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Comparison of search templates for gravitational waves from binary inspiral
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We compare the performances of the templates defined by three different types of approaches: traditional
post-Newtonian templates~Taylor approximants!, ‘‘resummed’’ post-Newtonian templates assuming the adia-
batic approximation and stopping before the plunge (P approximants!, and further ‘‘resummed’’ post-
Newtonian templates going beyond the adiabatic approximation and incorporating the plunge with its transition
from the inspiral~effective-one-body approximants!. The signal to noise ratio is significantly enhanced~mainly
because of the inclusion of the plunge signal! by using these new effective-one-body templates relative to the
usual post-Newtonian ones for a total binary massm*30M ( , and reaches a maximum aroundm;80M ( .
Independently of the question of the plunge signal, the comparison of the various templates confirms the
usefulness of using resummation methods. The paper also summarizes the key elements of the construction of
various templates and thus can serve as a resource for those involved in writing inspiral search software.
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I. INTRODUCTION

The late stage evolution in a compact binary, when
component stars are under the influence of the strong gr
tational fields of each other and are moving at relativis
speeds, is dictated by the non-linear dynamics of gen
relativity and is very difficult to model. In the early stages
adiabatic inspiral~that is, when the inspiral time scale
much larger than the orbital time scale! it is possible to treat
the problem of motion perturbatively and to expand the g
eral relativistic equations of motion and wave generation f
mulas in a power series inv/c, v being a characteristic ve
locity. ~We henceforth use units such thatG5c51.!
However, the phasing of the gravitational wave~GW! signal
derived from these perturbative results becomes increasi
inadequate as the two bodies approach each other. The
acteristic velocityvp(m)[(pm fp)1/3, corresponding to the
peak of the detector sensitivity to the inspiral signal from
binary of total massm5m11m2 , is numerically equal@for
the initial Laser Interferometric Gravitational Wave Obse
vatory ~LIGO!, for which1 f p5126 Hz] to vp(m)
50.125(m/M ()1/3. For a double neutron star system one
ready has vp(2.8)50.176, while, for an archetypa
(10M ( ,10M () double black hole system one hasvp(20)
50.340, quite close to the velocity corresponding to the
stable orbit~LSO!: vLSO'1/A650.408.

The present theoretical understanding has enabled the
turbative computation~via post-Newtonian expansions! of

1It should be noted that the LIGO noise curve used in this pape
the currently best available and different from that used in Damo
Iyer-Sathyaprakash 1~DIS1! and DIS2.
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the binary orbit and GW phase to an orderv5 beyond the
standard quadrupole formula. We shall use thesev5-accurate
results in this work. At present, we cannot count on t
~hopeful! extension of the post-Newtonian~PN! perturbative
calculations by another two orders, to orderv7, because cur-
rently used PN techniques leave undetermined a physic
crucial parameter entering at thev6 level @1–3#. Moreover,
as emphasized some time ago@4#, the PN series~which is
essentially a Taylor expansion in powers ofv) is a rather
poorly convergent expansion. More precisely, if one cons
ers the PN expansion of the crucial GW flux~see, e.g., Fig. 3
of @5#!, one notices that thev4-accurate andv5-accurate ap-
proximations start significantly deviating, in opposite dire
tions, from the exact~test-mass! result whenv*0.2. As such
relatively high values ofv are typically involved in the cal-
culation of the GW phasing@v;vp(m)>0.18 as soon as
m>2.8M (], one has to worry that search templates bas
on a straightforward use of PN-expanded results might
inadequate for the detection and/or measurement of insp
signals, especially for the more massive systems@m
>10M ( implies vp(m)>0.34] which are likely to be the
first potentially detectable events.

To address this crucial problem, we have been advoca
@5–7# a new philosophy for making the optimal use of exis
ing PN results, namely, to use severalre-summation tech-
niquesto improve the convergence of the PN series, bef
using them to compute the GW phasing. As of now, we ha
proposed and studied three successive stages in the defin
and use of such re-summation techniques. First, we c
structed@5# time-domainsignals, calledP approximants—
starting from the standard PN Taylor representation—wh
possess better convergence properties and capture the
pected analytical behavior~poles and zeroes! of the relevant
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physical quantities quite well. We have shown that these n
signal models, when compared with standard PN signals
both more effectual ~larger overlaps! and more faithful
~smaller biases in the estimation of parameters! representa-
tions of some fiducial ‘‘exact’’ signals. Thoughtime-domain
P approximants are better signal models than the stan
‘‘Taylor’’ approximants, they are computationally expensi
to use in a data analysis exercise that searches for ins
signals using hundreds of thousands of templates, wh
have to be correlated, with arbitrary time lags, with the d
tector output. This data-analysis computational cost is m
reduced@thanks to the existence of efficient fast Four
transform~FFT! algorithms# when one disposes of explic
analytic expressions for the Fourier transform of the te
plates.

