t)=-1+2(mt+n?)/ (2 +n?), with m,n as
positive constants. The metric is singular at ¢
=t,=mzx (m?+n?)/2. The metric can be extended
across the surfaces ¢=¢, giving the space found by
Newman, Unti, and Tamburino. The transforma-
tion of coordinates for this extension is too com-
plex to investigate the behavior of the scalar ¢ in
the NUT region of the space-time. We therefore
restrict ourselves to the Taub space defined by
(4.10), and ¢ restricted to ¢_<¢<¢,. This space
belongs to the class of space-times under con-
sideration and can be admitted under case (iii).
The metric (4.10) is of the same form as in (2.1)
if we first make a change in the time coordinate

¢t to x° by defining

x°=fo'TU—(‘:)tT,§. (4.11)
Then we set in (2.1),

xt=X, x*=0, x*=¢, F=1, X=2n/U,

Y=(+n?'2, t=sinf, h=-cosf. -

From the foregoing, we may assume the solution
for ¥ to be

b =Z(x°)e* x(x2, x3) .

From the results of Sec. III, the solutions for
the angular part of the operator acting on ¥ are
spin-weighted spherical harmonics® _,Y;,(6, ¢) for
integral values of k. For nonintegral values of k&,
the solutions would be analytic continuations of
2 Y1m, namely, Jacobi polynomials. The separation
constant is @ =~(+k)(I —k+1). The equation for
the temporal part may be found by making the
transformations (3.16) and (3.18). The equation
for Z as defined from (3.18) with the above value
of a is

27 2
ez, [kz—g—z[k+ C+E)I-E+1)=3%]

au®
L (£>]2 0. (4.12)

We have X?/Y2%=4n?U/(#? +n2), and its derivative
with respect to u is
d (Xz) 16n3U

-3-1; F =62+—n2)-2-[m—t(1+2U)]. (4-13)

We notice that for values of ¢ close to ¢,, the
expressions X2/Y? and (d/du)(X?/Y?) are very
small, and hence the solution for Z is of the form
e*®™_ The parameter # may be explicitly given in
terms of ¢ by integrating the equation du/dt=1/
2nU with the condition 2(0)=0. The integration
gives

1 t t
“‘_ﬂ[t+t+1n<]"z>+t-ln(l —-t—_-)] (4.14)

As t—1t,, u—=xx.

The imaginary part in the effective potential of
Eq. (4.12) appears as damping or amplification of
the Debye-potential wave. In the high-frequency
approximation, i.e., when the period of the wave
is small as compared to the age of the Taub space,
the damping or the amplification depends on the
sign of (d/du)(X?/Y?). From Eq. (4.13) we observe
that (d/du)(X2/Y?) is positive in the beginning near
t=~t_, becomes zero at some intermediate epoch
t=t,, t.<t,<t,, and then becomes negative and
reaches zero at t=¢,. This lends itself to the
following interpretation. The wave which is ini-
tially getting amplified will continue its amplifi-
cation until ¢ attains the value {, and then will be
damped from ¢, to £,. The value of ¢, is easily
found by solving the cubic m - #(1+2U)=0. We
get the result as

to:m-—Z(m2+n2)”2cos”§¢), 4.15)

where
¢ =tan‘(n/m), O<p<u/2.

From the rest of the effective potential the follow-
ing conclusions may be drawn:

(i) For large values of % the solution for Z is
oscillatory and of the form e**[1+ (X2/Y?)]*/2,

(ii) For large values of both £ and I, i.e., 2,1
> 1 and k~O(1), the expression multiplying Z takes
the approximate form

2 2
B2 (1 +%> —%lz .

From this we may conclude that Z is oscillatory
if |&/1| >|X/(X?+Y?)'/?|; otherwise, itis damped.
(iii) For small values of 2 and large values of I,
the solution is heavily damped except near ¢=¢,,

the effective potential being of the form x?/
Y?)I(l+1). Near t,, the function X?/Y*=~0, so that
for sufficiently small departures of t from t,, k2
exceeds (X2/Y2)I(l+1) and the solution is oscilla-
tory and of the form exp{i[k*— (X2/Y2)I(l+1)]*/2}.
(iv) When % and I both are small, that is, of the
order of (d/du)(X?/Y?), then the full equation has
to be taken into account. It may be.possible in
in such a case to integrate the equation numeri-
cally.



2804 DHURANDHAR, VISHVESHWARA, AND COHEN 21

V. CONCLUSION

Our calculations show that the Hertz-Debye—
potential formalism can be successfully applied to
perfect-fluid space-times with local rotational
symmetry. These include a large class of well-
known space-times of which some have been dis-
cussed in the previous section. The space-times
studied fall under the generalized Goldberg-Sachs
class of space-times, and the techniques given
in paper I have been utilized to obtain decoupled
equations for the Debye potentials. With the help
of the standard mathematical methods such as the
WKB, Laplace transform, etc., the differential
equation for the Debye potential can be solved.
When the equation is too complicated—with or
without approximations—it may be solved with the

aid of numerical integration. From these po-
tentials the electromagnetic fields can be investi-
gated in its general form except for the monopole
field (1=0).

The foregoing studies reveal the influence of
curved geometry on perturbative electromagnetic
fields. In the specific examples considered, if the
anisotropic cosmological models could be taken
as idealizations describing the actual universe
with initial anisotropies, then the nature of the
superposed electromagnetic field could be of
astrophysical interest.
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