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Starting from the recently obtained post-post-Newtonian~2PN! accurate forms of the energy and angular
momentum fluxes from inspiraling compact binaries, we deduce the gravitational radiation reaction to 2PN
order beyond the quadrupole approximation—4.5PN terms in the equation of motion—using the refined bal-
ance method proposed by Iyer and Will. We explore critically the features of their construction and illustrate
them by contrast with other possible variants. The equations of motion are valid for general binary orbits and
for a class of coordinate gauges. The limiting cases of circular orbits and radial infall are also discussed.
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I. INTRODUCTION

Inspiraling compact binaries are the most promising
sources of gravitational radiation in the near future for
ground-based laser interferometric detectors such as the La-
ser Interferometric Gravitational Wave Observatory~LIGO!
@1#, VIRGO @2#, GEO600@3#, and TAMA @4#. The method
of matched filtering will be employed to search for the in-
spiral waveforms and extract the information they carry
@5,6#. For this method to be successful, one needs to use
templates that are extremely accurate in their description of
the evolution of the orbital phase, which, in turn, requires a
detailed understanding of how radiation damping~reaction!
influences orbital evolution@7–10#.

The idea of a damping force associated with an interac-
tion that propagates with a finite velocity was first discussed
in the context of electromagnetism by Lorentz@11#. He ob-
tained it by a direct calculation of the total force acting on a
small extended particle due to its self-field. The answer was
incorrect by a numerical factor and the correct result was first
obtained by Planck@12# using a ‘‘heuristic’’ argument based
on energy balance which prompted Lorentz@13# to reexam-
ine his self-field calculations and confirm Planck’s result,
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wherev i is the velocity of the particle. The relativistic gen-
eralization of the radiation reaction by Abraham@14# based
on arguments of energy and linear momentum balance pre-
ceded by a few years the direct relativistic self-field calcula-
tion by Schott@15# and illustrates the utility of this heuristic,
albeit less rigorous, approach@16#.

The argument based on energy balance proceeds thus: A
nonaccelerated particle does not radiate and satisfies New-
ton’s ~conservative! equation of motion. If it is accelerated, it
radiates, loses energy and this implies damping terms in the
equation of motion. Equating the work done by the reactive
force on the particle in a unit time interval to the negative of

the energy radiated by the accelerated particle in that interval
~Larmor’s formula! the reactive acceleration is determined
and one is led to the Abraham-Lorentz equation of motion
for the charged particle. The direct method of obtaining ra-
diation damping, on the other hand, is based on the evalua-
tion of the self-force. Starting with the momentum conserva-
tion law for the electromagnetic fields one rewrites this as
Newton’s equation of motion by decomposing the electro-
magnetic fields into an ‘‘external field’’ and a ‘‘self-field.’’
Expanding the self-field in terms of potentials, solving for
them in terms of retarded fields and finally making a retar-
dation expansion, one obtains the required equation of mo-
tion when one goes to the point particle limit@17#.

As in the electromagnetic case, the approach to gravita-
tional radiation damping has been based on the balance
methods, the reaction potential or a full iteration of Ein-
stein’s equation. The first computation in general relativity
was by Einstein@18# who derived the loss in energy of a
spinning rod by a far-zone energy flux computation. The
same was derived by Eddington@19# by a direct near-zone
radiation damping approach. He also pointed out that the
physical mechanism causing damping was the effect dis-
cussed by Laplace@20#, that if gravity was not propagated
instantaneously, reactive forces could result. A useful devel-
opment was the introduction of the radiation reaction poten-
tial by Burke @21# and Thorne@22# using the method of
matched asymptotic expansions. In this approach, one de-
rives the equation of motion by constructing an outgoing
wave solution of Einstein’s equation in some convenient
gauge and then matching it to the near-zone solution. Re-
stricting attention only to lowest order Newtonian terms and
terms sensitive to the outgoing~ingoing! boundary condi-
tions and neglecting all other terms, one obtains the required
result. The first complete direct calculation in the manner of
Lorentz of the gravitational radiation reaction force was by
Chandrasekhar and Esposito@23#. Chandrasekhar and col-
laborators@24,25# developed a systematic post-Newtonian
expansion for extended perfect fluid systems and put to-
gether correctly the necessary elements like the Landau-
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Lifshiftz pseudotensor, the retarded potentials and the near-
zone expansion. These works established the balance
equations to Newtonian order, albeit for weakly self-
gravitating fluid systems. The revival of interest in these is-
sues following the discovery of the binary pulsar and the
applicability of these very equations to binary systems of
compact objects follows from the works of Damour@16,26#
and Damour and Deruelle@27#.

In the context of the binary pulsar timing, the accuracy
reached by the Newtonian balance equations is amply ad-
equate. The case of inspiraling binaries as sources for the
interferometric gravitational wave detectors is very different.
The extremely high phasing accuracy requirement makes
mandatory the control of reactive terms way beyond the
Newtonian. This has prompted on the one hand, work on
generation aspects to compute the far-zone flux of energy
and angular momentum carried by gravitational waves and
on the other, work on the radiation reaction aspects to com-
pute the effect on the orbital motion of the emission of gravi-
tational radiation. As in the electromagnetic case, the com-
putation of the reactive acceleration assuming balance
equations is simpler than the computation of the damping
terms by a direct near-field iteration. The computation of the
energy and angular momentum fluxes at the lowest Newton-
ian order~quadrupole equation! requires the equation of mo-
tion at only Newtonian order.Assumingthe balance equa-
tions one can infer the lowest order~2.5PN! radiation
damping whose direct computation, as mentioned before, re-
quires a 2.5PN iteration of the near-zone equations. Simi-
larly, the computation of the 1PN corrections to the lowest
order quadrupole luminosity requires the 1PN accurate equa-
tions of motion, but is potentially equivalent to the 3.5PN
terms in the equation of motion. This motivated Iyer and
Will ~IW! @28,29# to propose a refinement of the textbook
@30# treatment of the energy balance method used to discuss
radiation damping. This generalization uses both energy and
angular momentum balance to deduce the radiation reaction
force for a binary system made of nonspinning structureless
particles moving on general orbits. Starting from the 1PN
conserved dynamics of the two-body system, and the radi-
ated energy and angular momentum in the gravitational
waves, and taking into account the arbitrariness of the ‘‘bal-
ance’’ up to total time derivatives, they determined the
2.5PN and 3.5PN terms in the equations of motion of the
binary system. The part not fixed by the balance equations
was identified with the freedom still residing in the choice of
the coordinate system at that order. Thus, starting from the
far-zone flux formulas, one deduces a formula that is suitable
for evolving general orbits of compact binaries of arbitrary
mass ratio and that includes 1PN corrections to the dominant
Newtonian radiation reaction terms. Blanchet@31,32#, on the
other hand, obtained the post-Newtonian corrections to the
radiation reaction force from first principles using a combi-
nation of post-Minkowskian, multipolar, and post-Newtonian
schemes together with techniques of analytic continuation
and asymptotic matching. By looking at ‘‘antisymmetric’’
waves—a solution of the d’Alembertian equation composed
of retarded wave minus advanced wave, regular all over the
source—and matching, one obtains a radiation reaction ten-
sor potential that generalizes the Burke-Thorne reaction po-
tential@33#, in terms of explicit integrals over matter fields in

the source. Thevalidity of the balance equations up to 1.5PN
is also proved. By specializing this potential to two-body
systems, Iyer and Will@29# checked that this solution indeed
corresponds to a unique and consistent choice of coordinate
system. This provides a delicate and nontrivial check on the
validity of the 1PN reaction potentials and the overall con-
sistency of the direct methods based on iteration of the near-
field equations and indirect methods based on energy and
angular momentum balance.

As emphasized earlier, much better approximations are
needed to reach the precision of future gravitational-wave
astronomy@7#. In the limit where one mass is much smaller
than the other, numerical and analytical computations based
on black hole perturbation theory have been performed to the
5.5PN order@34–39#, a recent result being the analytical
expression to 5.5PN order for the energy flux from a test
particle moving in a circular orbit around a Schwarzschild
black hole@39#. Ryan @40,41# has investigated the effect of
gravitational radiation reaction, first on circular, and later
even for nonequatorial orbits around a spinning black hole.
Recently Mino, Sasaki, and Tanaka@42# have derived the
leading order correction to the equation of motion of a par-
ticle which presumably describes the effect of gravitational
radiation reaction by two methods: an extension of the
Dewitt-Brehme formalism and the method of asymptotic
matching.

On the other hand, for bodies of comparable masses, re-
cently two independent teams@43–47# have derived the 2PN
accurate gravitational waveform and the associated energy
and angular momentum fluxes for inspiraling compact bina-
ries through 2PN order by two independent methods: the
Blanchet-Damour-Iyer~BDI! approach based on a mixed
multipolar post-Minkowskian and post-Newtonian frame-
work together with asymptotic matching and analytic con-
tinuation @48# and the recently improved Epstein-Wagoner
~EW! @49# formalism by Will and Wiseman@46# which pro-
vides a method to carefully handle the divergences of the
older EW treatment. In view of the above discussion it is
natural to investigate the possibility of extending the treat-
ment of Iyer and Will to 2PN accuracy beyond the Newton-
ian ~2.5PN! radiation reaction and this is what we propose to
take up in this paper. The knowledge of the reactive accel-
eration beyond the lowest order could also have practical
uses. For instance, Lincoln and Will@50# have studied the
late-time orbital evolution of compact binaries with arbitrary
mass ratios. They described the orbit using the osculating
orbital elements of celestial mechanics and used the
Damour-Deruelle two-body equations of motion including
Newtonian radiation reaction terms@27,16# to evolve these
orbital elements. The extension of this work to include 1PN
radiation reaction is still not available. Recently, a 2PN ac-
curate description for the motion of spinning compact bina-
ries of arbitrary mass ratio was obtained in a generalized
quasi-Keplerian parametrization initially suggested by
Damour and Scha¨fer @51–54#. These orbital elements have
also not been evolved to 2PN radiation reaction order. Our
present computation is a step in that direction. These at-
tempts to study the evolution of binary orbits would be
complementary to those using the test particle limit@40,41#.

To summarize: Starting from 2PN accurate energy and
angular momentum fluxes for compact binaries of arbitrary
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mass ratio moving in quasielliptical orbits@47,46#, we obtain
the 4.5PN reactive terms in the equations of motion by an
extension of the IW method. Schematically, the equations of
motion for spinless bodies of arbitrary mass ratio are

a[
d2x

dt2
'2

mx

r 3
@11O~e!1O~e2!1O~e2.5!1O~e3!