Second, we found@6# explicit frequency-domainrepresen-
tations ofP approximants~as well as of standard PN tem
plates! that arecomputationally inexpensiveand are yet as
faithful and effectual as the original time-domain models
This frequency-domain representation incorporates
‘‘edge oscillations’’ due to the~assumed! abrupt shutoff of
the time-domain signal occurring soon after the bina
crosses the last stable orbit. In@6# we emphasized that th
signal to noise~SNR! ratio of the first interferometric detec
tors is large enough for detection only for massive bin
black hole systems of total massm*25M ( . For such sys-
tems the characteristic velocity corresponding to the pea
the detector sensitivity isvp(25).0.37, which is very close
to vLSO.1/A6, the velocity at the last stable orbit. On
therefore, expects that the first detections are most likel
concern massive2 systems (20M (&m&40M () with vp
;vLSO.

It is therefore crucial to push the re-summation techniq
introduced in@5# further so as to be able to describe not on
the GW phasing during the last cycles before LSO cross
but also during the transition3 between inspiral and plunge
and during the plunge itself. Recently, Buonanno a
Damour@7# combined some of the re-summation techniqu
of @5# and@6# with a novel approach to the general relativ
tic dynamics of two-body systems@8# to devise an improved
type of re-summation approach to the GW phasing of c
lescing binaries, able to describe in more detail the transi
between inspiral and plunge. This ‘‘effective one-body’’ a
proach is the first one that goes beyond the ‘‘adiabatic
proximation,’’ used both in standard~non-resummed! PN ap-
proximants and inP approximants.

The data analysis of inspiral, merger and ring-down w
pioneered by Flanagan and Hughes@9#. They treated the
problem of inspiral rather accurately but the merger a

2Note that, even for less massive systems, the necessity to ca
more than 96.5% of the SNR, corresponding to a loss in the num
of events by no more than 10%, implies that one must accura
control the phasing of the waveform at frequencies significan
higher thanf p , corresponding to velocities significantly higher tha
vp(m).

3TheP approximants model this transition by a sharp cutoff in t
signal.
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plunge were treated by assuming that about 10% of the
mass energy would be emitted during merger. This qu
optimistic estimate was based on a crude model of the c
lescence of maximally spinning black holes, and was a
trarily extended to all cases. A similar back-of-the-envelo
consideration of the ring-down amplitude let them to op
mistically assume that about 3% of the rest mass ene
would be emitted during ring-down.

In this paper we discuss only non-spinning4 binaries and
we make noad hocassumption about the total energy rad
ated during the merger phase. The effective one-body~EOB!
formalism does not treat the inspiral and plunge phases s
rately. Indeed, in this formalism the plunge is seen as a n
ral continuation of the inspiral phase contributing~for equal
masses! about 0.6 orbital cycles~or 1.2 GW cycles!, with a
total energy associated with the plunge around 0.7%.
energy emitted during the following~matched! ring-down
phase is also found to be around 0.7%@11#. These energy
losses are much smaller than the Flanagan-Hughes ‘‘gu
timates’’ of 10% and 3%, respectively. Consequently, it
unlikely that we will be able to detect the plunge phase of
EOB waveforms separately, irrespective of the mass of
system. This is in sharp contrast to the Flanagan-Hug
claim that the SNR contribution of the sole merger phase
massive black holes of total mass in the range 30–1000M (

will dominate over the inspiral phase contribution. Note a
that ~for a source at 100 Mpc! the ~merger-dominated! SNR
of @9# reaches a maximum of 40 aroundm;200M ( , while
our ~inspiral-dominated! SNR reaches a maximum of
aroundm;80M ( . @It seems that most of the difference b
tween Fig. 4 of Flanagan and Hughes and our Fig. 1 bel
e.g. a factor of 3~between their 25 and our 8! between the
SNR for a 80M ( source at 100 Mpc, comes from the hug
difference in energy loss during merger.#

In this paper we make a prediction that the merger ph
will enhance the inspiral phase SNR by about 10% form
;30M ( and by about 300% form;80M ( . Our best can-
didate sources are stellar mass black hole binaries of t
mass in the range 30–90M ( . The inspiral phase is the dom
nant signal for most of this range, merger being important
only the heavier systems. We also conclude that the ri
down phase is in itself not a significant contribution form
&200M ( .

