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Starting from the recently obtained post-post-Newtor(@RN) accurate forms of the energy and angular
momentum fluxes from inspiraling compact binaries, we deduce the gravitational radiation reaction to 2PN
order beyond the quadrupole approximation—4.5PN terms in the equation of motion—using the refined bal-
ance method proposed by lyer and Will. We explore critically the features of their construction and illustrate
them by contrast with other possible variants. The equations of motion are valid for general binary orbits and
for a class of coordinate gauges. The limiting cases of circular orbits and radial infall are also discussed.
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[. INTRODUCTION the energy radiated by the accelerated patrticle in that interval
(Larmor’s formula the reactive acceleration is determined
Inspiraling compact binaries are the most promisingand one is led to the Abraham-Lorentz equation of motion
sources of gravitational radiation in the near future forfor the charged particle. The direct method of obtaining ra-
ground-based laser interferometric detectors such as the Ldiation damping, on the other hand, is based on the evalua-
ser Interferometric Gravitational Wave Observat@ryGO)  tion of the self-force. Starting with the momentum conserva-
[1], VIRGO [2], GEO600[3], and TAMA [4]. The method tion law for the electromagnetic fields one rewrites this as
of matched filtering will be employed to search for the in- Newton’s equation of motion by decomposing the electro-
spiral waveforms and extract the information they carrymagnetic fields into an “external field” and a “self-field.”
[5,6]. For this method to be successful, one needs to usExpanding the self-field in terms of potentials, solving for
templates that are extremely accurate in their description dhem in terms of retarded fields and finally making a retar-
the evolution of the orbital phase, which, in turn, requires adation expansion, one obtains the required equation of mo-
detailed understanding of how radiation dampingactiony  tion when one goes to the point particle lirpit7].
influences orbital evolutioh7—10]. As in the electromagnetic case, the approach to gravita-
The idea of a damping force associated with an interactional radiation damping has been based on the balance
tion that propagates with a finite velocity was first discussednethods, the reaction potential or a full iteration of Ein-
in the context of electromagnetism by Lorefifzl]. He ob-  stein’s equation. The first computation in general relativity
tained it by a direct calculation of the total force acting on awas by Einstein18] who derived the loss in energy of a
small extended particle due to its self-field. The answer waspinning rod by a far-zone energy flux computation. The
incorrect by a numerical factor and the correct result was firssame was derived by Eddingt¢t9] by a direct near-zone
obtained by Planckl2] using a “heuristic” argument based radiation damping approach. He also pointed out that the
on energy balance which prompted Loreft3] to reexam-  physical mechanism causing damping was the effect dis-
ine his self-field calculations and confirm Planck’s result, cussed by Laplacg20], that if gravity was not propagated
instantaneously, reactive forces could result. A useful devel-
2 e’ - opment was the introduction of the radiation reaction poten-
33V tial by Burke [21] and Thorne[22] using the method of
matched asymptotic expansions. In this approach, one de-
wherew; is the velocity of the particle. The relativistic gen- rives the equation of motion by constructing an outgoing
eralization of the radiation reaction by Abrahdd®] based wave solution of Einstein’s equation in some convenient
on arguments of energy and linear momentum balance prefauge and then matching it to the near-zone solution. Re-
ceded by a few years the direct relativistic self-field calcula-stricting attention only to lowest order Newtonian terms and
tion by Schot{15] and illustrates the utility of this heuristic, terms sensitive to the outgoin@ngoing boundary condi-
albeit less rigorous, approa¢h6. tions and neglecting all other terms, one obtains the required
The argument based on energy balance proceeds thus:rasult. The first complete direct calculation in the manner of
nonaccelerated particle does not radiate and satisfies Newerentz of the gravitational radiation reaction force was by
ton’s (conservativeequation of motion. If it is accelerated, it Chandrasekhar and Esposit®3]. Chandrasekhar and col-
radiates, loses energy and this implies damping terms in thiaborators[24,25 developed a systematic post-Newtonian
equation of motion. Equating the work done by the reactiveexpansion for extended perfect fluid systems and put to-
force on the particle in a unit time interval to the negative ofgether correctly the necessary elements like the Landau-
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Lifshiftz pseudotensor, the retarded potentials and the neathe source. Thealidity of the balance equations up to 1.5PN
zone expansion. These works established the balande also proved. By specializing this potential to two-body
equations to Newtonian order, albeit for weakly self-systems, lyer and Will29] checked that this solution indeed
gravitating fluid systems. The revival of interest in these is-corresponds to a unique and consistent choice of coordinate
sues following the discovery of the binary pulsar and thesystem. This provides a delicate and nontrivial check on the
applicability of these very equations to binary systems ofvalidity of the 1PN reaction potentials and the overall con-
compact objects follows from the works of Damd6,26  sistency of the direct methods based on iteration of the near-
and Damour and Deruell7]. field equations and indirect methods based on energy and
In the context of the binary pulsar timing, the accuracyangular momentum balance.
reached by the Newtonian balance equations is amply ad- As emphasized earlier, much better approximations are
equate. The case of inspiraling binaries as sources for theeeded to reach the precision of future gravitational-wave
interferometric gravitational wave detectors is very different.astronomy{7]. In the limit where one mass is much smaller
The extremely high phasing accuracy requirement makethan the other, numerical and analytical computations based
mandatory the control of reactive terms way beyond theon black hole perturbation theory have been performed to the
Newtonian. This has prompted on the one hand, work orb.5PN order[34-39, a recent result being the analytical
generation aspects to compute the far-zone flux of energgxpression to 5.5PN order for the energy flux from a test
and angular momentum carried by gravitational waves angbarticle moving in a circular orbit around a Schwarzschild
on the other, work on the radiation reaction aspects to comblack hole[39]. Ryan[40,4]] has investigated the effect of
pute the effect on the orbital motion of the emission of gravi-gravitational radiation reaction, first on circular, and later
tational radiation. As in the electromagnetic case, the comeven for nonequatorial orbits around a spinning black hole.
putation of the reactive acceleration assuming balanc&ecently Mino, Sasaki, and Tanak42] have derived the
equations is simpler than the computation of the dampindeading order correction to the equation of motion of a par-
terms by a direct near-field iteration. The computation of theticle which presumably describes the effect of gravitational
energy and angular momentum fluxes at the lowest Newtorradiation reaction by two methods: an extension of the
ian order(quadrupole equatigmequires the equation of mo- Dewitt-Brehme formalism and the method of asymptotic
tion at only Newtonian orderAssumingthe balance equa- matching.
tions one can infer the lowest orddéR.5PN radiation On the other hand, for bodies of comparable masses, re-
damping whose direct computation, as mentioned before, resently two independent tearfié3—47 have derived the 2PN
quires a 2.5PN iteration of the near-zone equations. Simiaccurate gravitational waveform and the associated energy
larly, the computation of the 1PN corrections to the lowestand angular momentum fluxes for inspiraling compact bina-
order quadrupole luminosity requires the 1PN accurate equaies through 2PN order by two independent methods: the
tions of motion, but is potentially equivalent to the 3.5PN Blanchet-Damour-lyerBDI) approach based on a mixed
terms in the equation of motion. This motivated lyer andmultipolar post-Minkowskian and post-Newtonian frame-
Will (IW) [28,29 to propose a refinement of the textbook work together with asymptotic matching and analytic con-
[30] treatment of the energy balance method used to discugguation [48] and the recently improved Epstein-Wagoner
radiation damping. This generalization uses both energy anEW) [49] formalism by Will and Wisemafi46] which pro-
angular momentum balance to deduce the radiation reactiorides a method to carefully handle the divergences of the
force for a binary system made of nonspinning structurelesslder EW treatment. In view of the above discussion it is
particles moving on general orbits. Starting from the 1PNnatural to investigate the possibility of extending the treat-
conserved dynamics of the two-body system, and the radiment of lyer and Will to 2PN accuracy beyond the Newton-
ated energy and angular momentum in the gravitationalan (2.5PN radiation reaction and this is what we propose to
waves, and taking into account the arbitrariness of the “baltake up in this paper. The knowledge of the reactive accel-
ance” up to total time derivatives, they determined theeration beyond the lowest order could also have practical
2.5PN and 3.5PN terms in the equations of motion of theuses. For instance, Lincoln and WjB0] have studied the
binary system. The part not fixed by the balance equationkte-time orbital evolution of compact binaries with arbitrary
was identified with the freedom still residing in the choice of mass ratios. They described the orbit using the osculating
the coordinate system at that order. Thus, starting from therbital elements of celestial mechanics and used the
far-zone flux formulas, one deduces a formula that is suitabl®amour-Deruelle two-body equations of motion including
for evolving general orbits of compact binaries of arbitrary Newtonian radiation reaction ternjig7,1€ to evolve these
mass ratio and that includes 1PN corrections to the dominardrbital elements. The extension of this work to include 1PN
Newtonian radiation reaction terms. Blanch@&i,32, on the radiation reaction is still not available. Recently, a 2PN ac-
other hand, obtained the post-Newtonian corrections to theurate description for the motion of spinning compact bina-
radiation reaction force from first principles using a combi-ries of arbitrary mass ratio was obtained in a generalized
nation of post-Minkowskian, multipolar, and post-Newtonian quasi-Keplerian parametrization initially suggested by
schemes together with techniques of analytic continuatiodamour and Sclar [51-54. These orbital elements have
and asymptotic matching. By looking at “antisymmetric” also not been evolved to 2PN radiation reaction order. Our
waves—a solution of the d’Alembertian equation composegresent computation is a step in that direction. These at-
of retarded wave minus advanced wave, regular all over theempts to study the evolution of binary orbits would be
source—and matching, one obtains a radiation reaction tertomplementary to those using the test particle lim,41].
sor potential that generalizes the Burke-Thorne reaction po- To summarize: Starting from 2PN accurate energy and
tential[33], in terms of explicit integrals over matter fields in angular momentum fluxes for compact binaries of arbitrary
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mass ratio moving in quasielliptical orb{t47,46|, we obtain  examines the question of redundant equations and explores
the 4.5PN reactive terms in the equations of motion by arf'variants” of the original IW scheme that differ in their
extension of the IW method. Schematically, the equations o€hoice of the ambiguities in energy and angular momentum.
motion for spinless bodies of arbitrary mass ratio are Section IV discusses the question of the undetermined pa-
rameters and arbitrariness in the choice of the gauge, in par-
ticular at 4.5PN order. Section V is devoted to the particular
cases of quasicircular orbits and head-on infall. Section VI
contains some concluding remarks. In the Appendix, for
mathematical completeness, we prove that the far-zone flux
formulas and the balance equations admit more general so-
Sutions if one relaxes the requirement that the reactive accel-
eration be a power series in the individual masses of the
Soinary or, equivalently, that it be nonlinear in the total mass.