1O~e3.5!1O~e4!1O~e4.5!1•••#, ~1.1!

wherex andr5uxu denote the separation vector and distance
between the bodies, andm5m11m2 denotes the total mass.
The quantitye is a small expansion parameter that satisfies
e;(v/c)2;Gm/(rc2), wherev and r are the orbital veloc-
ity and separation of the binary system. The symbolsO(e)
and O(e2) represent post-Newtonian~PN!, post-post-
Newtonian~2PN! corrections and so on. Gravitational radia-
tion reaction first appears atO(e2.5) beyond Newtonian
gravitation, or at 2.5PN order. We call this the ‘‘Newtonian’’
radiation reaction. ‘‘Post-Newtonian’’ radiation reaction
terms, atO(e3.5), were obtained by Iyer and Will@28,29# and
Blanchet@31,32#. Here we obtain the 2PN radiation reaction,
atO(e4.5). The 4.5PN reactive terms are determined in terms
of 12 arbitrary parameters, which along the lines of@28,29#,
are associated with the possible residual ‘‘gauge’’ choice at
the 4.5PN order. These results valid for general orbits are
specialized to the two complementary cases of circular orbits
and radial infall. The expressions forṙ and v̇ for the qua-
sicircular orbits andż for radial infall to 4.5PN order are in
agreement with@43,55# as required. We next examine criti-
cally the origin of the ‘‘redundant’’ equations in the formal-
ism and examine our understanding of this redundancy by
exploring variant schemes which differ from the original IW
scheme in their choice of the functional forms for the arbi-
trary terms in energy and angular momentum.

The paper is organized as follows. In Sec. II, we describe
the IW method to obtain the 2PN reactive terms. Section III

examines the question of redundant equations and explores
‘‘variants’’ of the original IW scheme that differ in their
choice of the ambiguities in energy and angular momentum.
Section IV discusses the question of the undetermined pa-
rameters and arbitrariness in the choice of the gauge, in par-
ticular at 4.5PN order. Section V is devoted to the particular
cases of quasicircular orbits and head-on infall. Section VI
contains some concluding remarks. In the Appendix, for
mathematical completeness, we prove that the far-zone flux
formulas and the balance equations admit more general so-
lutions if one relaxes the requirement that the reactive accel-
eration be a power series in the individual masses of the
binary or, equivalently, that it be nonlinear in the total mass.

II. IW METHOD FOR REACTIVE TERMS IN THE
EQUATIONS OF MOTION

A. The procedure

We consider only two-body systems containing objects
that are sufficiently small that finite-size effects, such as
spin-orbit, spin-spin, or tidal interactions can be ignored. The
dynamics of such systems is well studied and the two-body
equations of motion conveniently cast into a relative one-
body equation of motion is given by

a5aN1aPN
~1!1a2PN

~2! 1aRR
~2.5!1a3PN

~3! 1a1RR
~3.5!1a4PN

~4! 1atail
~4!1a2RR

~4.5!

1O~e5!, ~2.1!

where the subscripts denote the nature of the term, post-
Newtonian~PN!, post-post-Newtonian~2PN!, Newtonian ra-
diation reaction ~RR!, post-Newtonian radiation reaction
~1RR!, 2PN radiation reaction~2RR!, tail radiation reaction,
and so on; and the superscripts denote the order ine. For our
purpose we need to know explicitly the acceleration terms
through 2PN order and they are given by@27,56,50#
(G5c51)

aN52
m

r 2
n, ~2.2a!

aPN
~1!52

m

r 2 H nF22~21h!
m

r
1~113h!v22

3

2
h ṙ 2G22~22h! ṙvJ , ~2.2b!

a2PN
~2! 52

m

r 2 H nF34~12129h!Smr D 21h~324h!v41
15

8
h~123h! ṙ 42

3

2
h~324h!v2ṙ 22

1

2
h~1324h!

m

r
v2

2~2125h12h2!
m

r
ṙ 2G2

1

2
ṙvFh~1514h!v22~4141h18h2!

m

r
23h~312h! ṙ 2G J , ~2.2c!

wherem[m1m2 /m is the reduced mass, withh5m/m, and
n5x/r . Then.5PN reactive accelerations are determined by
following the ‘‘What else can it be ?’’ procedure employed
in IW which we summarize here. One writes down a general
form for the Newtonian (e2.5), 1PN (e3.5), and 2PN (e4.5)
radiation-reaction terms in the equations of motion for two

bodies, ignoring tidal and spin effects. For the relative accel-
erationa[a12a2, one assumes the provisional form

a52
8

5
h~m/r 2!~m/r !@2~A2.51A3.51A4.5! ṙn

1~B2.51B3.51B4.5!v#. ~2.3!
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The form of Eq.~2.3! is dictated by the fact that it must be a
correction to the Newtonian acceleration~i.e., be propor-
tional to m/r 2), must vanish in the test body limit when
gravitational radiation vanishes~i.e., be proportional toh),
must be dissipative, or odd in velocities~i.e., contain the
factorsṙ , n, andv linearly! and finally, must be related to the
emission of gravitational radiation or be nonlinear in New-
ton’s constantG ~i.e., contain another factorm/r ). The last
condition may be more precisely stated by requiring that the
reactive acceleration be a power series in the individual
massesm1 andm2 @57#. For spinless, structureless bodies,
the acceleration must lie in the orbital plane~i.e., depend
only on the vectorsn andv). The prefactor 8/5 is chosen for
convenience. To make the leading term ofO(e2.5) beyond
Newtonian order,A2.5 and B2.5 must be ofO(e). For this
structureless two-body system the only variables in the prob-
lem of this order arev2, m/r , andṙ 2. ThusA2.5 andB2.5 can
each be a linear combination of these three terms; to those
terms we assign six ‘‘Newtonian radiation reaction’’ param-
eters. Proceeding similarly,A3.5 andB3.5 must be ofO(e2),
hence must each be a linear combination of the six terms

v4, v2m/r , v2ṙ 2, ṙ 2m/r , ṙ 4, and (m/r )2. To these we assign
12 ‘‘1PN RR’’ parameters. And finally,A4.5 andB4.5 must
be ofO(e3), each a linear combination of the 10 termsv6,
v4ṙ 2, v4m/r , v2ṙ 4, v2(m/r )2, v2ṙ 2(m/r ), ṙ 6, ṙ 4(m/r ),
ṙ 2(m/r )2, and (m/r )3 to which we assign 20 ‘‘2PN RR’’
parameters. The 6 Newtonian RR and 12 post-Newtonian
RR parameters were first determined in IW@28,29#. This

solution has been checked and reproduced in the preliminary
part of this investigation and constitutes an input to supple-
ment the conservative acceleration terms in Eq.~2.3! for the
present study. Our aim is to evaluate these 20 parameters
appearing inA4.5 andB4.5 that will determine the 2PN radia-
tion reaction. It is worth pointing out that in the calculation
we are setting up, the terms in the equations of motion of
O(e3) andO(e4) beyond Newtonian order do not play any
role. The former is nondissipative but not yet computed; the
latter on the other hand includes dissipative parts due to the
‘‘tail’’ effects @58–61# which have been separately balanced
by the tail luminosity in the works of Blanchet and Damour
@58,32#. However all the radiation-reaction results will re-
main as ‘‘partial results’’ in the saga of equations of motion
until a complete treatment of Chandrasekhar@23# and
Damour @16# is available through 3PN order and later
through 4PN order.

Through 2PN order, the equations of motion can be de-
rived from a generalized Lagrangian that depends not only
on positions and velocities but also on accelerations. To this
order, that is in the absence of radiation reaction, the La-
grangian leads to a conserved energy and angular momentum
given by @27,56,62#

E5EN1EPN1E2PN, ~2.4a!

J5JN1JPN1J2PN, ~2.4b!

where

EN5mS 12 v22 m

r D , ~2.5a!
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r
1
1

2
h
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v41
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8
h~123h!
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ṙ 42
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~2115h!Smr D 3

1
1

8
~14255h14h2!Smr D 2v21 1
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~4169h112h2!Smr D 2ṙ 2J , ~2.5c!

JN5LN , ~2.5d!

JPN5LNH 12 v2~123h!1~31h!
m

r J , ~2.5e!

J2PN5LNH 12~7210h29h2!
m

r
v22

1

2
h~215h!

m

r
ṙ 21

1

4
~14241h14h2!Smr D 21 3

8
~127h113h2!v4J , ~2.5f!

and whereLN[mx3v.
Through 2PN order, the orbital energy and angular momentum per unit reduced mass, E˜[E/m5 1

2v
2

2m/r1O(e2)1O(e3), J̃5x3v@11O(e)1O(e2)#, are constant, and correspond to asymptotically measured quantities.
However, the radiation reaction terms lead to nonvanishing expressions fordẼ/dt anddJ̃/dt containing the 20 undetermined
parameters. Following IW, starting from the 2PN-conserved expressions forẼ and J̃ we calculatedẼ/dt anddJ̃/dt using the
2PN two-body equations of motion@27,56,50# supplemented by the radiation-reaction terms of Eq.~2.3!. In
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the balance approach, this time variation of the ‘‘conserved’’ quantities is equated to the negative of the flux of energy and
angular momentum carried by the gravitational waves to the far zone. Thus in addition to the EOM and conserved quantities
we need the 2PN accurate expressions for the far-zone fluxes of energy and angular momentum for a system of two particles
moving on general quasielliptic orbits. The waveform, energy, and angular momentum flux have been computed by Gopaku-
mar and Iyer@47# using the BDI@48,45# formalism, and independently the waveform and energy flux by Will and Wiseman
@46# using their new improved version of the EW@49# formalism. We quote below the final results for thefluxes per unit
reduced mass:

S dEdt D
far zone

5 ĖN1 Ė1PN1 Ė1.5PN1 Ė2PN, ~2.6a!

S dJdt D
far zone

5L̃N@J̇N1J̇1PN1J̇1.5PN1J̇2PN#, ~2.6b!

where

ĖN5
8

5
h
m2

r 3
m

r S 4v22 11

3
ṙ 2D , ~2.7a!