There is one word of caution regarding the plunge sign
Even though the plunge lasts for only about half an orb
cycle, its spectral content spreads over a large freque
range. Consequently, the number of frequency bins o
which the signal spreads out is quite large and it is not
visable to use a non-optimal method to try to detect
plunge part in isolation. In fact, we believe that one of t
robust predictions of the EOB approach~at least in the case
of slowly spinning holes! is that the plunge signal is a
smooth continuation of the inspiral one and that one sho
use templates that are phase coherent all over the insp

ure
er
ly
y

4In view of current black hole binary formation mechanisms@10#,
we think it likely that most of them will include only slowly spin
ning holes.
3-2
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COMPARISON OF SEARCH TEMPLATES FOR . . . PHYSICAL REVIEW D 63 044023
plus-plunge phase. We are aware of the approximate na
of the EOB results~especially beyond the LSO! and do not
claim that the EOB waveform is the last word on the pro
lem, but our position is the following:~i! in absence of com-
paratively accurate alternative results, it is important to stu
in detail the predictions coming from the EOB waveform
and ~ii ! we shall finally recommend to use a bank of filte
which cover a large range of possibilities, with spec
weight being given to the best-tested ‘‘resummed’’ te
plates.

We also hope that our work will give an additional ince
tive to numerical relativity groups toward computing wav
forms which are at least as accurate~and physically com-
plete! as the EOB one. In particular, let us recall that@7# has
proposed a new approach to the numerical computation
binary black hole coalescences: namely, to start the num
cal evolution just after LSO crossing, i.e. at a stage wh
one can still trust theresummedPN estimate of the dynamic
of two black holes, but where there is only 0.6 orbit
evolve before coalescence. To this aim Ref.@7# has provided
explicit results for the initial dynamical data@positions and
momenta in Arnowitt-Deser-Misner~ADM ! coordinates# of
this problem. However, apart from stimulating furth
thoughts on the problem@12#, we are not aware of the exis
tence of numerical simulations implementing the proposa
Ref. @7#, nor are we aware of other numerical work leadi
to explicit ~non-adiabatic! waveforms for coalescing binarie
which could be compared to the EOB one.

Data analysis groups associated with various grou
based interferometers are now finalizing the analysis s
ware that will be used for GW searches in data that
expected to become available in a few years time. It is
sential that these groups be aware of recent theoretica
velopments and of their respective merits so as to take
best advantage of the current knowledge in writing their s
ware. With this view in mind the aim of this paper is two
fold: First, we wish to compare the performances of the te
plates defined by the three different types of approac
mentioned above~traditional ‘‘non-resummed’’ PN tem-
plates, ‘‘resummed’’ PN templates assuming the adiab
approximation and stopping before the plunge, and furt
‘‘resummed’’ PN templates going beyond the adiabatic
proximation and incorporating the plunge with its transiti
from the inspiral.! Second, in view of the fact that the orig
nal publications@5,6# are quite complex and technical, w
wish to summarize in a more accessible manner the key
ements of the techniques introduced there~and re-used, with
further inputs, in@7#.! The present work should serve as
easily accessible resource for data analysis groups. Rea
interested in a more detailed understanding of our gen
approach are referred to@5–8# for motivation, formalism,
logical reasoning, exhaustive tests and further discussio
the new signal models.

II. TIME-DOMAIN PHASING FORMULAS
IN THE ADIABATIC APPROXIMATION

In searching for GWs from an inspiraling compact bina
we are faced with the following data analysis problem:
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the one hand, we have some~unknown! exact gravitational
waveformhX(t;lk) wherelk , k51, . . . ,nl , are the param-
eters of the signal~e.g., the massesm1 andm2 of the mem-
bers of the emitting binary!. On the other hand, we hav
theoretical calculations of the motion of@13,1–3# and gravi-
tational radiation from@14,15# binary systems consisting o
neutron stars~NSs! or black holes~BHs! giving the PN ex-
pansions of an energy functionE(x[v2), which is related to
the total relativistic energyEtot via Etot5(m11m2)(11E),
and a GW luminosity~or ‘‘flux’’ ! function F(v). Here, the
dimensionless argumentv[x1/2 is an invariantly defined
‘‘velocity’’ related to the instantaneous GW frequencyF
(5twice theorbital frequency! by v[(pmF)1/3. Given PN
expansions of the motion of and gravitational radiation fro
a binary system, one needs to compute the ‘‘phasing for-
mula,’’ i.e. an accurate mathematical model for the evoluti
of the GW phase5 fGW5p@ t;l i #, involving the set of param-
eters$l i% carrying information about the emitting binary sy
tem. In the adiabatic approximation the phasing formula
easily derived from the energy and flux functions. Inde
the standard energy-balance equationdEtot /dt52F gives
the following parametric representation of the phas
formula:

t~v !5t ref1mE
v

vref
dv

E8~v !