d?x mx ) - .
a= gz~ r—3[1+0(e)+0(e )+ O(€2%)+0(€d)
+0(e39)+0(e*)+0(e*d+- -1, (1.1

wherex andr =|x| denote the separation vector and distanc
between the bodies, amd=m; +m, denotes the total mass.
The quantitye is a small expansion parameter that satisfie
e~ (v/c)>~Gmi(rc?), wherev andr are the orbital veloc-
ity and separation of the binary system. The symii(g)
and 0(62) represent post-Newtoniar(PN)’ post-post- Il. IW METHOD FOR REACTIVE TERMS IN THE
Newtonian(2PN) corrections and so on. Gravitational radia- EQUATIONS OF MOTION

tion reaction first appears a@(e>% beyond Newtonian
gravitation, or at 2.5PN order. We call this the “Newtonian” _ o )
radiation reaction. “Post-Newtonian” radiation reaction ~We consider only two-body systems containing objects
terms, a0 (€39, were obtained by lyer and WilRg,29 and  that are sufficiently small that finite-size effects, such as
Blanchet31,32). Here we obtain the 2PN radiation reaction, SPin-orbit, spin-spin, or tidal interactions can be ignored. The
atO(e*%. The 4.5PN reactive terms are determined in termglynamics of such systems is well studied and the two-body
of 12 arbitrary parameters, which along the lineg28,29,  €quations qf motion ponyen!ently cast into a relative one-
are associated with the possible residual “gauge” choice aPody equation of motion is given by

the 4.5PN order. These results valid for general orbits are
specialized to the two complementary cases of circular orbits

and radial infall. The expressions forand  for the qua- +0(€%, (2.1

sicircular orbits and: for radial infall to 4.5PN order are in

agreement witj43,55 as required. We next examine criti- where the subscripts denote the nature of the term, post-

cally the origin of the “redundant” equations in the formal- Newtonian(PN), post-post-Newtoniat2PN), Newtonian ra-

ism and examine our understanding of this redundancy bgiation reaction(RR), post-Newtonian radiation reaction

exploring variant schemes which differ from the original IW (1RR), 2PN radiation reactiof2RR), tail radiation reaction,

scheme in their choice of the functional forms for the arbi-and so on; and the superscripts denote the order lor our

trary terms in energy and angular momentum. purpose we need to know explicitly the acceleration terms
The paper is organized as follows. In Sec. II, we describg¢hrough 2PN order and they are given K27,56,5Q

the IW method to obtain the 2PN reactive terms. Section ll(G=c=1)

A. The procedure

_ 1 2 2. 3 3. 4 4 4.
=+ i i o0+ AR+ il o+ R

m
aNz—r—zn, (2.29
(1) m m 2 3 ) .
apN= " z| N —-2(2+ 77)7+(1+37])v 5 —2(2—np)rvy, (2.2b
2 m[]3 m|?2 ,. 15 ., 3 i, 1 m
apN= ~ ;2| N 2(12+2977) T +7(3—-4n)v +§77(1—377)Ir —577(3—477)11 r —577(13—477)711

m..] 1.
—(2+ 2517+2772)Tr2 — 3TV

77(15+477)u2—(4+4177+8772)?—377(3+277)'r2“, (2.29

whereu=m;m,/m is the reduced mass, with=u/m, and  bodies, ignoring tidal and spin effects. For the relative accel-
n=x/r. Then.5PN reactive accelerations are determined byerationa=a; —a,, one assumes the provisional form
following the “What else can it be ?” procedure employed 8
in IW which we summarize here. One writes down a general a=—— 2 _ ;

) p(m/r2)(m/r)[ —(AzstAzstAggrn
form for the Newtonian é>°), 1PN (€39, and 2PN ¢*9) 5 2o  Tes T
radiation-reaction terms in the equations of motion for two +(By 5t B3stBygVv]. 2.3
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The form of Eq.(2.3) is dictated by the fact that it must be a solution has been checked and reproduced in the preliminary
correction to the Newtonian acceleratigine., be propor- part of this investigation and constitutes an input to supple-
tional to m/r?), must vanish in the test body limit when ment the conservative acceleration terms in @) for the
gravitational radiation vanishgse., be proportional tay), present study. Our aim is to evaluate these 20 parameters
must be dissipative, or odd in velocitigse., contain the appearing imM\, s andB, 5 that will determine the 2PN radia-
factorsi', n, andv |inear|y) and fina”y, must be related to the tion reaction. It is worth pointing out that in the calculation
emission of gravitational radiation or be nonlinear in New-We are setting up, the terms in the equations of motion of
ton's constantG (i.e., contain another facton/r). The last O(e®) andO(e*) beyond Newtonian order do not play any
condition may be more precisely stated by requiring that théole. The former is nondissipative but not yet computed; the
reactive acceleration be a power series in the individualatter on the other hand includes dissipative parts due to the
massesm; andm, [57]. For spinless, structureless bodies, ‘tail” effects [58-61] which have been separately balanced
the acceleration must lie in the orbital plafiee., depend by the tail luminosity in the works of Blanchet and Damour
only on the vectors andv). The prefactor 8/5 is chosen for [58,32. However all the radiation-reaction results will re-
convenience. To make the leading term®fe29) beyond Main as “partial results” in the saga of equations of motion
Newtonian orderA,s and B, s must be ofO(e). For this ~until a complete treatment of ChandrasekHa@3] and
structureless two-body system the only variables in the probP@mour [16] is available through 3PN order and later

lem of this order are?, m/r, andr2. ThusA, s andB, s can through 4PN order.

each be a linear combination of these three terms; to thosrtlav(;r(;]rf?gg]hazPglngrrgﬁzrééhﬁae?;gt'g;ls tﬁ;tm doélogngznngfodn?-
terms we assign six “Newtonian radiation reaction” param- 9 grang P Y

eters. Proceeding similarlyh, < and By« must be ofO(€2), on positions and velocities but also on accelerations. To this

hence must each be a linear combination of the six termgrder’. that is in the absence of radiation reaction, the La-
grangian leads to a conserved energy and angular momentum

v*, v2mir, v2r?, r2m/r, r*, and M/r)2. To these we assign given by[27,56,62
12 “1PN RR” parameters. And finallyA, s and B, s must T

be of O(€%), each a linear combination of the 10 terafy E=Ey+Epyn+ Eopy, (2.43
o2, vimir, V2%, v3(mir)?, vAr3(mir), 8 r4(mir),
r2(m/r)?, and (/r)® to which we assign 20 “2PN RR” J=Jy+ Jpnt Jopns (2.4b

parameters. The 6 Newtonian RR and 12 post-Newtonian
RR parameters were first determined in I\28,29. This  where

En= e D 25
N—MEU_TI (a
E_313413 ,m 1 m._ 1/m\? 5 5
=M g(1 =3+ 5B+ +o TS ) (2.5

Eopn= 51 7+ 13n? 6+121 23 272m4+1 1-15 M a2 3 1-3 M. 12+15 m)’
2PN= M 1—6( —7n+137%)v g( —23n— 77)70 2 71— n)rvr—gn(— ”)Tr_Z( 77)7

1 L [m 2 , 1 L (m 2.2
+5(14-55y+477)| —| v+ S(4+69n+1277)| | 12, (2.50
JN:LN! (25®
1 m
JPNZLN(502(1_377)+(3+ U)T], (2.58

1 ,m, 1 m., 1 ) m\2 3 o 4
Jopn=Ln 5(7_10’7_9’7 )TU —577(2+577)Tr +Z(14_41’7+4’7) - +§(1—777+1377 .,  (2.59)

and wherel y=uxXv.

Through 2PN order, the orbital energy and angular momentum per unit reduced magg, Ef=30v2
—m/r+0(e?)+0(€), 3=x><v[1+ O(€)+0(€?)], are constant, and correspond to asymptotically measured quantities.
However, the radiation reaction terms lead to nonvanishing expressioq:é,fdt anddJ/dt containing the 20 undetermined

parameters. Following IW, starting from the 2PN-conserved expressiorEsdodj we calculatedE/dt anddJ/dt using the
2PN two-body equations of motiorj27,56,5Q supplemented by the radiation-reaction terms of E.3. In
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the balance approach, this time variation of the “conserved” quantities is equated to the negative of the flux of energy and
angular momentum carried by the gravitational waves to the far zone. Thus in addition to the EOM and conserved quantities
we need the 2PN accurate expressions for the far-zone fluxes of energy and angular momentum for a system of two particles
moving on general quasielliptic orbits. The waveform, energy, and angular momentum flux have been computed by Gopaku-
mar and lyer{47] using the BDI[48,45 formalism, and independently the waveform and energy flux by Will and Wiseman

[46] using their new improved version of the EW9] formalism. We quote below the final results for tfiexes per unit

reduced mass

d& . . . .
(a) =&t Erpnt Erspnt Eopns (2.6a
far zone
d ~ . . . )
at =Ln[Int Tipnt J1sent Toenls (2.6b
far zone
where
& m* m 4p? 11 2.7
N_57]r v 3r ( . a
£ 8 e mf 1 785—8527)v* 1487-13929) v 40 17 2
PNTE 7T Q( v — ( 2n)vr ——1( /)1 T
! 687—6207)r* 2 367— 157)12 0 4 1-4 m)* 2.7b
+5g(687=620n)r"+ 52 (36 7= 15m)r°—+ 2 (1=4n)| | |, (2.79

. 8 mmf 1 ) o ain
Ean=g 1 | 1551692~ 5497+ 44307%) 05 2(171@ 10 2787+ 62927%)v %

1 m 1 . 1 ..m
~ 53(4446-5237p+ 1393772)1;4? + 75(2018-15 207 + 757297 v?r 4+ 57(4987-85137+ 21657%)v?%r2—

m\2 1
2 _ _
2268(281473+81828;7+4368r;) (r) To(250% 20 2347+ 840472)r® 189(33510—6097177
oo M Hio[ M 2 2 L (m 3
+14 29072 14— — (106 319+ 9798y+53767%)r2 Tgo 253~ 10267+5677)| — (2.70
r 756 r] 189
8™ 22-gi2s 2T 2.7
INTg iz | 2073 it (2.70
: 8 mm - ,m 1 4
JiN=E 177+ (307—54877)1; ——(74 27Tn)vr ——1(58+957;)v — + 5g(95—3607)r
! 372+ 1979120 ! 745-2p)| 2 i 2.7
+4—2( +197n)r 7—42( 77) (2.7¢
' —8 mm 1 2665— 12 355+ 12 8942 — (2246~ 12 653+ 15 6372 vir2+ 165— 491
m
2y 4 22144 — —
+40227%)v* +168(3575—16 805+ 15 680p2)v? +504(21 853-21 6037+ 25517%)v2r2 - 252(10 651
10 179+ 34287%)v? m_5 39— 1635+ 977)r® 22 312-41 398+ 96957, 8436
- 9+ 3428y )v T _E( —163n+977°)r —504( 8p+96957%)r —+252(