Ė1PN5
8

5
h
m2

r 3
m

r F 184~7852852h!v42
1

42
~148721392h!v2ṙ 22

40

21
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m
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1
1

28
~6872620h! ṙ 41

2
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~367215h! ṙ 2

m
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1

4

21
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Ė2PN5
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m

r F 1
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~169225497h14430h2!v62

1
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~1719210 278h16292h2!v4ṙ 2

2
1
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m
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1

1
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1

21
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m
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1
1
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r
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1
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In the above expressionsL̃N5LN /m and the tail terms are
not listed. It is important to emphasize that the ‘‘tail’’ con-
tribution to the reaction force is such that the balance equa-
tion for energy is verified for the tail luminosity@58,32#. This
corresponds to the ‘‘tail’’ acceleration at 4PN. With this part
independently accounted for, in our analysis we focus on the
‘‘instantaneous’’ terms without loss of generality. It is worth
recalling that the ‘‘balance’’ one sets up in the above treat-
ment is always modulo total time derivatives of the variables
involved. This is crucial to realize and in IW this was sys-
tematically accounted for by noting that at orders of approxi-
mation beyond those at which they are strictly conserved
~and thus well defined!, Ẽ and J̃ are ambiguous up to such
terms. Consequently, we have the freedom to add toẼ and
J̃ arbitrary terms of ordere2.5, e3.5, ande4.5 beyond the New-
tonian expressions without affecting their conservation at
2PN order. There are 3 such terms of the appropriate general
form atO(e2.5) in each ofẼ and J̃, respectively, 6 each at
O(e3.5), and 10 each atO(e4.5), resulting in 6 additional
Newtonian RR parameters, 12 additional 1PN RR param-
eters, and 20 additional 2PN RR parameters, respectively. As
discussed in detail in the following section, these numbers
are very much tied up with the ‘‘functional form’’ we as-
sume for the ambiguous terms and in this section we follow
IW in close detail. Equating time derivatives of the resulting
generalized energy and angular momentum expressionsẼ*
and J̃* ~rather than only the conserved expressions! to the
negative of the far-zone flux formulas and comparing them
term by term one seeks to determine the extent to which one
can deduce the 4.5PN reactive acceleration terms by the re-
fined balance approach.

B. The 2PN RR computation and results

The above procedure is implemented order by order. All
the computations were done withMAPLE @63# and indepen-
dently checked byMATHEMATICA @64#. At the leading order,
when the flux is given by the quadrupole equation, one de-
duces the ‘‘Newtonian RR’’ or 2.5PN term in the accelera-
tion. In this case, in addition to the six unknowns in the
reactive acceleration, one has three unknowns each for the
possible 2.5PN ambiguities in theẼ* and J̃* . As demon-
strated in IW, the balance equations yield 12 constraints on
these 12 Newtonian RR parameters. Of the 12 constraints,
only 10 are linearly independent, and thus finally one obtains
10 linear inhomogeneous equations for 12 Newtonian radia-
tion reaction variables. Solving these equations one obtains
explicit forms forA2.5, B2.5 and Ẽ2.5, J̃2.5 in terms of two
2.5PN arbitrary parameters. To get the 3.5PN reactive terms,
one adopts the above solution and extends the calculation to
O(e3.5) after introducingẼ3.5 and J̃3.5 with 12 additional
1PN RR parameters. At 3.5PN there are 20 constraints on
the 24 post-Newtonian radiation reaction parameters; of the
20 only 18 are linearly independent; the solution to this sys-
tem yields explicit forms forA3.5, B3.5 and Ẽ3.5, J̃3.5 in
terms of six 3.5PN arbitrary parameters. Since we need these
results for the present computation, we reproduce them from
IW @65#:

A2.553~11a3!v
21

1

3
~2316b229a3!

m

r
25a3ṙ

2,

~2.8a!

B2.55~21b2!v
21~22b2!

m

r
23~11b2! ṙ

2, ~2.8b!

A3.55 f 1v
41 f 2v

2
m

r
1 f 3v

2ṙ 21 f 4ṙ
2
m

r
1 f 5ṙ

41 f 6Smr D 2,
~2.8c!

B3.55g1v
41g2v

2
m

r
1g3v

2ṙ 21g4ṙ
2
m

r
1g5ṙ

41g6Smr D 2,
~2.8d!

where

f 15
1

28
~1171132h!2

3

2
a3~123h!13j223r5 ,

~2.9a!

f 252
1

42
~2972310h!23b2~124h!2

3

2
a3~7113h!

22j123j213j513r5 , ~2.9b!

f 35
5

28
~19272h!1

5

2
a3~123h!25j215j415r5 ,

~2.9c!

f 452
1

28
~6872368h!26b2h1

1

2
a3~54117h!

22j225j426j5 , ~2.9d!

f 5527j4 , ~2.9e!

f 652
1

21
~15331498h!2b2~1419h!13a3~714h!

22j323j5 , ~2.9f!

g1523~123h!2
3

2
b2~123h!2j1 , ~2.9g!

g252
1

84
~1391768h!2

1

2
b2~5117h!1j12j3 ,

~2.9h!

g35
1

28
~3692624h!1

3

2
~3b212a3!~123h!13j123r5 ,

~2.9i!

g45
1

42
~2952335h!1

1

2
b2~38211h!23a3~123h!12j1

14j313r5 , ~2.9j!

g55
5

28
~19272h!25a3~123h!15r5 , ~2.9k!
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g652
1

21
~634266h!1b2~713h!1j3 . ~2.9l!

The quantitiesa3, b2, j1, j2, j3, j4, j5, andr5 are param-
eters that represent the unconstrained degrees of freedom that
correspond to gauge transformations. In addition to the reac-
tive terms listed above, one of the coefficients that determine
the 2.5PN ambiguity inẼ andJ̃ and three of the coefficients
that determine the corresponding 3.5PN ambiguity are non-
vanishing. We list these also since they are needed for setting
up the 4.5PN computation:

a152~21b2!, ~2.10a!

j652
4

21
~124h!, ~2.10b!

r35j11
1

84
~3072548h!, ~2.10c!

r65j32
1

42
~2712214h!. ~2.10d!

We now adopt the 2.5PN and 3.5PN solutions given by
Eqs. ~2.8!, ~2.9!, and ~2.10!. Following the IW strategy, we
assume the 4.5PN terms in the equations of motion to be of
the form

A4.55h1v
61h2v

4ṙ 21h3v
4
m

r
1h4v

2ṙ 41h5v
2Smr D 2

1h6v
2ṙ 2

m

r
1h7ṙ

61h8ṙ
4
m

r
1h9ṙ

2Smr D 21h10Smr D 3,
~2.11a!

B4.55k1v
61k2v

4ṙ 21k3v
4
m

r
1k4v

2ṙ 41k5v
2Smr D 2

1k6v
2ṙ 2

m

r
1k7ṙ

61k8ṙ
4
m

r
1k9ṙ

2Smr D 21k10Smr D 3.
~2.11b!

We also assume for the ambiguity inẼ4.5 andJ̃4.5 the restric-
tions and functional forms adopted in IW and also require
that J̃ remain a pseudovector. The ‘‘generalized energy’’ and
‘‘angular momentum’’ through 4.5PN are thus given as sums
of the conserved parts, Eqs.~2.5!, the ‘‘most general’’ 2.5PN
and 3.5PN contributions, i.e., with coefficients determined
by the Newtonian RR and 1PN RR calculations, and arbi-
trary 4.5PN terms. We useẼ* and J̃* to distinguish these
quantities from the conserved energy and angular momen-
tum. We get~per unit reduced mass!

Ẽ*[ẼN1ẼPN1Ẽ2PN1Ẽ2.51Ẽ3.51Ẽ4.5

5ẼN1ẼPN1Ẽ2PN1
8

5
hSmr D 2ṙ @~21b2!v

22a3ṙ
2#2

8

5
hSmr D 2ṙ Fj1v41j2v

2ṙ 21j3v
2
m

r

1j4ṙ
41j5ṙ

2
m

r
2

4

21
~124h!Smr D 2G2

8

5
hSmr D 2ṙ Fc1v

61c2v
4ṙ 21c3v

4
m

r

1c4v
2ṙ 41c5v

2Smr D 21c6v
2ṙ 2

m

r
1c7ṙ

61c8ṙ
4
m

r
1c9ṙ

2Smr D 21c10Smr D 3G , ~2.12a!

J̃*[ J̃N1 J̃PN1 J̃2PN1 J̃2.51 J̃3.51 J̃4.5

5 J̃N1 J̃PN1 J̃2PN1
8

5
hL̃N

m

r
ṙ S b2

m

r D2
8

5
hL̃N

m

r
ṙ F 184~3072548h184j1!v

2
m

r
1r5ṙ

2
m

r
2
1

42
~2712214h242j3!Smr D 2G

2
8

5
hL̃N

m

r
ṙ Fx1v

61x2v
4ṙ 21x3v

4
m

r
1x4v

2ṙ 41x5v
2Smr D 21x6v

2ṙ 2
m

r
1x7ṙ

61x8ṙ
4
m

r
1x9ṙ

2Smr D 21x10Smr D 3G ,
~2.12b!

We now compute the 4.5PN terms indẼ* /dt anddJ̃* /dt using the identities

1

2

dv2

dt
[v•a, ~2.13a!

d~x3v!

dt
[x3a, ~2.13b!

r̈[
v21r•a2 ṙ 2

r
, ~2.13c!
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wherea is given by Eqs.~2.1!, ~2.2!, ~2.3!, ~2.8!, ~2.9!, and~2.11!. To computeE8 * andJP* to O(e4.5), one needs to evaluate
(E8 N ,JPN), (E8 1PN, JP1PN), and (E8 2PN, JP2PN) by usinga toO(e

4.5), O(e3.5) andO(e2.5), respectively. On the other hand, for time
derivatives of the ‘‘ambiguity parts,’’ (Ẽ4.5, J̃4.5), (Ẽ3.5, J̃3.5), and (Ẽ2.5, J̃2.5), the relevant accelerations are the ‘‘conserva-
tive’’ accelerations to order Newtonian, post-Newtonian, and second post-Newtonian, respectively. Schematically, we get

dẼ*

dt
52

8

15
h
m2

r 3 Smr ~12v2211ṙ 2!1
m

r H 1

28F ~7852852h!v412~2148711392h!v2ṙ 21160~2171h!
m

r
v2

13~6872620h! ṙ 418~367215h!
m

r
ṙ 2116~124h!Smr D 2G J 1(

i51

15

Ri
[4.5]Y i

[4] D , ~2.14a!

dJ̃*

dt
52

8

5
hL̃N

m

r 2 Smr S 2v212
m

r
23ṙ 2D 1

m

r H 1

84F ~3072548h!v416~2741277h!v2ṙ 224~58195h!
m

r
v2

13~952360h! ṙ 412~3721197h!
m

r
ṙ 212~274512h!Smr D 2G J 1(

i51

15

S i[4.5]Y i
[4] D , ~2.14b!

where

Y i
[4]~ i51, . . . ,15!5Fv8,v6Smr D ,v6ṙ 2,v4Smr D 2,v4ṙ 4,v4Smr D ṙ 2,v2Smr D 3,v2ṙ 6,v2Smr D 2ṙ 2,

3v2Smr D ṙ 4,Smr D 4,Smr D 3ṙ 2,Smr D 2ṙ 4,Smr D ṙ 6, ṙ 8G , ~2.15!

andRi
[4.5] andS i[4.5] consist of combinations of the parametershi andki from A4.5 andB4.5, c i , x i combined with functions

of h from Ẽ4.5 and J̃4.5, j1 ,j2 ,j3 ,j4 ,j5 ,r5 combined with functions ofh from 1PN corrections of 3.5PN terms anda3 and
b2 combined with functions ofh from 2PN corrections of 2.5PN terms. We equatedẼ* /dt anddJ̃* /dt thus obtained to the
negative of the 2PN far-zone fluxes given by Eqs.~2.7!. This results in 30 constraints on the 40 parametershi , ki , c i , and
x i . Two of these constraints being redundant, of the 30 constraints only 28 are linearly independent. The system of 28 linear
inhomogeneous equations for 40 variables is therefore underdetermined to the extent of 12 arbitrary parameters, and we choose
these to bec1•••c9, x6, x8, andx9. With this choice, the coefficients in Eq.~2.11! determining the 4.5PN reactive accel-
eration are given by

h152
1

168
~12122278h14012h2!2

3

8
a3~129h121h2!2

3

2
~j22r5!~123h!13c223x6 , ~2.16a!

h25
5

84
~32921487h11244h2!1

5

8
a3~129h121h2!1

5

2
~j22j42r5!~123h!25c215c415x625x8 , ~2.16b!

h35
1

504
~7692287 429h111 218h2!1

3

8
a3~1297h125h2!1

1

4
b2~323h219h2!13j1~124h!2

3

2
~j22r5!~7113h!