F~v !
,

~2.1!

f~v !5f ref12E
v

vref
dvv3

E8~v !

F~v !
,

wheret ref andf ref are integration constants andv ref an arbi-
trary reference velocity.@It is sometimes convenient, thoug
by no means necessary, to take asv ref the velocityv at the
last stable orbit~see below!.# From the viewpoint of compu-
tational purposes it is more efficient to work with the follow
ing pair of coupled, non-linear, ordinary differential equ
tions ~ODEs!, which are equivalent to the above paramet
formulas:

df

dt
2

2v3

m
50,

dv
dt

1
F~v !

mE8~v !
50. ~2.2!

We shall see later that, for massive systems, the adiab
approximation fails and one must replace the two ODEs b
more complicated ODE system. We now turn to a discuss
of what is known about the two functionsE(v) and F(v)
entering the phasing formula and how that knowledge can
improved.

A. T approximants

We denote byETn
and FTn

the nth-order6 ‘‘Taylor’’ ap-
proximants~as defined by the PN expansion! of the energy
and flux functions:

5We work within the ‘‘restricted’’ waveform approximation
which keeps only the leading harmonic in the GW signal.

6The labeln always refers to an approximant accurate up tovn

5x(n/2) included.
3-3
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ET2n
~x![EN~x!(

k50

n

Êk~h!xk,

FTn
~x![FN~x!F (

k50

n

F̂k~h!vk1 (
k56

n

L̂k~h!log~v/v0!vkG ,

~2.3!

where

EN~x!52
1

2
hx, FN~x!5

32

5
h2x5. ~2.4!

Here the subscriptN denotes the ‘‘Newtonian value,’’h
[m1m2 /m2 is the symmetric mass ratio, andv0 is a fiducial
constant to be chosen below. In the test mass limit, i.eh
→0, E(x) is known exactly, from which the Taylor expan
sion ofETn

(v,0) in Eq.~2.3!, can be computed to all order

In the h→0 limit, the exact flux is known numerically
@16,17# and the Taylor expansion of flux in Eq.~2.3! is
known @17–19# up to ordern511. On the other hand, in th
physically relevant case whereh is finite, the above Taylor
approximants are known@14,15# only up to five-halves PN
order, i.e.n55. Recently the energy function has been co
puted up to 3PN order, i.e.,n56, though with the presenc
of an unknown parameter@2,3#. All the completely known
coefficients in the expansions are enlisted in Table I.

The problem is to construct a sequence of approxim
waveformshn

A(t;lk), starting from the PN expansions o
E(v) andF(v). In formal terms, any such construction d
fines amapfrom the set of the Taylor coefficients ofE andF

TABLE I. Taylor coefficients of the energy functionsETn
(x)

andeTn
(x) and the corresponding location of the LSO and pole.

there are no terms of orderv2k11 we have exceptionally chosen~for
this table only! the expansion parameter to bex[v2 rather thanv.
In all cases thek50 coefficient is equal to 1, the last stable orbit
defined only fork>1 in the case ofT approximants and fork>2 in
the case ofP approximants andN denotes the ‘‘Newtonian value.’

k N 1 2

Ek 2
hv2

2
2

91h

12
2

81257h1h2

24

ek 2x(52v2) 2
31h

3
2

36235h

12

ePk
2x(52v2) c15

31h

3
c252

144281h14h2

36112h

xTk

LSO —
6

91h

2E11~E1
223E2!

1/2

3E2

xPk

LSO — —
211~2c1 /c2!

1/2

c11c2

xPk

pole — —
4~31h!