2

3
—25102+ 45877;2)'r2(? =——(170 362+ 70 461p+ 1386;72)( m) } (2.79

2268
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In the above expressiong,fLN/u and the tail terms are , 1 m 5
not listed. It is important to emphasize that the “tail” con- Az5=3(1+ag)v +§(23+ 6ﬁ2_9“3)7_5a3r '
tribution to the reaction force is such that the balance equa- (2.8a

tion for energy is verified for the tail luminosif$8,32. This

corresponds to the “tail” acceleration at 4PN. With this part B ) m -y
independently accounted for, in our analysis we focus on the Bos=(2+ Bo)v"+ (2= B2) ~—=3(1+Bo)r%, (28D
“instantaneous” terms without loss of generality. It is worth

recalling that the “balance” one sets up in the above treat- m) 2
ment is always modulo total time derivatives of the variables Ass= frof+ fzv - + fau?r?+ f4r - + foré+fe p ) ,
involved. This is crucial to realize and in IW this was sys- (2.89
tematically accounted for by noting that at orders of approxi-

mation beyond those at WhICh they are strictly conserved 4 m)?
(and thus well defme)dE andJ are ambiguous up to such Bss=010"+gov? —+ggv r2+g,r? —+g5r +de ) ,
terms. Consequently, we have the freedom to add and (2.8d)
J arbitrary terms of ordee?5, €25, ande*5 beyond the New-

tonian expressions Wlthout affectlng their conservation at'

2PN order. There are 3 such terms of the appropriate general 3

form atO(e%>9) in each ofE andJ, respectively, 6 each at f1=5g(117+132n) = S a3(1—37) + 38~ 3ps,
0O(€%9), and 10 each aO(e*9), resulting in 6 additional (2.93
Newtonian RR parameters, 12 additional 1PN RR param-

eters, and 20 additional 2PN RR parameters, respectively. As 3

discussed in detail in the following section, these numbers f2= = 75(297=3107) =3B5(1—47) — Fas(7+137)
are very much tied up with the “functional form” we as-

sume for the ambiguous terms and in this section we follow =28, -3+ 385+ 3ps, (2.9b
IW in close detail. Equating time derivatives of the reiulting

generalized energy and angular momentum expres$tons f3=E(19— 729) + Ea3(1—37])—5§2+5§4+5p5,
and J* (rather than only the conserved expressjdiesthe

negative of the far-zone flux formulas and comparing them (2.99
term by term one seeks to determine the extent to which one

can deduce the 4.5PN reactive acceleration terms by the re- ¢, — i(687— 3687) — 68,7+ Ea3(54+ 177)
fined balance approach. 28 2

where

—2&,—5£4—6&s, (2.90

B. The 2PN RR computation and results _

fs=—7¢&, (2.99
The above procedure is implemented order by order. All

the computations were done wikapLE [63] and indepen-

dently checked byATHEMATICA [64]. At the leading order,

when the flux is given by the quadrupole equation, one de-

duces the “Newtonian RR” or 2.5PN term in the accelera- —2£3— 35, (2.99

tion. In this case, in addition to the six unknowns in the

reactive acceleration, one has three unknowns each for the

possible 2.5PN ambiguities in te* and J*. As demon-

strated in IW, the balance equations yield 12 constraints on

these 12 Newtonian RR parameters. Of the 12 constraints, 1 1

only 10 are linearly independent, and thus finally one obtains ~ 92~ ~ gz(13%+ 768) — 5 Ba(5+ Lim)+&1—&s,

10 linear inhomogeneous equations for 12 Newtonian radia- (2.9h

tion reaction variables. Solving these equations one obtains

explicit forms forA, s, B,s andE, g, J2 5 in terms of two

2.5PN arbitrary parameters. To get the 3.5PN reactive term§J3~ 28(369_ 624n)+ 5 (3'82+20‘3)(1 37)+3&,~3ps,

one adopts the above solution and extends the calculation to (2.9i)

0O(€39) after introducingE; s and J; 5 with 12 additional

1PN RR parameters. At 3.5PN there are 20 constraints on

the 24 post-Newtonian radiation reaction parameters; of thd4~ 42

20 only 18 are linearly independent; the solution to this sys-

1
fg=— ﬁ(1533+4987;)—,6’2(14+977)+3a3(7+477)

3
9:==3(1-37)—5B(1-37n)—&, (299

(295—33517)+2ﬁ2(38 117)—3as(1—379)+2&

tem yields explicit forms forAzs, Bss and Egs, Jzs in +483+3ps, (2.9)
terms of six 3.5PN arbitrary parameters. Since we need these .
results for the present computation, we reproduce them from =2 (19-729)—Bas(1-37) +5ps,  (2.9K

IW [65]:
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1 6 4.2 4m 2.4 2
96:_2(634_667])4‘,32(7"‘37])"‘53 (29') A4'5:hll) +hzv r +h3U T+h4U r +h5U -

The quantitiess, B,, &1, &2, &3, €4, €5, andps are param- 2:2M o aM (M) m) ®
eters that represent the unconstrained degrees of freedom that +hevr T +hor®+hr T+ hor 1| +hao T/
correspond to gauge transformations. In addition to the reac- 511
tive terms listed above, one of the coefficients that determine (2.113

the 2.5PN ambiguity ifE andJ and three of the coefficients

that determine the corresponding 3.5PN ambiguity are non- m) 2
vanishing. We list these also since they are needed for settindd, = kv ®+ kv *r 2+ kgv* — + kqv2r*+ksv ( )
up the 4.5PN computation:

a1=—(2+,82), (2103 +k6U2rZT+k7r6+k8r47+k9r2(T

4
€6=— 2—1(1—47;), (2.10h (2.11b

1 We also assume for the ambiguity B s andJ, 5 the restric-
p3=&1+ g5(307—5487), (2100 tions and functional forms adopted in IW and also require
thatJ remain a pseudovector. The “generalized energy” and
1 “angular momentum” through 4.5PN are thus given as sums
pe=&3~ 75(271~2147). (2.100  of the conserved parts, Eq&.5), the “most general” 2.5PN
and 3.5PN contributions, i.e., with coefficients determined
We now adopt the 2.5PN and 3.5PN solutions given b>by the Newtonian RR and 1PN RR calculations, and arbi-
Egs.(2.9), (2.9, and(2.10. Following the IW strategy, we trary 4.5PN terms. We use* andJ* to distinguish these
assume the 4.5PN terms in the equations of motion to be ajuantities from the conserved energy and angular momen-
the form tum. We get(per unit reduced mags

E* EEN+EPN+ EZPN+ Ez.s"‘ Es.s"‘ E4.5
- o~ = 8 [m\Z2. 5 ., 8 (m 2,
:EN+EPN+E2PN+§77 T rl(2+B)v"— asr ]_577 ry

m)z.
—|r
;

.om .,m . /m
+1//6v2r27+¢/7r6+¢//8r4T+z,bgrz(T

. m
§1v4+ §202r2+ 53027

. ..m 4 2 . m
+ &+ fsrzr_ 21(1 477)( }_ 57 Y0+ v+ %0304?
m\ 2

+ l,[/4U2i'4+ l//5U2(T

2 m\ 3
+i/’lo( T) }, (2.123
3*EHN+3PN+32PN+32.5+33.5+34.5

8 m/ m| 8 -~ mJ[1 ,m .om 1 m)?
—JN+\]pN+\]2pN+577LN_r Bz gﬂLNTr a(307_54877+84§1)l) T+p5l’ T_IZ(271_21477_42§3) T

8 ~ m. . m . m)? ..m . .m . [m\? m)3
—gnLNTr X1v6+)(zv4r2+x3v4?+)(4v2r4+)(5v2<7 +X602r2T+X7r6+X8r4T+X9r2(T + X10 T) ,
(2.12H
We now compute the 4.5PN terms &E* /dt and dJ*/dt using the identities
1 dvz_ 213
2t Ve (2.133
doexv) _ X 2.13
Tar @ (2130
v2+r-a—r?

= (2.139
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wherea is given by Eqs(2.1), (2.2), (2.3), (2.8), (2.9), and(2.11. To computeE* andJ* to O(e*9), one needs to evaluate
(En.Jn). (Expns Jipn), and Ezpn, Jopy) by usingato O(e*9), O(e%9) andO(€e?9), respectively. On the other hand, for time

derivatives of the “ambiguity parts,” &5, Jas5), (Ezs, Jag), and E, s, J, 5, the relevant accelerations are the “conserva-
tive” accelerations to order Newtonian, post-Newtonian, and second post-Newtonian, respectively. Schematically, we get

dE* 8 m
dt ~ 1577r%

1 m
[(785—85297)v4+2( 1487+ 13929)v2r2+ 160 — 17+ ) v?

o 2_ 2
( (1202—11r )+ o5

2

15
. m. m
+3(687—62077)r4+8(367—157;)Tr2+16(1—47;)— }+Z RISy 1), (2.143

dj*_ 8 Em m ) 2+2m 32
dt ~ 57-Np2 v r o

1 . m
8—4[(307— 5487n)v*+ 6(— 74+ 277n)v°r?— 4(58+ 957) Tvz

2

15
. m. m
+3(95—3607)r*+2(372+ 19777)Tr2+ 2(_745+2’7)(T J+2 3}4-513441), (2.14bh
=1
where

yBl(i=1,...,15=

ot of{ iz
7))

andRi[“'S] gndSi[“'Slconsist of combinations of the parametbrsandk; from A, sandB, s, ¢, x; combined with functions

of n from E,sandJss, €1.82,€3,84,€5.p5 combined with functions of; from 1PN corrections of 3.5PN terms and and

B> combined with functions of; from 2PN corrections of 2.5PN terms. We equdfe*/dt anddJ*/dt thus obtained to the

negative of the 2PN far-zone fluxes given by E@?7). This results in 30 constraints on the 40 parameters;, ;, and

xi - Two of these constraints being redundant, of the 30 constraints only 28 are linearly independent. The system of 28 linear
inhomogeneous equations for 40 variables is therefore underdetermined to the extent of 12 arbitrary parameters, and we choose

these to bej, - - - g, x6, Xs andyxg. With this choice, the coefficients in E€R.11) determining the 4.5PN reactive accel-
eration are given by

“IB

[l

el

r r

Xv

1 3
Tag( 121 22787+40127%) — gag(1- 977+217,2)——(gz ps)(1—37)+3¢—3xs, (2.163

hi="Te8

5 5 5
h2=@(329— 1487n+ 12445°%) + §a3(1—977+ 217%) + 5(52—54—p5)(1—377)—5¢2+ 5¢4+5xs—5xs, (2.16D