2
3

2
j5~123h!22c123c213c613x623x9 , ~2.16c!

h452
5

18
~392163h197h2!1

7

2
j4~123h!27c417c717x8 , ~2.16d!

h552
1

252
~37 089264 005h111 297h2!19a3~2113h12h2!1

1

4
b2~482121h254h2!1j1~1419h!

13~j22r5!~714h!13j3~124h!2
3

2
j5~7113h!22c323c613c913x9 , ~2.16e!
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h652
1

504
~45 4752219 535h143 121h2!2

1

4
a3~142403h177h2!2

3

2
b2h~7213h!16hj11

1

2
j2~6829h!

2
5

2
j4~7113h!13j5~123h!2

1

2
r5~62119h!24c225c426c615c812x615x816x9 , ~2.16f!

h7529c7 , ~2.16g!

h85
1

252
~5002236 589h14496h2!2

1

8
a3h~233263h!1

33

4
b2h~123h!13hj21

1

2
j4~82123h!15hr5

22c427c728c8 , ~2.16h!

h95
1

756
~181 3712342 479h142 598h2!2

1

2
a3~1171109h16h2!2

1

4
b2~281245h120h2!12hj1

1~2j215j4!~714h!17hj31
1

2
j5~60121h!13hr522c625c827c9 , ~2.16i!

h105
1

756
~265 2651262 230h115 072h2!2

3

4
a3~1021177h116h2!1

1

4
b2~2001325h140h2!1j3~1419h!

13j5~714h!22c523c9 , ~2.16j!

k15
3

8
~b212!~12h211h2!1

3

2
j1~123h!2c1 , ~2.16k!

k252
1

168
~49922656h2146h2!2

3

2
a3~123h23h2!2

9

8
b2~12h211h2!2

3

2
~3j122j22r5!~123h!13c123x6 ,

~2.16l!

k35
1

504
~8129127h214 482h2!2

1

8
b2~31121h17h2!1

1

2
j1~5117h!1

3

2
j3~123h!1c12c3 , ~2.16m!

k45
5

84
~32921487h11244h2!1

5

2
a3~123h23h2!2

5

2
~2j222j41r5!~123h!15x625x8 , ~2.16n!

k552
11

252
~11072805h2508h2!1

1

4
b2~161255h122h2!2j1~713h!1

1

2
j3~5117h!1c32c5 , ~2.16o!

k65
1

504
~1797154 816h222 463h2!1

3

2
a3~113h15h2!2

1

4
b2~422485h1173h2!2

1

2
j1~56249h!23~j212j32j5!

3~123h!1
3

2
r5~7111h!14c114c313x623x9 , ~2.16p!

k752
5

18
~392163h197h2!27j4~123h!17x8 , ~2.16q!

k852
1

504
~39 808292 788h124 563h2!1

1

2
a3~142105h159h2!2

3

8
b2h~69113h!23hj12~2j215j416j5!~123h!

2
1

2
r5~6213h!12x615x816x9 , ~2.16r!

k95
1

252
~831927683h111 809h2!13a3~3213h2h2!2

1

4
b2~1941215h124h2!2~2j113r5!~713h!2

1

2
j3~4429h!

23j5~123h!12c315c513x9 , ~2.16s!
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k105
1

2268
~425 4131111 636h26912h2!2

1

2
b2~531103h14h2!2j3~713h!1c5 . ~2.16t!

At the 4.5PN order, four parameters determiningẼ4.5 and
J̃4.5 are nonvanishing and are given by

c105
1

189
~36221548h1400h2!,

x35c11
1

504
~2665212 355h112 894h2!,

x55c31
7

2
b2h2

1

126
~52424483h13675h2!,

x105c52
7

2
b2h1

1

252
~77523939h12942h2!.

~2.17!

A final minor remark is with regard to the two possible ways
one may implement the requirement that the ambiguity in
J̃* be a pseudovector. One may either choose it proportional
to L̃N as in the treatment above or to the conserved angular
momentumJ̃. At 2.5PN order both choices are identical. At
the 3.5PN order, the two choices lead to an identical system
of linear equations barring a translation in the values ofr3
and r6 by an amount given by the coefficients ofv2 and
m/r in J1PN:

r3→ r̄35r31
1

2
~123h!b2 ,

r6→ r̄65r61~31h!b2 . ~2.18!

Sincer3 andr6 arenot among the arbitrary parameters de-
termining the solution, the solution determining the reactive
terms andj6 is unchanged. Only the expressions forr3 and
r6 are changed to

r̄35j11
1

84
~3072548h!1

1

2
~123h!b2 ,

r̄65j32
1

42
~2712214h!1~31h!b2 . ~2.19!

At 4.5PN order, however, the situation is different. Indeed,
as before, the two choices lead to an identical system of
linear equations barring a translation in the values of the five
parametersx3, x5, x6, x9, andx10:

x3→x̄35x31
1

8
~129h121h2!b22

1

2
~123h!j1

2
1

168
~30721469h11644h2!,

x5→x̄55x51
1

2
~116h23h2!b22~31h!j1

2
1

2
~123h!j32

1

42
~3252155h2595h2!,

x6→x̄65x62
1

2
~123h!r5 ,

x9→x̄95x92
1

2
~215h!hb22~31h!r5 ,

x10→x̄105x102
1

4
~22165h!b22~31h!j3

1
1

294
~569122597h21498h2!. ~2.20!

Consequently, in terms of the above ‘‘shifted’’ variables, the
solutions for the reactive accelerations are identical. Asx6
andx9 are among theindependentparameters that determine
the reactive acceleration, in terms ofx6 and x9 the two
choices yield equivalent but different looking solutions for
the 4.5PN reactive terms in the equations of motion.

Of the two choices, the second choice is more convenient
for calculations by hand sincedJ/dt50 toO(e2), but has no
special advantage when the calculation is done on a com-
puter.

III. REDUNDANT EQUATIONS
AND RELATED VARIANT SCHEMES

It was noticed in IW that both at the 2.5PN and at the
3.5PN order, the ‘‘balance procedure’’ leads to two redun-
dant constraint equations@29#. Here, at 4.5PN order, we once
again obtain two redundant constraint equations. In this sec-
tion, we examine critically the origin of these redundant
equations.

In implementing the ‘‘refined balance procedure’’ for the
general orbits, IW@29# balance the ‘‘energy flux’’ and ‘‘an-
gular momentum flux’’ completely independently of each
other. However, for circular orbits, these fluxes are not inde-
pendent but related@66# via

S dEdt D
far zone

5v2J̇,

whereJ̇ is defined by the equation
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S dJdt D
far zone

5LNJ̇.

The general balance should reflect this limit and we find that
for Newtonian RR a linear combination of the six equations
representing energy balance and another linear combination
of the six equations representing angular momentum balance
are indeed identical and given by

e11e22450 . ~3.1!

Similarly at 3.5PN we have

g11g21g62~32h!b21
1

84
~29272252h!50 ,

~3.2!

and finally at 4.5PN order the ‘‘degenerate’’ equation is

k11k31k51k101~32h!~j11j3!1
1

4
~90113h16h2!b22

1

4536
~635 7711297 117h281 000h2!50. ~3.3!

Thus we can trace the existence of one of the redundant
equations in the IW procedure to the fact that for circular
orbits the energy and angular momentum fluxes are not in-
dependent but proportional to each other.

The mystery of the other redundant equation was not so
easy to resolve but after a careful examination of the system
of equations and ‘‘experiments’’ in modifying the system,
we could finally track it back to its source. The observation
that this redundant equation relates the coefficients of the
polynomial representing the ambiguity inJ̃ led us to examine
the functional form that IW proposed as the starting ansatz
for the calculation. A comparison of the functional forms for
the ambiguity inẼ and J̃, Eqs.~2.12! reveal that indeed IW
assume a more general possibility forJ̃ than required. The
ambiguity in angular momentum leads to terms more general
than required by the far-zone flux formula and time deriva-
tive of the leading term using the reactive acceleration. The
absence of such terms in the far-zone flux then yields only
the trivial solution for these additional variables inJ̃, and the
second redundant equation is just a homogeneous linear
combination of these trivial solutions. Thus the second re-
dundant equation in the IW scheme is due to the fact that the
IW scheme—extended here to 4.5PN order—is not a ‘‘mini-
mal’’ one.