1 3 1 3
h3=@(7692— 87 429+ 11 2187°) + §a3(1—977]+ 257°) + 232(3—377— 199%)+3&(1—475)— §(§Q—p5)(7+ 137)
3
_555(1_377)_2¢1_3¢2+3¢6+3X6_3XQa (2.169
5 7
h,=— E(39_ 1639+ 977%) + E54(1—377)—7¢4+7¢7+ 7xs» (2.160

1
=—(37 089- 64 0057+ 11 2977%) + Qa3(2+ 139+ 279?) + — ,82(48 1215—54%%) + £,(14+97)

hs=—355

3
+3(&27ps)(T+47m) +383(1—4n) — 5 &(7+131) — 23— 3¢+ 3+ 3xo, (2.16¢
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1 1 1
he=— 504(45 475-219 535)+43 121;%) — —a3(14— 4039+ 779%) — /327,(7— 137)+ 67, + E52(68— 97)
5 1
- 564(7+ 137)+3&5(1-37n)— 5p5(62+ 19%) =44, —5ihy—6ihg+ S+ 2x6+5xs+ 69, (2.160
h,=—9¢, (2.169
1 1 33
hg= 252(5002 36 589+ 44967%) — —agn(233 6379)+ — 3277(1 3n)+3pé+ = 54(82+ 2379)+575ps
— 24— Tiy7—8s, (2.16hH
1
hg= 756(181 371342 47%+ 42 598°) — —a3(117+ 1097+ 67%) — — ,82(28+ 245p+209%) + 2 ¢,
1
+(286,+5&E)(T+4n)+Tnés+ 555(60+21n)+3np5—2%—51#8—71#9. (2.16)
1 3
hyo==-z5(265 265+ 262 2307+ 15 0729%) — 7 @s(102+ 1775+ 16772)+ 7 B2(200+ 3257+ 4072) + £5(14+97)
+3&5(7+4m)— 245~ 34y, (2.16)
3 ,. 3
klzg(ﬂz+2)(1—n—1ln )+5§1(1—3n)—¢1. (2.16K

1 3 3
Ko=— 168(499—265677 14@772)——013(1 3n— 3772)——,32(1 n— 11772)——(351 28— ps)(1—371)+ 31— 3xs,
(2.16))

1 3
Kg= =g02(81- 9127~ 14482;2)——B2(3+121n+7n2)+ 5615+ 17n)+ 5 &5(1-3n) + g~ s, (2.16m

5 5 5
ky=g4(329- 148+ 12447°) + 5 as(1— 37— 37%) — 5 (26— 264+ ps) (1~ 37) +5x6— 5xs, (2.16n

1
ks= — (1107—80577 508772)+ 7 Bo( 16+ 2550+ 220%) — £1(T+3m) + 5 £a(5+1Tm) + Ya— s, (2.160

252

1 3
Kg= 504(1797+54816v; 22 463)°)+ = a3(1+37]+5772)——[32(42 48577+173772)——§1(56 497) —3(&,+ 23— &s)

3
> 2
ky= = 15(39~ 1637+ 970%) ~ T£4(1-37) + Txa, (2.169
1 1
kg=— 504(39 80892 788y+24 563,%)+ = a3( 14— 1057+ 597°) — —,327](69+ 1379)—3né1— (26,156, +6&5)(1—37)
1
~5P5(62+37)+2x6+ Sxs+ 6xo, (2.160

1
Ko= 252(8319—7683;7+11809;72)+3a3(3 13— 772)——32(194+21577+24772) (2§1+3p5)(7+37])——§3(44—977)

—3&5(1—3m)+ 243+ 55+ 3xg, (2.169
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1 1
kio=5gg( 425 413+ 111 6367~ 69127%) — 5 B5(53+ 103+ 47°) — 5(7+37) + s (2.169

At the 4.5PN order, four parameters determin%g;, and — 1 5 1
J, 5 are nonvanishing and are given by X3—X3= X3+ g(1=979+217") f,= 5(1-3m)&

1
— 2
Y10= %9(362— 15487+ 4007?), 16a! 307~ 1469+ 164477),

_ 1
L Xs—X5= XsT5(1+67=37%) o= (3+ )&y
X3= U+ 5,(2665- 12 355+ 12 89472),

1 1
_T(1_ _ - _ 2
2(1 37)é; 42(325— 1557—595%7),

7 1
X5= 3+ 5 Ban— 75a(524— 4483+ 367577, _
2 126 XGHX6:X6_§(1_37I)P5:

7 1 _ 1
X10= ¥5— 51327/4' 52(775_ 3939 +29427%). X9 X9= X9~ 5(2"‘577) 7B2—(3+ 7)ps,
(2.1

— 1
A final minor remark is with regard to the two possible ways X107~ X10= X107~ 7 (22+657) B2~ (3+ m)és
one may implement the requirement that the ambiguity in 1
J* be a pseudovector. One may either choose it proportional + —— (5691~ 25975 — 14987?). (2.20
to Ly as in the treatment above or to the conserved angular 294
momentum). At 2.5PN order both choices are identical. At consequently, in terms of the above “shifted” variables, the
the 3.5PN order, the two choices lead to an identical systemyytions for the reactive accelerations are identical.yAs

of linear equations barring a translation in the valuep®f 54, . are among thindependenparameters that determine
and pg by an amount given by the coefficients of and e yeactive acceleration, in terms ot and xo the two

m/rin Jypy: choices yield equivalent but different looking solutions for
the 4.5PN reactive terms in the equations of maotion.

L 1 Of the two choices, the second choice is more convenient
p3—p3=p3t5(1=37)Bs, for calculations by hand sinak)/dt=0 to O(€?), but has no
special advantage when the calculation is done on a com-
puter.
pe—pPe=pst (3+71)Bx. (2.1

IIl. REDUNDANT EQUATIONS

. . AND RELATED VARIANT SCHEMES
Sincep; and pg are not among the arbitrary parameters de-

termining the solution, the solution determining the reactive It was noticed in IW that both at the 2.5PN and at the
terms andég is unchangedOnly the expressions fgr; and ~ 3.5PN order, the “balance procedure” leads to two redun-
pe are changed to dant constraint equatiof29]. Here, at 4.5PN order, we once
again obtain two redundant constraint equations. In this sec-
1 1 tion, we examine critically the origin of these redundant
pa=&1+ = (307-5487) + = (1—37)B,, equations.
pa=tit gy QA i In implementing the “refined balance procedure” for the
general orbits, IW29] balance the “energy flux” and “an-
1 gular momentum flux” completely independently of each
o= Eae —(271—214n) + (3 + _ 21 other. However, for circular orbits, these fluxes are not inde-
Pe=ts 42( 7+ B0 219 pendent but relatefs6] via

At 45PN order, however, the situation is different. Indeed, (%) =027,
as before, the two choices lead to an identical system of far zone
linear equations barring a translation in the values of the five )

parameters(s, xs, Xs: X9, @and x1o: where 7 is defined by the equation
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d : e, +e,—4=0. 3.1
(6 - -
far zone Similarly at 3.5PN we have

The general balance should reflect this limit and we find that 1
for Newtonian RR a linear combination of the six equations 91+ 02+ 06— (3= 7)o+ g5(2927-252y) =0,

representing energy balance and another linear combination (3.2
of the six equations representing angular momentum balance '
are indeed identical and given by and finally at 4.5PN order the “degenerate” equation is

1
kot kat ks + Kao+ (3= m)(£1+ &3) + 5 (90+ 137+ 67%) By~ 722635 774 297 117%—81 000, =0. (33

4536

Thus we can trace the existence of one of the redundanyy|e determining the ambiguity |ﬂlz 5 i.e., 10 variables in
equations in the IW procedure to the fact that for circularg||, The balance equations lead to nine equations—six from
orbits the energy and angular momentum fluxes are not inenergy and three from angular momentum—of which eight
dependent but proportional to each other. are linearly independent. In other wordbgre is only one

The mystery of the other redundant equation was not sgedundant equationThe linear system of 8 equations for 10
easy to resolve but after a careful examination of the systemariables is then the same as before and leads to the IW21
of equations and “experiments” in modifying the system, solution in terms of 2 arbitrary parametet3he two extra
we could finally track it back to its source. The observationvariables in IW21 are identically zejoSimilarly, at the
that this redundant equation relates the coefficients of th8.5PN level we have 12 variables in the reactive accelera-
polynomial representing the amblgwtyjﬂed us to examine tion, 6 variables determining the energy amblguﬁ% and 3
the functional form that IW proposed as the starting ansat¥ariables determining the ambiguity 33 5, i.e., 21 variables
for the calculation. A comparison of the functional forms for in all. The balance equations lead to 16 equations — 10 from
the ambiguity inE andJ, Egs.(2.12 reveal that indeed IW energy and 6 from angular momentum — of which 15 are
assume a more general possibility fbthan required. The linearly independent, leavingnly one redundant equation
ambiguity in angular momentum leads to terms more generé[he linear system of 15 equations for 21 variables is then the
than required by the far-zone flux formula and time deriva-same as before and leads to the IW21 solution in terms of 6
tive of the leading term using the reactive acceleration. Thérbitrary parametergThe three extra variables in IW21 are
absence of such terms in the far-zone flux then yields onlydentically zero) Finally, at the 4.5PN level, we have 20
the trivial solution for these additional vanableanand the variables in the reactive acceleration, 10 variables determin-
second redundant equation is just a homogeneous line&td the energy amblgwt)E45 and 6 variables determining
combination of these trivial solutions. Thus the second rethe ambiguity inJ, s, i.e., 36 variables in all. The balance
dundant equation in the IW scheme is due to the fact that thequations lead to 25 — 15 from energy and 10 from angular
IW scheme—extended here to 4.5PN order—is not a “mini-momentum — equations of which 24 are linearly indepen-
mal” one. dent, again leavingnly one redundant equatioifhe linear

To verify this “conjecture” we experimented with alter- system of 24 equations for 36 variables is the same as before
natives for the functional form that one assumes as the starand leads to the solution obtained in the previous section in
ing expression for the ambiguity B andJ — the 2. 5PN, terms of 12 arbitrary paramete(3he four extra variables in

3.5PN, and 4.5PN order terms. In the first instance, we rethe IW21 scheme are identically zerdhe IW22(minimal)
place the IW scheme—labeled for clarity of reference byscheme thus confirms the conjecture that the occurrence of

IW21—by the “minimal” variant in Eq.(2.12—labeled by the second redundant equation is special to the IW scheme
IW22. The notation IW21 indicates, e.g., than/f)? is  (IW21) and is related to the choice they make for the func-
pulled out inE while only (m/r)* is pulled out inJ. As  tional form of theJ ambiguity by pulling out only one factor
explained above, the minimal choice fat is obtained by of nonlinearity m/r rather than its square — the minimal

. ~ 2 . choice. To double check the above explanation, we per-
pulling out the factor (8/5pLn(m/r)°r from arbitrary terms ¢ o4 another experiment by examining a variant that

in J*, rather than the factor (8/g)-n(m/r)r as in the IW  \ouyld generate an increased number of redundant or degen-
scheme fOl’J* Thisreduces by onéhe order of the polyno-  erate equations. This scheme denoted by IW11 differs from

mial in v?, r?, andm/r that constitutes the arbitrariness, and IW21 in that the ambiguity inE* is assumed to have
consequently implies a reduction in the number of varlable%g/s)n(m/r)r as the common factor, i.e., by pulling out only
that characterize the ambiguity ihto one forJ, s, three in  one order of nonlinearityn/r rather than its square as in

Js5and six inJys. Thus in the IW22 scheme, at the 2.5PN |w21; the polynomial representing the ambiguity B is
level we have six variables in the reactive acceleration, thregonsequently obne order morghan in IW21. In this case, at
variables determining the energy ambigutys and 1 vari- 2.5PN order one has +466+3=15 variables and
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TABLE I. Comparison of four alternative schemes: IW21, IW22 number of arbitrary parameters as in the IW scheme. The
(minimal), IW11, and IWOON denotes the order of approximation, reduced “gauge” freedom is not adequate to treat as special
NV the number of variable$\C the number of constraints coming cases the Burke-Thorne gauge at the 2.5PN level or the
from balance equation®yD the number of degenerate equations, Blanchet choice at the 3.5PN level. And finally, in a scheme
NI the number of independent equations, &hdl the number of  jth both energy and angular momentum balance taking ac-
arbitrary parameters determining the solution. In M column, o\ of the ambiguityonly in J one obtains a consistent
at b.+c. meansa variables of reactive accgler_aﬂob,m eNeT8Y solution at 2.5PN order containim arbitrary parameters at
ambiguity, ande in angular momentum ambiguity. all. No soluti.on is possible at higher orders.

On general considerations, the reactive acceleration
should be a power series in the individual massgsand
IW21: IW scheme m, or equivalently, it should be nonlinear in the total mass
m as assumed in earlier sections. It is interesting to investi-

N NV NC ND NI NA

;EEE gi;% ;é ; ig 2 gate whether the functional forms_ of the far-zone quxes_and
: the balance procedure necessarily lead to such “physical”
4.5PN 20r10+10 30 2 28 12 solutions alone or whether they are consistent with more
IW22: Minimal scheme general possibilities. In the Appendix, for mathematical com-
pleteness[67] we investigate this question in detail and
2.5PN 6-3+1 9 1 8 2 prove that the flux formulas and balance equations do not
3.5PN 12+6+3 16 1 15 6 constrain the reactive acceleration to their “physical” forms
4.5PN 20-r10+6 25 1 24 12 alone but allow for a more general form for the reactive
W11 scheme acceleration.
2.5PN 6r6+3 16 3 13 2 IV. ARBITRARINESS IN REACTIVE TERMS
3.5PN 12r10+6 25 3 22 6 AND GAUGE CHOICE
4.5PN 20r15+10 36 3 33 12
It is well known that the formulas for the energy and
IWO0O0 scheme angular momentum fluxes in the far zone are gauge invari-
2 5PN 6-10+6 25 5 20 2 ant, i.e., independent of the changes in the coordinate system

that leave the spacetime asymptotically flat. On the other
hand, the expressions for the reactive force are “gauge de-
) ) pendent” and consequently, e.g., the Chandrasekhar form is
10+6=16 equations of whict8 are redundantThe 13 itterent from the Burke-Thorne or Damour-Deruelle forms.
equations for 15 variables thus y|e|d the required solution |r|n W it was Shown that the Burke_Thorne gauge corre-
terms of 2 arbitrary parameters and similarly for higher Or-sponds to the value8,=4 andas=>5, while the Damour-
ders. One may also explore the most general of choices iperyelle choice corresponds By=—1 anda;=0. It was
which only (8/5) is pulled outside and the ambiguity is the fyrther shown that the reactive acceleration implied by
highest order polynomial consistent with the order of thegjanchet's first principles determination of the 1PN radiation
approximation. We studied one such schei¥&00) in the  reaction indeed corresponds to a particular choice of the ar-
Newtonian RR case. For convenience, the various experpitrary parameters in the IW solution. One of the satisfactory
ments are summarized in Table I. “aspects of IW was the demonstration that the part of the
To conclude: at 2.5PN, 3.5PN, and 4.5PN orders all variyeactive acceleration not determined by the balance require-
ants of IW examlne(lln th|’§ subsection with different forms ment was precise|y related to the possib'e amb|gu|ty in the

of the ambiguities irE and J—minimal (IW22) or IW11—  choice of the gauge at that ordéThe flux is equal to the
lead to identical reactive accelerations including their gaugeéime variation of the conserved quantities only up to total
arbitrariness. time derivatives; this ambiguity may be absorbed in a

At this juncture one may wonder about the issues of the‘change” in the relative separation vector as discussed be-
“uniqueness” and “ambiguities” of the schemes discussed|ow.)
earlier. In this regard, we would like to make the following  Following IW, we seek to establish the correspondence
general remarks. For general orbits, in addition to the balbetween the arbitrary parameters contained in the radiation
ance of energy one must take into account the balance @kaction terms and the residual gauge freedom in the con-
angular momentum. Thus, schemes involving only energytruction. The residual gauge freedom arises from the fact
balance are not relevant except in special cases like “circulathat the far-zone fluxes, Eq&.6) and(2.7), are independent
orbits” and ‘“radial infall” (see Sec. Y. Can one have of changes in the coordinate system that leave the spacetime
schemes where one implements both energy and angular masymptotically flat. These coordinate changes will induce a
mentum balance but doemt take into account the possible change inx which is the difference between the centers of
ambiguities inE andJ? One can show that even at the 2.5PNmass of the two bodies;(t) and x,(t) at coordinate time
level this system of equations is inconsistent. Further, is thé. Following IW, we choose the transformation to be of the
ambiguity necessarpoth in E and J? If one examines a form x—x’=x+ dx, wheredx can depend only on the two
scheme with both energy and angular momentum balancéectorsx andyv,
taking account of the ambiguitynly in E one does obtain a )
consistent solution up to 4.5PN order but with only half the X=(fy5tfystfsg)rX+(go5+0sstgasrv. (4.1
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In order thatéx/x be O(e>%), O(e>% andO(e*d), f, 5 and 1[2
0,5 must beO(€?), f55andgs s must beO(e®) andf,5and Qas=3|géatps—as(1-37)). (4.3
045 must beO(e%). As for the other variables, thés and

g's will also be polynomials in the variables/r, v? and We provisionally choose the 4.5PN partf to be of the
r2. As pointed out if29], we do not independently take into form
) 2

account changes in the coordinate time since the
v-dependent term indx includes this contribution via 8 (

-3

X(t+ ) ~x(t) + vét. fas=g 7

2
m . m
Pav*+ P4202T + P22+ P44< T)
In [29] it was proved that to cancel the dependence on the

two 2.5PN arbitrary parameters and the six 3.5PN arbitrary mi., 4
parametersgx should be chosen such that +Pas r ) +Pag (4.43
8 (m)\2 2 2
= | — 8 (m m . m
fas 1577( r ) @3 (4.2 945~ W(T) Quw*+ Q4202T+Q4302r2+ Qa4 T)
8 (m\? m). .
925= 757 (2a3—3p,), (4.2b +Qys - r2+Qua . (4.4b

8

m) 2 2 The change in the 2PN equations of motion E@s2) pro-
f3.5:§77 r P2+ Pyl

duced by this change of variable Eg.1) can be determined
using the known form oéx up to 3.5PN order Eq$4.2) and

r

+ Pzg'rz}, (4.20

8 [m\? ) m y (4.3), the provisional form chosen above for the 4.5PN terms
9s5=5 7| | |Qaw ™+ Qad -] Q2 "), (420 Eq. (4.4) and the transformations given below:
whereP,y's andQ,,’'s are given by X—x' =X+ 06X,
1 2 1 , dx  dox
Pa=3| &2t géa—ps— 5as(1-37)|,  (4.33 i ) e T
1 3 3 1 n- 6X
Po=— 5| é2t &am 585 ps—5 Bant 5 as(4+11n) |, r—r'=r/l+——|
(4.3b
x' pn
1 _ =4 _—_ " _(n-
Pas=¢ &4, (4.30 P e (X,
déx
2 8 1 2 12_ 2 iy
Qu=|&1t 36+ géat 5(352_2%)(1_377)}, L AT }'
(4.30

: déx .
rr+ 6x-v+x- ———(n- 6x)r

T . (459

r—r'==

1 3 63
Qu=— 5 681+56,—3&3+584— §§5+P5_ 5,3277

The gauge change generates reactive terms and the require-
(4.30 ment that this change should cancel the dependence of the

1
— zas3(4— L . . .
2 ag( 5577)}’ radiation-reaction terms on arbitrary parameters dictates that

1 1 1 2 8 1 2
Ps=— ﬂas(1_977+ 219p?) - %(552"‘ 2£,—5p5)(1-3n)+ §¢2+ 1_5l/f4+ ﬁ'ﬂ?‘ 3X6™ X8 (4.69

1 5 3 1 1 1 1 1 1 4
Po=— ga3(3+ n°)+ gﬂzﬂ_ 1517]"' 1_2§2(3_2377)+ %54(19_ 7in)— §§5(1_377)_ 1_2P5(3_227])_ §l//2_ 1_5'/14

1 1 1 1 4 1 4.6b
+Z‘/’6_§'/f7+ 1_2¢8+ §X6+ T5X8 ™ 7 X9 (4.6b

1 1 4 1
P43:_E§4(1_377)+§l/f4+ 3_51//7_ £ X8 (4.609
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1 1 1 1 1
Pas=3g@3(13+ 127+ 1677 + 2 Bo( L+ 120~ 207) + 15 (61~ 269) 0+ 3562+ £)(9+31y) — 5065(7+137)

1 9428 2 2 1 1 1 2 2 1 46
—3—0P5( +287n)+ 1—5¢2+ 1—5,1#4—1—01#6“‘ 1—5%— Elﬂs"‘ glﬂg— TEX6 ™ TEX8 T TgXe- (4.60
Pys= 21 13+1 1 1+7 ! 1 2 +1 +1 4.6