To verify this ‘‘conjecture’’ we experimented with alter-
natives for the functional form that one assumes as the start-
ing expression for the ambiguity inẼ and J̃ — the 2.5PN,
3.5PN, and 4.5PN order terms. In the first instance, we re-
place the IW scheme—labeled for clarity of reference by
IW21—by the ‘‘minimal’’ variant in Eq.~2.12!—labeled by
IW22. The notation IW21 indicates, e.g., that (m/r )2 is
pulled out in Ẽ while only (m/r )1 is pulled out in J̃. As
explained above, the minimal choice forJ̃* is obtained by
pulling out the factor (8/5)hL̃N(m/r )

2ṙ from arbitrary terms
in J̃* , rather than the factor (8/5)hL̃N(m/r ) ṙ as in the IW
scheme forJ̃* . This reduces by onethe order of the polyno-
mial in v2, ṙ 2, andm/r that constitutes the arbitrariness, and
consequently implies a reduction in the number of variables
that characterize the ambiguity inJ̃ to one forJ̃2.5, three in
J̃3.5 and six inJ̃4.5. Thus in the IW22 scheme, at the 2.5PN
level we have six variables in the reactive acceleration, three
variables determining the energy ambiguityẼ2.5 and 1 vari-

able determining the ambiguity inJ̃2.5, i.e., 10 variables in
all. The balance equations lead to nine equations—six from
energy and three from angular momentum—of which eight
are linearly independent. In other words,there is only one
redundant equation. The linear system of 8 equations for 10
variables is then the same as before and leads to the IW21
solution in terms of 2 arbitrary parameters.~The two extra
variables in IW21 are identically zero.! Similarly, at the
3.5PN level we have 12 variables in the reactive accelera-
tion, 6 variables determining the energy ambiguityẼ3.5 and 3
variables determining the ambiguity inJ̃3.5, i.e., 21 variables
in all. The balance equations lead to 16 equations — 10 from
energy and 6 from angular momentum — of which 15 are
linearly independent, leavingonly one redundant equation.
The linear system of 15 equations for 21 variables is then the
same as before and leads to the IW21 solution in terms of 6
arbitrary parameters.~The three extra variables in IW21 are
identically zero.! Finally, at the 4.5PN level, we have 20
variables in the reactive acceleration, 10 variables determin-
ing the energy ambiguityẼ4.5 and 6 variables determining
the ambiguity inJ̃4.5, i.e., 36 variables in all. The balance
equations lead to 25 — 15 from energy and 10 from angular
momentum — equations of which 24 are linearly indepen-
dent, again leavingonly one redundant equation. The linear
system of 24 equations for 36 variables is the same as before
and leads to the solution obtained in the previous section in
terms of 12 arbitrary parameters.~The four extra variables in
the IW21 scheme are identically zero.! The IW22~minimal!
scheme thus confirms the conjecture that the occurrence of
the second redundant equation is special to the IW scheme
~IW21! and is related to the choice they make for the func-
tional form of theJ̃ ambiguity by pulling out only one factor
of nonlinearitym/r rather than its square — the minimal
choice. To double check the above explanation, we per-
formed another experiment by examining a variant that
would generate an increased number of redundant or degen-
erate equations. This scheme denoted by IW11 differs from
IW21 in that the ambiguity inẼ* is assumed to have
(8/5)h(m/r ) ṙ as the common factor, i.e., by pulling out only
one order of nonlinearitym/r rather than its square as in
IW21; the polynomial representing the ambiguity inẼ is
consequently ofone order morethan in IW21. In this case, at
2.5PN order one has 61613515 variables and
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1016516 equations of which3 are redundant. The 13
equations for 15 variables thus yield the required solution in
terms of 2 arbitrary parameters and similarly for higher or-
ders. One may also explore the most general of choices in
which only (8/5)h is pulled outside and the ambiguity is the
highest order polynomial consistent with the order of the
approximation. We studied one such scheme~IW00! in the
Newtonian RR case. For convenience, the various experi-
ments are summarized in Table I.

To conclude: at 2.5PN, 3.5PN, and 4.5PN orders all vari-
ants of IW examined in this subsection with different forms
of the ambiguities inẼ and J̃—minimal ~IW22! or IW11—
lead to identical reactive accelerations including their gauge
arbitrariness.

At this juncture one may wonder about the issues of the
‘‘uniqueness’’ and ‘‘ambiguities’’ of the schemes discussed
earlier. In this regard, we would like to make the following
general remarks. For general orbits, in addition to the bal-
ance of energy one must take into account the balance of
angular momentum. Thus, schemes involving only energy
balance are not relevant except in special cases like ‘‘circular
orbits’’ and ‘‘radial infall’’ ~see Sec. V!. Can one have
schemes where one implements both energy and angular mo-
mentum balance but doesnot take into account the possible
ambiguities inẼ andJ̃? One can show that even at the 2.5PN
level this system of equations is inconsistent. Further, is the
ambiguity necessaryboth in Ẽ and J̃? If one examines a
scheme with both energy and angular momentum balance
taking account of the ambiguityonly in Ẽ one does obtain a
consistent solution up to 4.5PN order but with only half the

number of arbitrary parameters as in the IW scheme. The
reduced ‘‘gauge’’ freedom is not adequate to treat as special
cases the Burke-Thorne gauge at the 2.5PN level or the
Blanchet choice at the 3.5PN level. And finally, in a scheme
with both energy and angular momentum balance taking ac-
count of the ambiguityonly in J̃ one obtains a consistent
solution at 2.5PN order containingno arbitrary parameters at
all. No solution is possible at higher orders.

On general considerations, the reactive acceleration
should be a power series in the individual massesm1 and
m2 or equivalently, it should be nonlinear in the total mass
m as assumed in earlier sections. It is interesting to investi-
gate whether the functional forms of the far-zone fluxes and
the balance procedure necessarily lead to such ‘‘physical’’
solutions alone or whether they are consistent with more
general possibilities. In the Appendix, for mathematical com-
pleteness@67# we investigate this question in detail and
prove that the flux formulas and balance equations do not
constrain the reactive acceleration to their ‘‘physical’’ forms
alone but allow for a more general form for the reactive
acceleration.

IV. ARBITRARINESS IN REACTIVE TERMS
AND GAUGE CHOICE

It is well known that the formulas for the energy and
angular momentum fluxes in the far zone are gauge invari-
ant, i.e., independent of the changes in the coordinate system
that leave the spacetime asymptotically flat. On the other
hand, the expressions for the reactive force are ‘‘gauge de-
pendent’’ and consequently, e.g., the Chandrasekhar form is
different from the Burke-Thorne or Damour-Deruelle forms.
In IW it was shown that the Burke-Thorne gauge corre-
sponds to the valuesb254 anda355, while the Damour-
Deruelle choice corresponds tob2521 anda350. It was
further shown that the reactive acceleration implied by
Blanchet’s first principles determination of the 1PN radiation
reaction indeed corresponds to a particular choice of the ar-
bitrary parameters in the IW solution. One of the satisfactory
aspects of IW was the demonstration that the part of the
reactive acceleration not determined by the balance require-
ment was precisely related to the possible ambiguity in the
choice of the gauge at that order.~The flux is equal to the
time variation of the conserved quantities only up to total
time derivatives; this ambiguity may be absorbed in a
‘‘change’’ in the relative separation vector as discussed be-
low.!

Following IW, we seek to establish the correspondence
between the arbitrary parameters contained in the radiation
reaction terms and the residual gauge freedom in the con-
struction. The residual gauge freedom arises from the fact
that the far-zone fluxes, Eqs.~2.6! and~2.7!, are independent
of changes in the coordinate system that leave the spacetime
asymptotically flat. These coordinate changes will induce a
change inx which is the difference between the centers of
mass of the two bodiesx1(t) and x2(t) at coordinate time
t. Following IW, we choose the transformation to be of the
form x→x85x1dx, wheredx can depend only on the two
vectorsx andv,

dx5~ f 2.51 f 3.51 f 4.5! ṙx1~g2.51g3.51g4.5!rv. ~4.1!

TABLE I. Comparison of four alternative schemes: IW21, IW22
~minimal!, IW11, and IW00.N denotes the order of approximation,
NV the number of variables,NC the number of constraints coming
from balance equations,ND the number of degenerate equations,
NI the number of independent equations, andNA the number of
arbitrary parameters determining the solution. In theNV column,
a1b1c meansa variables of reactive acceleration,b in energy
ambiguity, andc in angular momentum ambiguity.

N NV NC ND NI NA

IW21: IW scheme

2.5PN 61313 12 2 10 2
3.5PN 121616 20 2 18 6
4.5PN 20110110 30 2 28 12

IW22: Minimal scheme

2.5PN 61311 9 1 8 2
3.5PN 121613 16 1 15 6
4.5PN 2011016 25 1 24 12

IW11 scheme

2.5PN 61613 16 3 13 2
3.5PN 1211016 25 3 22 6
4.5PN 20115110 36 3 33 12

IW00 scheme

2.5PN 611016 25 5 20 2
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In order thatdx/x beO(e2.5), O(e3.5) andO(e4.5), f 2.5 and
g2.5 must beO(e

2), f 3.5 andg3.5 must beO(e
3) and f 4.5 and

g4.5 must beO(e
4). As for the other variables, thef ’s and

g’s will also be polynomials in the variablesm/r , v2, and
ṙ 2. As pointed out in@29#, we do not independently take into
account changes in the coordinate timet since the
v-dependent term indx includes this contribution via
x(t1dt);x(t)1vdt.

In @29# it was proved that to cancel the dependence on the
two 2.5PN arbitrary parameters and the six 3.5PN arbitrary
parameters,dx should be chosen such that

f 2.55
8

15
hSmr D 2a3 , ~4.2a!

g2.55
8

15
hSmr D 2~2a323b2!, ~4.2b!

f 3.55
8

5
hSmr D 2FP21v

21P22Smr D1P23ṙ
2G , ~4.2c!

g3.55
8

5
hSmr D 2FQ21v

21Q22Smr D1Q23ṙ
2G , ~4.2d!

wherePab’s andQab’s are given by

P215
1

3 Fj21 2

5
j42r52

1

2
a3~123h!G , ~4.3a!

P2252
1

6 Fj21j42
3

2
j52r52

3

2
b2h1

1

2
a3~4111h!G ,

~4.3b!

P235
1

5
j4 , ~4.3c!

Q215Fj11 2

3
j21

8

15
j41

1

2
~3b222a3!~123h!G ,

~4.3d!

Q2252
1

6 F6j115j223j315j42
3

2
j51r52

63

2
b2h

2
1

2
a3~4255h!G , ~4.3e!

Q235
1

3 F25 j41r52a3~123h!G . ~4.3f!

We provisionally choose the 4.5PN part ofdx to be of the
form

f 4.55
8

5
hSmr D 2FP41v

41P42v
2
m

r
1P43v

2ṙ 21P44Smr D 2
1P45Smr D ṙ 21P46ṙ

4G , ~4.4a!

g4.55
8

5
hSmr D 2FQ41v

41Q42v
2
m

r
1Q43v

2ṙ 21Q44Smr D 2
1Q45Smr D ṙ 21Q46ṙ

4G . ~4.4b!

The change in the 2PN equations of motion Eqs.~2.2! pro-
duced by this change of variable Eq.~4.1! can be determined
using the known form ofdx up to 3.5PN order Eqs.~4.2! and
~4.3!, the provisional form chosen above for the 4.5PN terms
Eq. ~4.4! and the transformations given below:

x→x85x1dx,

v→v85v1dv5
dx

dt
1
ddx

dt
,

r→r 85r F11
n•dx

r G ,
x8
r 8p

5
x

r p
1

dx

r p
2
pn

r p
~n•dx!,

v2→v825v21F2v• ddx

dt G ,
ṙ→ ṙ 85

1

r F r ṙ1dx•v1x•
ddx

dt
2~n•dx! ṙ G . ~4.5!