45~ 15437 —Zﬁzﬂ( —37) 55271— 1—554( 7/)—§P577— Elﬂrl—s% glﬂs 1EX8 (4.69

1
P46:7l//71 (460
1 ) 1 2 8 16
Q4l:§(2a3—3,82)(1— n—11np°)— E<l5§l+ 106,+8£4)(1—3n) + ¢ + §'//2+ 1_5¢4+ 3_51//% (4.69

1 1 1 1 1
Quz= — 5;@3(108-331p+ 1975%) + gB2(48-121n+ 637%) + 5£1(9—287) + 5£,(49-1427) — 2 (645 + 35— 2ps)

1-37n)+ - 231-653 2 > +1 47 +1 22 +1 ! ! 4.6
X(1-37) @54( —653n) - 'ﬂl_g‘//z 51/13_%%04 Z%‘E% g‘ﬁs_g)(e—ﬁ)(sa (4.6h
1 ) 1 2 16 1 2 ]

Qus=g as(1=37=37") = 5(26,+ 284+ ps)(1=3n)+ Tzt Toe¥7F 3 X6 T5Xe: (4.60)

1 1 1 1 1
—_ 2y_ 2y_ _ _ _ _
Qus=5a(32+ 737+ 2547°) — 55 Bo(51+ 1570+ 2587°) — 55£1(10—307n) — 25 5(19-279) — 55 £5(15+597)

! 19-279 ! 9+91 +1 9+28 —|—4 +6 ! +6 +1 ! +6 !
~ 3054(1972797) — =1 &5l 1)+ 35Ps M+ gt g st gt g¥s— godet g 35¥s

2 2 2 1
+ g%t TEXeT TEX8 T ToXo- (4.6)

—124299123323 12 16131133 L=t
Q45——ﬂ043( —299— ﬂ)‘gﬂz’] +z§177+1—2§2( +77)+1—5§4( - 7/)—1&3( - ﬂ)—zpsﬂ—ﬁlﬂrg%

1 1 7 1 46
+1_2¢8 5 X6 3_0X8+ZX91 (4.6K)

1 2 1
Q46:_§§4(1_371)+ 3—5¢7+ 5 X8 (4.6)

The above computation shows that as at the 3.5PN order tHast consider the quasicircular limit that is of immediate rel-

(12-paramet@grarbitrariness in the 4.5PN radiation reaction evance to sources for the ground based interferometric gravi-
formulas reflects the residual freedom that is available to ontational wave detectors. In this particular case, the reactive

in the choice of a 4.5PN accurate “gauge.” Every particularacceleration may be deduced usmgy the energy balance.

4.5PN accurate radiation reaction formula should correspontdsing the reactive acceleration we compute the 4.5PN con-

to a particular choice of these 12 parameters. tribution to r and w. We also discuss the complementary
case of the radial infall of two compact objects of arbitrary

mass ratio and determine the 4.5PN contribution to the radial

V. PARTICULAR CASES: QUASICIRCULAR ORBITS

infall velocity for the two special cases: radial infall from
AND HEAD-ON INFALL

infinity and radial infall with finite initial separation.

In this section we specialize our solutions valid for gen-
eral orbits to the particular case of quasicircular orbits and

. . - . A. Quasicircular inspiral
radial infall and verify that they indeed reproduce the simpler

reactive solutions one would obtain if one formulated the Using our general reactive solution we can compute the

problemab initio appropriate to these two special cases. Wephysically relevant quantities and w for quasicircular in-
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spiral, wherer and w are the orbital separation and the or- B. Head-on infall

pital angular frequency in harmonic coordinatgs, reSpPec- Recently Simone, Poisson, and WH5] have obtained to
tively. As \_Nould be expected, these results are mdepend?@PN accuracy the gravitational wave energy flux produced
of the arbitrary parameters that are present in the reactiV§yring head-on infall and starting from these formulas one
solution. We obtain the radiation reaction contributionato 5 gdeduceab initio the reactive acceleration in this limit
up to 45PN for quasicircular inspiral by setting gganting IW to the radial infall case. As required, these re-
r=0+0(€*9 and using sults match exactly with expressions obtained by applying
radial infall limits to the general orbit solutions and we sum-

m m 41y 2 marize the relevant formulas in this limit in what follows.
02=T 1=-@=m)+|6+——+ 7 (7) (5.1))  Equations representing the head-on infall can be obtained
from the general orbit expressions by imposing the restric-
: tions,x=zn, v=2zn, r=z, andv =r =z. For radial infall the
in Egs.(2.3), (2.8), (2.1, and(2.16). We get ' ' ' '
as.(2:3, (2.8, (213 2.19 g conserved energy E@2.5 to 2PN order then becomes
3 ) . )
B — 2TV _(3431_ E) m Co_ 2 sa-spt @regy? ¥
5r 336 4/ r (D)=p) 57— v+ 8 + > T
794369 26095 7 m) 2 : )
—— 2| = 5(1—-7n+13%%)2° 3(7—87—167%) yz*
(18144+ 5016 " 477)<rH- (5.2 L 5A=7n+13y°)2°  3(7—87— 1677y
16 8
It is worth noting that for quasicircular inspiral the energy (9+77+879) 22  (2+159)93
flux determines the reactive acceleration without any gauge 7 - 7 , (5.7

ambiguity. All the arbitrary terms in energy are proportional

to r and hence play no role in this instance. Inverting Eq. . . L
Pay g qwherey= m/z. Unlike the quasicircular inspiral, for head-on

(5.1), we get infall we can distinguish between two different cases. Fol-
lowing [55] we denote them byA) and B), respectively,
m , 1 o 4 and list the expressions relevant for our computations. In
T =0 1+ (BTt 4 (48-89n+477)0"|. (5.3 case p), the radial infall proceeds from rest at infinite initial

separationE(z) =E(«) =0, and inverting Eq(5.7) we get

Differentiating Eq.(5.3) with respect ta and noting that the
1/2

a that appears is the total acceleratioonservativet reac- _ n 81y
tive) we get, after some rearrangement z= —( - 1—57( 1-2]+ y?| 13— T+5772)
5.8
64 (mﬂ (1751 77;)m 8
r=——ng|— o e e [
ST 336 4T In case B), the radial infall proceeds from rest at finite
303455 40981y 7?|(/m)2 initial separatiorzy, which implies
+ + + == (5.9
18 144 2016 2/)\r
_ _ _ Y6 vel. 157
Using Eg.(5.4) and the expression for angular velocity E(@=Ez)=—n| v~ 5 T35 |1+ | 5G9
(w=vlr)
m m 417 m\ 2 We obtain as in caseA), an expression for given by
w2=r—g[1—(3—n)7+ 6+T+772 (—) } (5.5
: U 97
: 22—[2(3/—70) 1-5y 1—§)+70 1-—=
we may express as
81y 173y
o 96 ) o743 11 +5° 13—T+5772)—7)/0 5——4 +13772)
" 5/3 4 _ 213 1Y
-2~ 7(Mmw)* 1—(Mo) (336+ 7 77) - "
+’y(2) 1_T+8772)H ) (5.10
2

34103 13661 59
18144 2016 7" 187

(mw)4/3}. (5.6)

wherey,=m/z,. We first compute the 4.5PN contribution to
The results Eqg5.4) and(5.6) are in agreement witt3]  z for case B), the radial infall from finite initial separation.
as expected and required, suggesting that the reactive terrifée use the radial infall restriction along with EG.10 in
obtained here could be used to evolve orbits in the moré&gs.(2.3), (2.8), (2.11), and(2.16) to obtain 4.5PN terms in
general case ald®8] . Z as
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b 1l 1
m(27—270) §(—41+21§1)7+(8—4§1)70+

1 1
5418 054-13 231) — (438~ 331y) {1+ 180,+ 9L3 ¥

1 1
(5510—884977)+ (402—64377)§1 26§2—6§3)y'y0+(36—1267;—(18—637;)§1+8§2)y3}

1 1
+ [( ~ g 14430 549 820-54 233 3767+ 15 776 427°) + (27 156-49 8167+ 15 0577%) {1~ 5 (766~ 527n) {5

3 2
¥*+| 3034(6 314 916-20 766 1967+ 8 663 24%7)

1
— 3 (546=417n) {5+ 2204+ 4405+ 1146
— 1(17 05256 1987+ 23 8117%) {1 + (680~ 759) {o+ (54& 855) {3— 34 ,— 1045 — 856) %

1
+( So16\ 1 521 308-7 938 232+5 800 187%%) + 2(12 372-64 104+ 46 6417°){,— 5(682-13157)(,

- %(54— 189n) {3+ 12{,+ 76{5) 77(2)+ ( %(348— 20169+ 3339%%)(2— ;) + (44— 1627) {,— 16§5) 78 ] . (5.11

To obtain the 2PN reactive terms for cage (the radial infall from infinity, we use in Eq$2.3), (2.8), (2.11), and(2.16) the
radial infall restriction and Eq5.8). The expression thus obtained is the same as obtained by pygting in Eq.(5.11). The
{’s in Eq. (5.1 are given by

1= a3— B,
IR TR TS
{3=¢&31 &,
{a= 3t et g,
s=ynt ot at i,
{6=tst . (5.12

We have also computed the 2PN reactive terms for casesauid B) ab initio using the IW method adapted to radial infall.
In this case, only energy balance is needed=aé for head-on infall. The result thus obtained is in agreement witH&1).