The gauge change generates reactive terms and the require-
ment that this change should cancel the dependence of the
radiation-reaction terms on arbitrary parameters dictates that

P4152
1

24
a3~129h121h2!2

1

30
~5j212j425r5!~123h!1

1

3
c21

2

15
c41

8

105
c72

1

3
x62

2

15
x8, ~4.6a!

P4252
1

6
a3~31h2!1

3

8
b2h2

1

4
j1h1

1

12
j2~3223h!1

1

60
j4~19277h!2

1

8
j5~123h!2

1

12
r5~3222h!2

1

3
c22

4

15
c4

1
1

4
c62

1

5
c71

1

12
c81

1

3
x61

4

15
x82

1

4
x9 , ~4.6b!

P4352
1

10
j4~123h!1

1

5
c41

4

35
c72

1

5
x8 , ~4.6c!
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P445
1

30
a3~13112h116h2!1

1

5
b2~1112h22h2!1

1

10
~j122j3!h1

1

30
~j21j4!~9131h!2

1

20
j5~7113h!

2
1

30
r5~9128h!1

2

15
c21

2

15
c42

1

10
c61

2

15
c72

1

10
c81

1

5
c92

2

15
x62

2

15
x81

1

10
x9 , ~4.6d!

P455
1

12
a3h

22
1

4
b2h~123h!1

1

6
j2h2

1

15
j4~117h!2

1

3
r5h2

1

15
c42

2

15
c71

1

6
c81

1

15
x8 , ~4.6e!

P465
1

7
c7 , ~4.6f!

Q415
1

8
~2a323b2!~12h211h2!2

1

10
~15j1110j218j4!~123h!1c11

2

3
c21

8

15
c41

16

35
c7 , ~4.6g!

Q4252
1

24
a3~1082331h1197h2!1

1

8
b2~482121h163h2!1

1

2
j1~9228h!1

1

12
j2~492142h!2

1

8
~6j313j522r5!

3~123h!1
1

60
j4~2312653h!22c12

5

3
c21

1

2
c32

47

30
c41

1

4
c62

22

15
c71

1

6
c82

1

6
x62

1

10
x8 , ~4.6h!

Q435
1

6
a3~123h23h2!2

1

6
~2j212j41r5!~123h!1

2

15
c41

16

105
c71

1

3
x61

2

15
x8 , ~4.6i!

Q445
1

30
a3~32173h1254h2!2

1

30
b2~511157h1258h2!2

1

30
j1~102307h!2

1

30
j2~192279h!2

1

30
j3~15159h!

2
1

30
j4~192279h!2

1

60
j5~9191h!1

1

30
r5~9128h!1

4

3
c11

6

5
c22

1

3
c31

6

5
c41

1

3
c52

7

30
c61

6

5
c72

7

30
c8

1
2

15
c91

2

15
x61

2

15
x82

1

10
x9 , ~4.6j!

Q4552
1

24
a3~24229h291h2!2

33

8
b2h

21
3

4
j1h1

1

12
j2~21h!1

1

15
j4~6213h!2

1

4
j5~123h!2

3

4
r5h2

1

10
c42

1

5
c7

1
1

12
c82

1

6
x62

7

30
x81

1

4
x9 , ~4.6k!

Q4652
1

5
j4~123h!1

2

35
c71

1

5
x8 . ~4.6l!

The above computation shows that as at the 3.5PN order the
~12-parameter! arbitrariness in the 4.5PN radiation reaction
formulas reflects the residual freedom that is available to one
in the choice of a 4.5PN accurate ‘‘gauge.’’ Every particular
4.5PN accurate radiation reaction formula should correspond
to a particular choice of these 12 parameters.

V. PARTICULAR CASES: QUASICIRCULAR ORBITS
AND HEAD-ON INFALL

In this section we specialize our solutions valid for gen-
eral orbits to the particular case of quasicircular orbits and
radial infall and verify that they indeed reproduce the simpler
reactive solutions one would obtain if one formulated the
problemab initio appropriate to these two special cases. We

first consider the quasicircular limit that is of immediate rel-
evance to sources for the ground based interferometric gravi-
tational wave detectors. In this particular case, the reactive
acceleration may be deduced usingonly the energy balance.
Using the reactive acceleration we compute the 4.5PN con-
tribution to ṙ and v̇. We also discuss the complementary
case of the radial infall of two compact objects of arbitrary
mass ratio and determine the 4.5PN contribution to the radial
infall velocity for the two special cases: radial infall from
infinity and radial infall with finite initial separation.

A. Quasicircular inspiral

Using our general reactive solution we can compute the
physically relevant quantitiesṙ and v̇ for quasicircular in-
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spiral, wherer andv are the orbital separation and the or-
bital angular frequency in harmonic coordinates, respec-
tively. As would be expected, these results are independent
of the arbitrary parameters that are present in the reactive
solution. We obtain the radiation reaction contribution toa
up to 4.5PN for quasicircular inspiral by setting
ṙ501O(e2.5) and using

v25
m

r F12~32h!
m

r
1S 61

41h

4
1h2D Smr D 2G ~5.1!

in Eqs.~2.3!, ~2.8!, ~2.11!, and~2.16!. We get

aRR52
32hm3v

5r 4 F12S 3431336
2
5

4D mr
1S 794 36918 144

1
26 095

2016
h2

7

4
h2D Smr D 2G . ~5.2!

It is worth noting that for quasicircular inspiral the energy
flux determines the reactive acceleration without any gauge
ambiguity. All the arbitrary terms in energy are proportional
to ṙ and hence play no role in this instance. Inverting Eq.
~5.1!, we get

m

r
5v2F11~32h!v21

1

4
~48289h14h2!v4G . ~5.3!

Differentiating Eq.~5.3! with respect tot and noting that the
a that appears is the total acceleration~conservative1 reac-
tive! we get, after some rearrangement

ṙ52
64

5
hSmr D 3F12S 1751336

1
7h

4 D mr
1S 303 45518 144

1
40 981h

2016
1

h2

2 D Smr D 2G . ~5.4!

Using Eq. ~5.4! and the expression for angular velocity
(v[v/r )

v25
m

r 3 F12~32h!
m

r
1S 61

41h

4
1h2D Smr D 2G , ~5.5!

we may expressv̇ as

v̇

v2 5
96

5
h~mv!5/3F12~mv!2/3S 743336

1
11

4
h D

1S 34 10318 144
1
13 661

2016
h1

59

18
h2D ~mv!4/3G . ~5.6!

The results Eqs.~5.4! and~5.6! are in agreement with@43#
as expected and required, suggesting that the reactive terms
obtained here could be used to evolve orbits in the more
general case also@68# .

B. Head-on infall

Recently Simone, Poisson, and Will@55# have obtained to
2PN accuracy the gravitational wave energy flux produced
during head-on infall and starting from these formulas one
can deduceab initio the reactive acceleration in this limit
adapting IW to the radial infall case. As required, these re-
sults match exactly with expressions obtained by applying
radial infall limits to the general orbit solutions and we sum-
marize the relevant formulas in this limit in what follows.
Equations representing the head-on infall can be obtained
from the general orbit expressions by imposing the restric-
tions,x5zn̂, v5 żn̂, r5z, andv5 ṙ5 ż. For radial infall the
conserved energy Eq.~2.5! to 2PN order then becomes

E~z!5mH ż22 2g1
3~123h!ż4

8
1

~312h!g ż2

2
1

g2

2

1
5~127h113h2!ż6

16
1
3~728h216h2!g ż4

8

1
~917h18h2!g2ż2

4
2

~2115h!g3

4 J , ~5.7!

whereg5m/z. Unlike the quasicircular inspiral, for head-on
infall we can distinguish between two different cases. Fol-
lowing @55# we denote them by (A) and (B), respectively,
and list the expressions relevant for our computations. In
case (A), the radial infall proceeds from rest at infinite initial
separation,E(z)5E(`)50, and inverting Eq.~5.7! we get

ż52 H 2mz F125gS 12
h

2 D1g2S 132 81h

4
15h2D G J 1/2.

~5.8!

In case (B), the radial infall proceeds from rest at finite
initial separationz0, which implies

E~z!5E~z0!52mH g02
g0
2

2
1

g0
3

2 S 11
15h

2 D J . ~5.9!

We obtain as in case (A), an expression forż given by

ż52H 2~g2g0!F125gS 12
h

2 D1g0S 12
9h

2 D
1g2S 132 81h

4
15h2D2gg0S 52

173h

4
113h2D

1g0
2S 12

5h

4
18h2D G J 1/2, ~5.10!

whereg05m/z0. We first compute the 4.5PN contribution to
z̈ for case (B), the radial infall from finite initial separation.
We use the radial infall restriction along with Eq.~5.10! in
Eqs.~2.3!, ~2.8!, ~2.11!, and~2.16! to obtain 4.5PN terms in
z̈ as
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z̈5
8hg3

5m
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1

4
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3024
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1S 2
1

2016
~1 521 30827 938 232h15 800 187h2!1

1

32
~12 372264 104h146 641h2!z12
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~68221315h!z2
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2
~542189h!z3112z4176z5Dgg0

21S 18 ~34822016h13339h2!~22z1!1~442162h!z2216z5Dg0
3G J . ~5.11!

To obtain the 2PN reactive terms for case (A), the radial infall from infinity, we use in Eqs.~2.3!, ~2.8!, ~2.11!, and~2.16! the
radial infall restriction and Eq.~5.8!. The expression thus obtained is the same as obtained by puttingg050 in Eq.~5.11!. The
z ’s in Eq. ~5.11! are given by

z15a32b2 ,

z25j11j21j4 ,

z35j31j5 ,

z45c31c61c8 ,

z55c11c21c41c7 ,

z65c51c9 . ~5.12!

We have also computed the 2PN reactive terms for cases (A) and (B) ab initio using the IW method adapted to radial infall.
In this case, only energy balance is needed asJ50 for head-on infall. The result thus obtained is in agreement with Eq.~5.11!.
Equation~5.11! may be integrated straightforwardly to obtain the 4.5PN contribution toż2 in case (B) and it yields

ż25
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We obtain the 4.5PN contribution toż2 for case (A) by put-
ting g050 in Eq. ~5.13!. Unlike in the case of quasicircular
inspiral the expressions in the head-on or radial infall cases
are dependent on the choice of arbitrary variables or the
choice of ‘‘gauge.’’

VI. CONCLUDING REMARKS

Starting from the 2PN accurate energy and angular mo-
mentum fluxes for structureless nonspinning compact bina-
ries of arbitrary mass ratio moving on quasielliptical orbits
we deduce the 4.5PN reactive terms in the equation of mo-
tion by an application of the IW method. The 4.5PN reactive
terms are determined in terms of twelve arbitrary parameters
which are associated with the possible residual choice of
‘‘gauge’’ at this order. These general results could prove
useful to studies of the evolution of the orbits. The limiting
and complementary cases of circular orbits and head-on in-
fall have also been examined.

We have systematically and critically explored different
facets of the IW choice like the functional form of the reac-
tive acceleration and provided a better understanding of the
origin of redundant equations by studying variants obtained
by modifying the functional forms of the ambiguities inẼ*
and J̃* . The main conclusions we arrive at by this analysis
are the following.

In terms of the number of arbitrary parameters and the
corresponding gauge transformations, the IW scheme exhib-
its remarkable stability for a variety of choices for the form
of the ambiguity in energy and angular momentum. The dif-
ferent choices merely produce different numbers of degener-
ate equations. This indicates the essential validity and sound-
ness of the scheme. These solutions are general enough to
treat as special cases any particular solutions obtained from
first principles in the future.

Relaxing the requirement of nonlinearity inm or more
precisely the power series behavior inm1 andm2 permits
mathematically more general solutions for the reactive accel-
erations involving more arbitrary parameters. Solutions more
general than the ones discussed in the Appendix, e.g., a so-
lution involving six parameters at the Newtonian level, can-
not be gauged away either by gauge transformations of the
form discussed by IW or by more general gauge transforma-
tions that differ in their powers of nonlinearity (m/r depen-
dence!. However, none of these solutions are of ‘‘physical’’
interest to describe the gravitational radiation reaction of
two-body systems.
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APPENDIX: THE GENERAL SOLUTION TO THE
BALANCE METHOD

1. The 2.5PN reactive solution

It should be noted that all the discussion in Sec. III fol-
lows only after one hasassumeda functional form for the

reactive acceleration — in particular, the intuitive require-
ment that it be nonlinear, i.e., contain an overall factor of
m/r . It is pertinent to ask whether more general possibilities
obtain, consistent with the far-zone fluxes, if one relaxes this
requirement. We have explored this question in detail at the
2.5PN level and we summarize the results in what follows.
In this instance the reactive acceleration is assumed to be

a52
8

5
hSmr 2D @2~A2.5! ṙn1~B2.5!v#,

A2.55a18v
41a28v

2
m

r
1a38v

2ṙ 21a48Smr D 2

1a58Smr D ṙ 21a68 ṙ
4,

B2.55b18v
41b28v

2
m

r
1b38v

2ṙ 21b48Smr D 2

1b58Smr D ṙ 21b68 ṙ
4, ~A1!

i.e., it is determined by 12 reactive coefficients instead of the
earlier 6. Recall that the nomenclature IW22, IW21, and
IW11 refers to the functional forms chosen for the ambiguity
in energy and angular momentum and we introduce similar
notation EJ22, EJ21, and EJ11, respectively, in this appen-
dix, where the acceleration has a more general form as given
by Eq. ~A1!. With this form of the reactive acceleration,
however, one gets, e.g., in the EJ21 scheme at 2.5PN,

Ẽ*[ẼN1Ẽ2.55ẼN2
8

5
hSmr D 2ṙ S a1v

21a2

m

r
1a3ṙ

2D ,
~A2a!

J̃*[L̃N1 J̃2.55L̃N1
8

5
hL̃N

m

r
ṙ S b1v

21b2

m

r
1b3ṙ

2D .
~A2b!

The derivatives ofẼ* and J̃* with the new form of the
reactive acceleration are given by

TABLE II. Comparison of the four alternative schemes: EJ21,
EJ22, EJ11, and EJ00 at 2.5PN level. The notation is as in Table I.
In the NC column, a1b indicates thata constraints arise from
energy balance andb from angular momentum balance.

Scheme NV NC ND NI NA

EJ22 121311 1016 2 14 2
EJ21 121313 1016 1 15 3
EJ11 121613 1016 1 15 6
EJ00 1211016 15110 3 22 6
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dẼ*

dt
52

8

5
h
m

r 2 F ~b18!v61~b281a1!
m

r
v41~2a181b38! ṙ 2v4

1~b482a11a2!Smr D 2v21~2a381b68! ṙ 4v21~2a28

1b5823a113a3!Smr D ṙ 2v22a2Smr D 32~a4812a1

14a213a3!Smr D 2ṙ 22~a5815a3!Smr D ṙ 42a68 ṙ
6G ,
~A3a!

dJ̃*

dt
52

8

5
hL̃NSmr 2D F ~b182b1!v

41~b281b12b2!Smr D v2
1~b3812b123b3! ṙ

2v21~b481b2!Smr D 21~b5812b1

13b213b3!Smr D ṙ 21~b6814b3! ṙ
4G . ~A3b!

Using Eqs.~A2! and ~A3! one can understand the counts of
the various variables summarized in Table II.

One can explain the new counts for the arbitrary param-
eters by comparing, e.g., the EJ21 scheme with a general
form for the reactive acceleration as in this section with the
IW21 scheme with the restricted form for reactive accelera-
tion as in Sec. III. One has six extra variables and 4 extra
equations. However one gains an extra equation because one
of the degeneracies is lifted. The resulting five equations for
six variables lead to an extra arbitrary parameter resulting in
a three-parameter solution in this instance. All the other en-
tries in Table II can be similarly understood by comparison
of Tables I and II.

The reactive solution resulting from the EJ22 scheme in
this instance is exactly the same as the IW21 reactive solu-
tion discussed earlier. From the EJ21 scheme one obtains a
solution with three arbitrary parameters given by

a1853b3 , a2853~11a32b3!, a38524b3 ,

a48523/323a312b2 , a58525a3 , a6850 ,
~A4a!

b1850, b28521b2 , b3853b3 , b48522b2 ,

b58523~11b21b3!, b68524b3 . ~A4b!

This construction can be generalized to 3.5PN and 4.5PN
orders in which cases the number of arbitrary parameters are
8 and 15, respectively. The EJ11 and EJ00 schemes, on the
other hand, lead to a solution with six arbitrary parameters at
the 2.5PN level. However, not all these solutions are similar
in regard to the possibility of gauging away all the arbitrary
parameters they contain.

2. The 2.5PN gauge arbitrariness

We have also investigated the question whether all the
extra arbitrary parameters appearing in schemes with the

general form of reactive acceleration~see Table II! can be
gauged away? We find that at 2.5PN order, though this is
possible with the three parameters of the EJ21 scheme, it is
not true for the six arbitrary parameters in the EJ11 and EJ00
schemes. For this reason the EJ11 and EJ00 schemes are not
satisfactory and we discuss them no further. We present here
for the EJ21 scheme details of the gauge calculation at 2.5PN
order. We choosedx to be

dx5
8h

5 Smr D ~ f 2.58 ṙx1g2.58 rv!, ~A5!

where f 2.58 andg2.58 are given by

f 2.58 5P018 Smr D1P028 v
21P038 ṙ

2,

g2.58 5Q018 Smr D1Q028 v
21Q038 ṙ

2. ~A6!

For the reactive acceleration given by Eqs.~A1! and~A4! we
obtain

P018 5
1

3
~a32b3!, ~A7a!

P028 5
1

2
b3 , ~A7b!

P038 50, ~A7c!

Q018 5
1

3
~2a323b21b3!, ~A7d!

Q028 50, ~A7e!

Q038 52
1

2
b3 . ~A7f!

The EJ21 scheme leads to a more general solution to the
balance equations, and as in IW all the arbitrary parameters
that appear in its solution can be associated with a residual
choice of gauge. It has been explored in detail up to 4.5PN
and the results are summarized below. We list the new gen-
eral reactive solutions and the corresponding gauge transfor-
mations for the arbitrary parameters they contain. For brev-
ity, the solutions are presented in the form: ‘‘New solution’’
5 ‘‘old solution’’ 1 ‘‘difference.’’

3. The 3.5PN and 4.5PN reactive solutions

The reactive acceleration is assumed to have the follow-
ing general form:

a52
8

5
h
m

r 2
@2~A2.51A3.51A4.5! ṙn1~B2.51B3.51B2.5!v#,

~A8!

with A2.5 and B2.5 given in Eqs. ~A1! and ~A4! and
A3.5,B3.5,A4.5, andB4.5 given by
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A3.55 f 18v
61 f 28v

4
m

r
1 f 38v

4ṙ 21 f 48v
2ṙ 2

m

r
1 f 58v

2ṙ 41 f 68v
2Smr D 21 f 78

m

r
ṙ 41 f 88Smr D 2ṙ 21 f 98Smr D 31 f 108 ṙ

6, ~A9a!

B3.55g18v
61g28v

4
m

r
1g38v

4ṙ 21g48v
2ṙ 2

m

r
1g58v

2ṙ 41g68v
2Smr D 21g78

m

r
ṙ 41g88Smr D 2ṙ 21g98Smr D 31g108 ṙ

6, ~A9b!

A4.55h18v
81h28v

6ṙ 21h38v
6
m

r
1h48v

4ṙ 41h58v
4Smr D 21h68v

4ṙ 2
m

r
1h78v

2ṙ 61h88v
2ṙ 4

m

r
1h98v

2ṙ 2Smr D 21h108 v
2Smr D 31h118 Smr D 4

1h128 ṙ
2Smr D 31h138 ṙ

4Smr D 21h148 ṙ
6
m

r
1h158 ṙ

8, ~A9c!

B4.55k18v
81k28v

6ṙ 21k38v
6
m

r
1k48v

4ṙ 41k58v
4Smr D 21k68v

4ṙ 2
m

r
1k78v

2ṙ 61k88v
2ṙ 4

m

r
1k98v

2ṙ 2Smr D 21k108 v
2Smr D 31k118 Smr D 4

1k128 ṙ
2Smr D 31k138 ṙ

4Smr D 21k148 ṙ
6
m

r
1k158 ṙ

8. ~A9d!