Equation(5.11) may be integrated straightforwardly to obtain the 4.5PN contributiczf o case B) and it yields

2= 162y- 23’0)3/2 41 2 4 8 2+ —18 054+ 13 23 + 438— 331 2

1 1
Yoy (315< 342+3417) + 5 (240~ 2807;)41) 76y
( 1091 065 564931 5258 809>

1
168(660— 2534n){1+2¢5

X 3+ 1926~ 7597) +

252(

1
(— 684+ 6827) +

3 _
(945 4725 1440~ 1680m 81 [vo |+ | —775g 2079 | 66528 3522/ 196

21548 237

4 _ - -
Y T o532

1 1
—49 8167+ 15 0577°) {1+ (766~ 527n) {5+ 5 (546-4179) {3~ 24— 45— L6

26019 48% 2750 38972 1 L 1620231,

1
(26 316-139 638 + 67 2317°) {1~ 55(4416-6241) (-

49 896 11088 ' 528 132
+27,+8 34 3823453 1068143% 4399 627" 30 828- 146 592+ 244 127>
(at8ls| vyt | 49688 " 14553 | 22176 2464 2 )4

567 739 608 992}7 228 227172
187 110+ 72765 27720 385

, 1 , 567739 1217984y 2282277 1
~16227°) 81~ 5527(1056-123277) 5o+ 385(96 112)¢3| ¥o7+| 580665 218295 41580 1155 1008

— (504+ 1080y

1
+ 5og5(53 262202 741y) {5+ 77(24 287){3— 4§5)y0y+

1
+ 21607~ 32447%) {1~ 55 £=o(6336-73927) {p+ 52 r5:(10 560- 12 320;,)43) yé} ] . (5.13



6046 A. GOPAKUMAR, BALA R. IYER, AND SAI IYER 55

We obtain the 4.5PN contribution &3 for case ) by put- reactive acceleration — in particular, the intuitive require-
ting y,=0 in Eq.(5.13. Unlike in the case of quasicircular ment that it be nonlinear, i.e., contain an overall factor of
inspiral the expressions in the head-on or radial infall case8Vr. It is pertinent to ask whether more general possibilities
are dependent on the choice of arbitrary variables or thebtain, consistent with the far-zone fluxes, if one relaxes this

choice of “gauge.” requirement. We have explored this question in detail at the
2.5PN level and we summarize the results in what follows.
VI. CONCLUDING REMARKS In this instance the reactive acceleration is assumed to be

Starting from the 2PN accurate energy and angular mo-
mentum fluxes for structureless nonspinning compact bina- 8 /'m i
ries of arbitrary mass ratio moving on quasielliptical orbits a=— gn(r—z>[—(A2,5)rn+(le5)v],
we deduce the 4.5PN reactive terms in the equation of mo-
tion by an application of the IW method. The 4.5PN reactive
terms are determined in terms of twelve arbitrary parameters
which are associated with the possible residual choice of
“gauge” at this order. These general results could prove
useful to studies of the evolution of the orbits. The limiting
and complementary cases of circular orbits and head-on in-
fall have also been examined. +ag
We have systematically and critically explored different
facets of the IW choice like the functional form of the reac-
tive acceleration and provided a better understanding of the

m :
Ay s=aj+ aévZT +apiri+ay

Y a
re+agr,

origin of redundant equations by studying variants obtained Y LU R i 11 2
by modifying the functional forms of the ambiguities Ef Ba.5=b1v" b r ThaurT4b, r )
and J*. The main conclusions we arrive at by this analysis
are the following. m). .
In terms of the number of arbitrary parameters and the +bg r r¥+bgre, (A1)

corresponding gauge transformations, the IW scheme exhib-

its remarkable stability for a variety of choices for the form ., | . . - .

of the ambiguity in energy and angular momentum. The dif_l.e.,.|t is determined by 12 reactive coefficients instead of the

ferent choices merely produce different numbers of degenef@@rlier 6. Recall that the nomenclature IW22, IW21, and

ate equations. This indicates the essential validity and soundW11 refers to the functional forms chosen for the ambiguity

ness of the scheme. These solutions are general enough ifbenergy and angular momentum and we introduce similar

treat as special cases any particular solutions obtained frofotation EJ22, EJ21, and EJ11, respectively, in this appen-

first principles in the future. dix, where the acceleration has a more general form as given
Relaxing the requirement of nonlinearity i or more by Eq. (Al). With this form of the reactive acceleration,

precisely the power series behaviornim and m, permits  however, one gets, e.g., in the EJ21 scheme at 2.5PN,

mathematically more general solutions for the reactive accel-

erations involving more arbitrary parameters. Solutions more

general than the ones discussed in the Appendix, e.g., a SO-~ ~ ~ ~ m) 2. 5 m "

lution involving six parameters at the Newtonian level, can- E*=En+Eas=En—g 7|~ f( atay —+ast),

not be gauged away either by gauge transformations of the (A2a)

form discussed by IW or by more general gauge transforma-

tions that differ in their powers of nonlinearityn{r depen-

dence. However, none of these solutions are of “physical” g _ pq m _

interest to describe the gravitational radiation reaction of J*ELN+J2_5=LN+gnLNTr(ﬁlszr ﬂ2T+,83r2).

two-body systems. (A2b)
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Scheme NV NC ND NI NA
APPENDIX: THE GENERAL SOLUTION TO THE
BALANCE METHOD EJ22 12-3+1 10+6 2 14 2
. . EJ21 12-3+3 10+6 1 15 3
1. The 2.5PN reactive solution EJ11 12-643 1046 1 15 6
It should be noted that all the discussion in Sec. Il fol- EJoo 12-10+6 15+10 3 22 6

lows only after one haassumeda functional form for the
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general form of reactive acceleratigeee Table ) can be

dE* 8 m{ o m, o 4 . -
a9~ 577 (b)) v°+(bs+ al)Tv +(—a;tb3y)rov gaug_ed avx_/ay? We find that at 2.5PN order, though th|s_ is
possible with the three parameters of the EJ21 scheme, it is
2 ) not true for the six arbitrary parameters in the EJ11 and EJOO
+(bj—a+ay)| —| v+ (—az+bg)rivi+(—a; schemes. For this reason the EJ11 and EJOO schemes are not
satisfactory and we discuss them no further. We present here
, m\., , m)\3 ) for the EJ21 scheme details of the gauge calculation at 2.5PN
+bg—3ay+3ag)| |rv-ay | —(a4t2ay order. We chooséx to be
m 2. mj . . 877 m r o ’
+4a2+3a3)<?) r2—(aé+5a3)(7>r4—aér6 , &:? T (fogx+g24V), (A5)
(A3a)  wheref) . andg are given by
dj* 8 ~m , 4 , m 2 ' ’ m 2 12
gi = 57w 2] (b1= Bo)v +(bat Ba= Bo)| v f25=Poi| +Po®+Pog?,
2
+(b4+2B,—3B3)r%v?+(by+ By) T) +(bi+2p , , (M P2 A L2
3 ! 3 4ar Py 5 ! 925= Qo1 T + Qo+ Qoa “ (A6)
m . :
+38,+ 3,83)(7 r2+ (bg+485)r4|. (A3b) thr t_he reactive acceleration given by E¢s1) and(A4) we
obtain

Using Egs.(A2) and (A3) one can understand the counts of 1

the various variables summarized in Table II. Poi==(as— B3), (A7a)
One can explain the new counts for the arbitrary param- 3

eters by comparing, e.g., the EJ21 scheme with a general

form for the reactive acceleration as in this section with the P — 1 B (A7b)

IW21 scheme with the restricted form for reactive accelera- 023

tion as in Sec. Ill. One has six extra variables and 4 extra

equations. However one gains an extra equation because one Pgs=0, (A7c)

of the degeneracies is lifted. The resulting five equations for

six variables lead to an extra arbitrary parameter resulting in , 1

a three-parameter solution in this instance. All the other en- Qo1=3(2a3=3B2+ Ba), (A7d)
tries in Table Il can be similarly understood by comparison

of Tables | and . QL,=0, (A7¢)

The reactive solution resulting from the EJ22 scheme in
this instance is exactly the same as the IW21 reactive solu- 1
tion discussed earlier. From the EJ21 scheme one obtains a Qbe=—=Bs. (ATf)
solution with three arbitrary parameters given by 2

a;=3B3, a,=3(1+az—pB;), as=—4B;, The EJ21 s_cheme Ieads_to a more general solution to the
balance equations, and as in IW all the arbitrary parameters
a;=23/3-3a3+2B,, ai,=—5a3, az=0, that appear in its solution can be associated with a residual

(Ada)  choice of gauge. It has been explored in detail up to 4.5PN
and the results are summarized below. We list the new gen-

b;=0, b,=2+8,, b3=3B;, b,=2—-5,, eral reactive solutions and the corresponding gauge transfor-
mations for the arbitrary parameters they contain. For brev-
bi=—3(1+B,+B3), bi=—4B;. (A4b) ity, the solutions are presented in the form: “New solution”

= “old solution” + “difference.”
This construction can be generalized to 3.5PN and 4.5PN
orders in which cases the number of arbitrary parameters are 3. The 3.5PN and 4.5PN reactive solutions
8 and 15, respectively. The EJ11 and EJOO schemes, on the ) o
other hand, lead to a solution with six arbitrary parameters at | he reactive z.acceleratlon is assumed to have the follow-
the 2.5PN level. However, not all these solutions are similaf"d general form:
in regard to the possibility of gauging away all the arbitrary 8 m
parameters they contain. a=— 3 nr_z[ —(Ayst Agst Ay rn+ (B, s+ By st By ) V],
2. The 2.5PN gauge arbitrariness (AB)

We have also investigated the question whether all thevith A,s5 and B,5 given in Egs. (Al) and (A4) and

extra arbitrary parameters appearing in schemes with thelss,B35,445, andB, s given by
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2 3

m . .om . m m. m) 2. m .
A3_5=f;u6+fgv47+fgv4r2+f;v2r27+fgv2r4+fguz(T +f§Tr4+f{3 T) r2+fg - +11r5  (A9a)
r..6 ’ 4m 1 4L2 ’ 2'2m 1204 1.2 m ? rm'4 ’ m 2'2 ’ m : )
Biys=01v°+ 050 T+ggv re+guu°r T+g50 rt+ggu T +g7Tr +0; T r<+de T +0g10°, (A9b)
’..8 16,2 /Gm 1o 4.4 /4m2 /4'2m 12,6 12'4m /2'2m2 ’ 2m3 ’ m|*
Ay s=hiv°+hy®re+hg T+h4v r*+hg T +hgvr T+h7v r°+hgvr T+h9v T +hiw - +hi4 -
. (m)\3 . 2 ..m .
+h12r2(? +h13r4(7 +h14r67+h15r8, (A9c)
. m : m)2 ..m . .. m .(m)\? m)3 m\4
34,5:k1v8+k;v6r2+kgv6T+kgu4r4+kgv4<7) +kgv“rZT+k;v2r6+kév2r4?+kgu2r2<7 +k1002<7 +ki4f 7)
,.2m3 ,.4m2 CeM e
+Kqof T +Kqqf T + Ky, T+k15r . (A9d)
With this form of the acceleration we have, at 3.5PN,
dE* 8 m[[m)\? . ©
- - 2_ 2 1[3.5],[4]
dJ* 8 ~ m|m m . 1
W:_EULNF[T 2v2~|—2?—3r2 +i§1 5'!3-513){3]} (A10b)
where V! is given by Eqs(2.15),
al - m . m\2 .m., .. [(m\3/m\%_m. .
yi[ Ii=1,...,10=|v8v*— v*2 0% —| v2=r2v%% | =] | =] r2—r*r® (A11)
r r r r r r
|
andR'P*%),| $'B5) consist of corresponding linear combina- 9,=0, (A12K)
tions of the parameters involved. Repeating the procedure
explained in the text, the 3.5PN reactive solution obtained is 9,=01, (A121)
,_ 3 3
= =3 (12385~ 3p2, (A129 05=—5(1-37)B,3p2, (A12m)
: 1 1
fo=fim3(21+39mBst3p,,  (ALZD) 0i=0a— 5(21+337)Ba+3p;,  (AL20)
f5=2(1-37)B3+4p,~5pa, (A120) 95=2(1-37)Bs+4p2—5pa, (A120)
1 r_
fa=fat 5(56+157)B3+2p,+5p,,  (Al20) 96=92, (A12p)
1
fL="6p4, (A12¢) 97=0s+ 5 (56+ 1) B3+ 2pa+5pa, (Al12q)
fo=fot (211125, (A12f) 93=04+(21+97) B, (A121)
fl="fs—4nps, (A129 96=0s. (A129
fe=fa=37p, (AL2h) 910604, (A121)
fo="e, (A120)  \wheref;, g; are given by Eqs(2.9. The solution corre-