With this form of the acceleration we have, at 3.5PN,

dẼ*

dt
52

8

15
h
m

r 2 F Smr D 2~12v2211ṙ 2!1(
i51

15

R8i
[3.5]Y i

[4] G , ~A10a!

dJ̃*

dt
52

8

5
hL̃N

m

r 2 Fmr S 2v212
m

r
23ṙ 2D 1(

i51

10

S8i[3.5]Y i
[3] G , ~A10b!

whereY i
[4] is given by Eqs.~2.15!,

Y i
[3]~ i51, . . . ,10!5Fv6,v4mr ,v4ṙ 2,v2Smr D 2,v2mr ṙ 2,v2ṙ 4,Smr D 3,Smr D 2ṙ 2,mr ṙ 4, ṙ 6G ~A11!

andR8i
[3.5] , S8i[3.5] consist of corresponding linear combina-

tions of the parameters involved. Repeating the procedure
explained in the text, the 3.5PN reactive solution obtained is

f 1852
3

2
~123h!b323r2 , ~A12a!

f 285 f 12
1

2
~21139h!b313r2 , ~A12b!

f 3852~123h!b314r225r4 , ~A12c!

f 485 f 31
1

2
~56115h!b312r215r4 , ~A12d!

f 5856r4 , ~A12e!

f 685 f 21~21112h!b3 , ~A12f!

f 785 f 524hb3 , ~A12g!

f 885 f 423hb3 , ~A12h!

f 985 f 6 , ~A12i!

f 108 50 , ~A12j!

g1850 , ~A12k!

g285g1 , ~A12l!

g3852
3

2
~123h!b223r2 , ~A12m!

g485g32
1

2
~21133h!b313r2 , ~A12n!

g5852~123h!b314r225r4 , ~A12o!

g685g2 , ~A12p!

g785g51
1

2
~561h!b312r215r4 , ~A12q!

g885g41~2119h!b3 , ~A12r!

g985g6 , ~A12s!

g108 56r4 , ~A12t!

where f i , gi are given by Eqs.~2.9!. The solution corre-
sponding to Eqs.~2.10! remains identical.

Similarly at 4.5PN we have
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dẼ*

dt
52

8

15
h
m

r 2S Smr D 2~12v2211ṙ 2!1Smr D 2H 1

28F ~7852852h!v412~2148711392h!v2ṙ 21160~2171h!
m

r
v2

13~6872620h! ṙ 418~367215h!
m

r
ṙ 2116~124h!Smr D 2G J 1(

i51

15

R8 i
[4.5]Y i

[4] D , ~A13a!

dJ̃*

dt
52

8

5
hL̃N

m

r 2 Smr S 2v212
m

r
23ṙ 2D 1

m

r H 1

84F ~3072548h!v416~2741277h!v2ṙ 224~58195h!
m

r
v2

13~952360h! ṙ 412~3721197h!
m

r
ṙ 212~274512h!Smr D 2G J 1(

i51

15

S8 i[4.5]Y i
[4] D , ~A13b!

where

Y i
[5]~ i51, . . . ,21!5Fv10,v8mr ,v8ṙ 2,v6Smr D 2,v6mr ṙ 2,v6ṙ 4,v4Smr D 3,v4Smr D 2ṙ 2,v4mr ṙ 4,v4ṙ 6,v2Smr D 4,

v2Smr D 3ṙ 2,v2Smr D 2ṙ 4,v2mr ṙ 6,v2ṙ 8,Smr D 5,Smr D 4ṙ 2,Smr D 3ṙ 4,Smr D 2ṙ 6,mr ṙ 8, ṙ 10G ~A14!

andY i
[4] is given by Eq.~2.15!.

HereR8i
[4.5] ,S8i[4.5] consist of linear combinations of the

parameters involved. The 4.5PN reactive solution reads as

h1852
1

8
~3227h163h2!b31

3

2
~123h!r223x2 ,

~A15a!

h285
1

2
~129h121h2!b322~123h!r21

5

2
~123h!r4

14x225x4 , ~A15b!

h385h11
1

8
~32207h175h2!b31

1

2
~21139h!r213x2 ,

~A15c!

h48523~123h!r416x427x7 , ~A15d!

h585h31~18196h118h2!b32~21112h!r2 ,
~A15e!

h685h22
1

4
~242397h195h2!b32

1

2
~70211h!r2

1
1

2
~35165h!r414x215x4 , ~A15f!

h7858x7 , ~A15g!

h885h41
1

8
~23531195h!hb31hr22

1

2
~84125h!r4

12x417x7 , ~A15h!

h985h62
1

4
~2601119h130h2!b32~1415h!r2

2~35120h!r4 , ~A15i!

h108 5h52
1

4
~3061489h148h2!b3 , ~A15j!

h118 5h10, ~A15k!

h128 5h92
1

4
~12187h224h2!b3 , ~A15l!

h138 5h82
1

2
~8149h134h2!b312hr215hr4 ,

~A15m!

h148 5h716h@~123h!b31r4#, ~A15n!

h158 50 , ~A15o!

k1850 , ~A15p!

k2852
1

8
~3227h163h2!b31

3

2
~123h!r223x2 ,

~A15q!

k385k1 , ~A15r!

k485
1

2
~129h121h2!b322~123h!r21

5

2
~123h!r4

14x225x4 , ~A15s!
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k585k3 , ~A15t!

k685k21
3

8
~1281h113h2!b31

1

2
~21133h!r213x2 ,

~A15u!

k78523~123h!r416x427x7 , ~A15v!

k885k42
1

4
~242421h2h2!b32

1

2
~70225h!r2

1
1

2
~35155h!r414x215x4 , ~A15w!

k985k61
1

4
~841525h154h2!b32~2119h!r2 ,

~A15x!

k108 5k5 , ~A15y!

k118 5k10, ~A15z!

k128 5k92
1

2
~1591288h112h2!b3 , ~A15aa!

k138 5k82
1

2
~1441179h140h2!b32~1416h!r2

2~35115h!r4, ~A15bb!

k148 5k72
1

8
~3171105h!hb32

1

2
~8413h!r4

23hr212x417x7, ~A15cc!

k158 58x7 , ~A15dd!

wherehi , ki are given by Eqs.~2.16! of the text and Eqs.
~2.17! remain the same.

4. The 3.5PN and the 4.5PN gauge arbitrariness

Finally it can be shown that all the arbitrary parameters in
the reactive solution may be absorbed in a choice of
‘‘gauge’’ of the form

dx5
8

5
h
m

r
~ f 2.58 1 f 3.58 1 f 4.58 ! ṙx1~g2.58 1g3.58 1g4.58 !rv, ~A16!

where f 2.58 andg2.58 are given by Eqs.~A6! and ~A7!, while
f 3.58 , f 4.58 , g3.58 , andg4.58 have the form

f 3.58 5FP218 v
41P228 v

2
m

r
1P238 v

2ṙ 21P248
m

r
ṙ 21P258 Smr D 21P268 ṙ

4G ,
g3.58 5FQ218 v

41Q228 v
2
m

r
1Q238 v

2ṙ 21Q248
m

r
ṙ 21Q258 Smr D 21Q268 ṙ

4G ,
f 4.58 5FP418 v

61P428
m

r
v41P438 v

4ṙ 21P448 v
2Smr D 21P458 v

2
m

r
ṙ 21P468 v

2ṙ 41P478
m

r
ṙ 41P488 Smr D 2ṙ 21P498 Smr D 31P4108 ṙ 6G ,

g4.58 5FQ418 v
61Q428

m

r
v41Q438 v

4ṙ 21Q448 v
2Smr D 21Q458 v

2
m

r
ṙ 21Q468 v

2ṙ 41Q478
m

r
ṙ 41Q488 Smr D 2ṙ 21Q498 Smr D 31Q4108 ṙ 6G .

~A17!

At 3.5PN we have

P218 52
1

4
~123h!b32

1

4
~2r21r4!, ~A18a!

P228 5P211
1

3
~3210h!b31

1

30
~20r2117r4!, ~A18b!

P238 52
1

4
r4 , ~A18c!

P248 5P231
1

10
~5hb31r4!, ~A18d!

P258 5P221
1

12
~2125h!b32

1

3
~r21r4!, ~A18e!
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P268 50 , ~A18f!

Q218 50 , ~A18g!

Q228 5Q212
1

2
~123h!b32

1

30
~10r217r4!, ~A18h!

Q238 5
1

4
~123h!b31

1

4
~2r21r4!, ~A18i!

Q248 5Q232
1

6
~328h!b32

1

30
~10r2113r4!, ~A18j!

Q258 5Q222
1

12
~2125h!b31

1

3
~r21r4!, ~A18k!

Q268 5
1

4
r4 . ~A18l!

Similarly at 4.5PN we have

P418 52
1

16
~129h121h2!b31

1

4
~123h!r21

1

8
~123h!r42

1

24
~12x216x416x7!, ~A19a!

P428 5P412
1

840
~115524817h1367h2!b32

1

60
~1302318h!r22

1

30
~532117h!r41

1

105
~105x2184x4168x7!,

~A19b!

P438 5
1

8
~123h!r42

1

24
~6x414x7!, ~A19c!

P448 5P421
1

120
~42021917h1967h2!b31

1

30
~552228h!r21

1

120
~2202834h!r42

1

15
~15x2114x4113x7!,

~A19d!

P458 5P432
1

140
h~47148h!b32

4

5
hr22

1

20
~8217h!r41

1

105
~21x4132x7!, ~A19e!

P468 52
1

6
x7 , ~A19f!

P478 5P462
27

56
h~123h!b32

1

4
hr41

1

21
x7 , ~A19g!

P488 5P451
1

600
~30014935h21360h2!b31

1

20
h~12r22r4!2

1

15
~x412x7!, ~A19h!

P498 5P442
1

60
~921121h1309h2!b31

1

15
~1152h!~r21r4!1

2

5
~x21x41x7!, ~A19i!

P4108 50 , ~A19j!

Q418 50 , ~A19k!

Q428 5Q411
1

840
~1052659h2347h2!b31

1

2
~123h!r21

7

20
~123h!r42

1

30
~10x217x4!2

19

105
x7 , ~A19l!

55 6051SECOND POST-NEWTONIAN GRAVITATIONAL . . .



Q438 5
1

16
~129h121h2!b32

1

8
~123h!~2r21r4!1

1

24
~12x216x414x7!, ~A19m!

Q448 5Q422
1

240
~42021604h11434h2!b32

1

60
~802301h!r22

1

30
~402131h!r41

1

15
~10x219x418x7!,

~A19n!

Q458 5Q431
1

140
~1752639h1146h2!b31

1

30
~50299h!r21

1

60
~942183h!r42

1

21
~14x2114x4112x7!, ~A19o!

Q468 52
1

8
~123h!r41

1

24
~6x414x7!, ~A19p!

Q478 5Q461
1

280
h~1212363h!b31

3

10
hr21

1

20
~528h!r42

1

10
x42

26

105
x7 , ~A19q!

Q488 5Q452
1

60
~135264h211h!b32

1

60
~302119h!r22

1

30
~15279h!r41

1

15
~5x216x417x7!, ~A19r!

Q498 5Q441
1

60
~921121h1309h2!b32

1

15
~1152h!~r21r4!2

2

5
~x21x41x7!, ~A19s!

Q4108 5
1

6
x7 . ~A19t!

In the above, thePab andQab are given by Eqs.~4.3! and ~4.6! of the text.
To conclude, the far-zone flux formulas and the balance equations by themselves do not constrain the reactive acceleration

to be a power series inm1 andm2, or equivalently nonlinear in the total massm, as assumed in the paper, following IW. They
are also consistent with the more general form of the reactive acceleration discussed in this appendix.
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