, ) sponding to Egs(2.10 remains identical.
f10=0, (A12)) Similarly at 4.5PN we have
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m21
28

dt 15772

dE* 8 m(

m 2 . . m
?) (120°—11r%) + (785—852n)v*+2( — 1487+ 13927)v?r?+ 160 — 17+ 7) Tvz

2

15
. m. m
+3(687—6207)r*+8(367— 157) Tr2+ 16(1—477)( ] +§1 R’{“-S]yi[‘”) ) (A13a)

T

dJ 8 ~m(m , m .| mj1 4 0t m
T =—§77LNr—2 T 2v +2?—3r +T a4 (307—548n)v*+6(— 74+ 27Tn)v°r _4(58+9577)TU
m m 2 15
+3(95—3607)r*+2(372+ 19777)7%2+ 2(— 745+ 2’”(? ] +i§1 S’ i[“-fﬂyi[‘”) , (A13b)
where
m m\? _m m\3 [m\? o m)\4
yi[51(i=1,.. 20 = vlo,v8—,vgr2,06(—) ,veTrZ,UGFA,v4(T) ’04<T) r2,047r4,04l’6,02(—) ,

3 2 5 4 3 2
m) 3. m) 2. m. . (m\5/m\%_/m?3 [m?2 m.._.
vz(—) rz,vz(—) r4,v2—r6,v2r8,(—) (—) rz,(—) r4,(—) r6,—r8,r10} (A14)
r r r r r r r r

and V! is given by Eq.(2.15. , 1 )
Here R'[*31 5'14% consist of linear combinations of the he=he—  (260+ 1197+ 307%) B3~ (14+ 57)p;
parameters involved. The 4.5PN reactive solution reads as

1 3 —(35+20%)p4, (A15i)
hi=—g(3-277+637%)Bs+ 5(1-37)p2=3x2, 1
(A153) hig=hs— 7 (306+4897+487°) B3,  (A15))
,_ 1 2 S hi,=hyo, (A15K)
ho=5(1-97+217%)B3—2(1=37)pot 5(1-3n)p4
1
+4x2—5x4, (A15b) hj,=hg— 7(12+877— 247%) B, (A15l)

1 1
hy=h,+ g (8—207y+ 759%) B3+ 5(21+397)po+ 3x2,

1
hig=he— 5 (8+497+347°) B3+ 27p+ 574,
(A150)

(A15m)

hi=—3(1-37)ps+6xs—7x7,  (A150) his=h7+67[(1=37) B3+ pal, (AL5n)

hg=hz+(18+ 969+ 18n%) B3~ (21+127)p,, his=0, (A150)
(A15€)

k;=0, (Al5p)

1 1
hg=h,— 7(24-3979+ 9572) B3— 5(70-11n)p, L 3
ky=— g(3—27n+ 637°) B3+ 5(1=3mp2=3x2,

1
+ 5 (35+657)pa+4x2+5xa, (A15f) (A150)
ky=Kkq, (A15r)
h;=8x7, (A159)
1 1 k’—119 21792 2(1-3 513
hé:h4+§(_353+19577)77B3+7]P2_5(84+2577)P4 4_5( —9n+ 77),83_ (1- 77)P2+§( - 77)P4

+ 2X4+ 7)(7 , (AlSh) + 4X2_ 5)(4, (AlSS)
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ki=Ks, (A15Y)

3 1
kg=k,+ g(1-8ln+ 13%7%) B3+ 5 (21+ 337)po+3x2,
(A15u)

k7=—3(1—3n)pat6xs—Tx7, (Al5v)
, 1 ) 1
ke=Kq— 7 (24—421n— ") B3— 5(70-257)p,

1

1
ky=keg+ Z(s4+ 525n+547°) B3— (21+97) p,,

(A15x)
kig=Ks, (A15y)
k:;.l: klO’ (AlSZ)

1
kio=ko— 5(159+2887+127°) B3,  (Al5ad

o
f3.5_

ro__
O35~

’ [N rm4 1o 4L2 12m2 /2m'2 1204 /m'4 ’

2
o
O45=

m . m
6 4 4.2 2
Qi +Q:12?U + Qa1+ Quu (T

At 3.5PN we have
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1
Kis= Kg—5(144+1797+ 407%) B3—(14+67)p,

—(35+15%)pa, (A15bb)

1 1
kig=ks— g(317+ 1057) nBs— 5(84“‘ 37)pa

—3mpat2x4t+Tx7, (Al5co

Kis=8x7, (A15do)

whereh;, k; are given by Eqs(2.16 of the text and Egs.
(2.17 remain the same.

4. The 3.5PN and the 4.5PN gauge arbitrariness

Finally it can be shown that all the arbitrary parameters in
the reactive solution may be absorbed in a choice of
“gauge” of the form

8 m .
5x=gnT(félerf§.5+f;.S)rer(g§.5+g§.5+g;.5)rv, (A16)

wheref} s andg; s are given by Eqs(A6) and (A7), while
f3s, f45, 955, andg, s have the form

m . m. m) 2 .
Pow*+ Pogp® =+ P24 Poy 124+ Pog| — +P§6r4},
14 /2m 1222 rm'2 ,m2 r 4
Qo™ +Qon T+Q230 r +Q24Tr + Q24 I + Qo |,
m\ 2. m)\ 3 )
T r2+P£’19? +Plg®.
’ 2m'2 1o 2.4 rm'4 ’ m2'2 ’ m3 I .6
+Q451) Tr +Q461) r +Q47Tr +Q48 T r +Q49 T +Q410r .
(A17)
1 1
P21=— 7(1=37)Bs= 7 (2p2+ pa), (A183)
1 1
Péz= Pyt §(3— 10%) B3+ %(ZOpz-l- 17p4), (A18b)
1
Ps=— P4, (A180)
1
P24=Pagt 75(57B3+ pa), (A18d)
1 1
P2s=Poot 15(2+257) B3 — 5 (p2t pa), (A18¢)
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PL=0, (A18f)
Qélzo , (A189)

, 1 1
Q2= Q21— 5(1_371)33_ %(10102"” 7p4), (A18h)
! 1 1 .
Q23:Z(1_377),33+ Z(2P2+P4)a (A18i)
! 1 1 .
Q24=Qa3— 5(3_ 871)B3— 3_0(10P2+ 13p4), (A18))

, 1 1
Q25= Q20— 1_2(2+2577)B3+ §(Pz+P4), (A18K)
, 1
Q2= 2P (A18l)
Similarly at 4.5PN we have
1 , 1 1 1

Pu=- 1_6(1_977+ 217°) B3+ 2(1_377)P2+ 5(1_377)134_ Zl(12X2+ 6x4+6x7), (A19a)

1 1 1 1
Piz=Pa1— g5 1155~ 4817+ 36777) By~ (130~ 318n) py— 55(53~ 1177) pat 152(105x,+8Axa + 68x7),
(A19b)

1 1
Pia=g(1=37)ps— 5;(6xat+4x7), (A190)

1 1 1 1
Pas=Part 755(420- 1917+ 9670%) By + 55(55— 228n) py-+ 755(220-8347) pa— 72 (15xa+ Lxa+ 13x7),

120 120
(A19d)
P,.=P - 47+ 48 4 . 8—17 ! 21 32 Al19
45~ Pag= 770747+ 487) B3~ £ m1pa— 55(8=17m) pat 752(21xa+ 32x7), (A19¢)
, 1
Pag=— X7 (A19f)
27 1 1
Pi7=Pas— 5_677(1_ 37)B3— 4 npst 21X7 (A199)
, 1 o1 1
Pag=Past @(300*' 49357—1360n°) B3+ 20 7(12p,—ps) — 1—5()(4"” 2x7), (A19h)
1 1 2 _
Plo=Pas— @(92+ 1217+ 3097%) B3+ 1—5( 1+529)(pa+pa)+ g(X2+ Xat Xx7), (A19i)
P410=0, (A19j)
Ql'u: 0, (A19k)

1 1 7 1 19
I T 5 _ 2 1 (1 _ -



6052 A. GOPAKUMAR, BALA R. IYER, AND SAI IYER 55
! , 1 1
Qus=1g(1 =97+ 219°) Bs— g (1=39)(2p2+ pa) + 55 (12¢2+ 6 xa+4x7), (A19m)

1 1 1 1
Q4= Qua— %(420— 1604y + 14347%) B3~ @(80— 3017)p,— %(40— 131n)ps+ E( 10x2+9x4+8x7),
(A19n)

1 1 1 1
Q5= Q43+ m( 175— 639+ 1467°) B3+ %(50— 99n)p,+ @(94— 183n)ps— z(14)(2+ 14y 4+ 12x;), (Al90)

1 1
Qle=— 5 (1=37n)pst 5;(6xat4x7), (A19p)

8 24

- L (121-363 3 L 5_s L o2 AL9
Q7= Quet 2_8077( 7) B3+ 107P2 " g)( 7)pa 10X4™ 105X7 (A190)
, 1 1 1 1
Q5= Quas— @( 135-647—11n)B3— @(30_ 1197)p,— %(15_ 79m)pst+ 1_5(5)(2+ 6xat7x7), (A19r)
’ 1 2 1 2
Q0= Quat @(92"‘ 1217+ 3099°) B3— 1_5(1+ 529)(patpa)— g(X2+ Xat x7), (A199)
, 1

Qa10= X7 (A191)

In the above, thé®,, andQ,;, are given by Eqgs(4.3) and (4.6) of the text.

To conclude, the far-zone flux formulas and the balance equations by themselves do not constrain the reactive acceleration
to be a power series im; andm,, or equivalently nonlinear in the total mass as assumed in the paper, following IW. They
are also consistent with the more general form of the reactive acceleration discussed in this appendix.
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ansatz for acceleration is proportionalrgm, or G2 while the
combinationn(m/r?) chosen in the Appendix is proportional
to mym,(m;+m,) % Unlike the former choice, the latter is
not a power series im; andm, and hence while the former is
the “physically relevant solution” the latter is of “mathemati-
cal interest.”
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then requires to calculaté using, acceleration t®(e*9).