36235h
04402
-

te

into the ~functional! space of waveforms. Up to now, th
literature has considered~one of! the map~s!, sayT,

~ETn
,FTn

!→
T

hn
T~ t,lk!, ~2.5!

obtained by inserting the successive Taylor approxima
into the phasing formula@4,16#. For brevity, we often refer to
these ‘‘Taylor’’ approximants as ‘‘T approximants.’’ It must
also be emphasized that even within this Taylor family
templates, there are at least three ways of proceeding fur
leading to the following three inequivalent constructs:

~t1! One can retain the rational polynomialFTn
/ETn

as it
appears in Eq.~2.2! and integrate the two ODEs numericall
We shall denote the phasing formula so obtained asfTn

(1)(t):

df (1)

dt
2

2v3

m
50,

dv
dt

1
FTn

~v !

mETn
8 ~v !

50. ~2.6!

~t2! One can re-expand the rational functionFTn
/ETn

ap-

pearing in the phasing formula and truncate it at ordervn, in
which case the integrals in Eq.~2.1! can be worked out ana
lytically, to obtain aparametricrepresentation of the phasin
formula in terms of polynomial expressions in the auxilia
variablev:

fTn

(2)~v!5fref
(2)1fN

v ~v !(
k50

n

f̂k
vvk,

tTn

(2)~v !5t ref
(2)1tN

v ~v !(
k50

n

t̂ k
vvk, ~2.7!

where a superscript on the coefficients~e.g. f1
v) indicates

that v is the expansion parameter~as is explicit from Table
II, the coefficient offk

v include in some cases, a logv de-
pendence!.

~t3!Finally, the second of the polynomials in Eq.~2.7! can
be inverted and the resulting polynomial forv in terms oft
can be substituted inf (2)(v) to arrive at an explicit time-
domain phasing formula

fTn

(3)~ t !5f ref
(3)1fN

t (
k50

n

f̂k
t uk, FTn

(3)~ t !5FN
t (

k50

n

F̂k
t uk, ~2.8!

where u5@h(t ref2t)/(5m)#21/8 and F[df/2pdt
5v3/(pm) is the instantaneous GW frequency. The coe
cients in these expansions are all listed in Table II.

B. P approximants

Before defining new ‘‘resummed’’ energy and flux fun
tions with improved performances we digress for a brief
minder of Pade´ re-summation, which is a standard mat
ematical technique used to accelerate the convergenc
poorly converging power series. LetSn(v)5a01a1v1•••

1anvn be a truncated Taylor series. A Pade´ approximant of
the function whose Taylor approximant to ordervn is Sn is

s

3-4
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TABLE II. Taylor coefficients of the flux, phase, time and frequency.N denotes the ‘‘Newtonian value’’ andu5@h(tLSO

2t)/(5m)#21/8. In all cases thek50 coefficient is 1 and thek51 coefficient is zero. In certain cases the 2.5 PN term involves av5log v or
u5log u term rather than av5 or u5 term. In those cases we conventionally include the logv dependence in the listed coefficient. Chi
parameterstk ,k>1, are related to the expansion parameterstk

v andfk
v via tk5(8fk

v25tk
v)/3. We have given the simplified expressions f

these in all cases, exceptk55 where no simplification occurs due to the presence of the logarithm term inf5
v .

k N 2 3 4 5

Fk
32h2v10

5
2

1247
336

2
35h
12

4p 2
44711
9072

1
9271h

504
1

65h2

18
2S8191

672
1

535h

24 Dp

tk
v

2
5m

256hv8

743
252

1
11h
3

2
32p

5

3058673

508032
1

5429h

504
1

617h2

72 2(
7729
252

1h)p

fk
v

2
1

16hv5

3715
1008

1
55h
12

210p 15293365
1016064

1
27145h

1008
1

3085h2

144
S38645

672
1

15h

8 Dp lnS v
vlso

D
fk

t
2

2

hu5

3715
8064

1
55h
96

2
3p

4
9275495

14450688
1

284875h
258048

1
1855h2

2048
S38645

21504
1

15h

256Dp lnS u

ulso
D

Fk
t u3

8pm

743
2688

1
11h
32

2
3p

10
1855099

14450688
1

56975h
258048

1
371h2

2048
2S 7729

21504
1hDp

tk
3

128h

5

9S743

84 D111h) 216p 2f4
v 1

3
(8f5

v25t5
v)
se

t
e

ar

e

-

-

ns
s,
s:
p-

rgy-

p-

ayN
defined by two integersm,k such thatm1k5n. If Tn@•••#
denotes the operation of expanding a function in Taylor
ries and truncating it to accuracyvn ~included!, thePk

m Padé
approximant ofSn is defined by

Pk
m~v !5

Nm~v !

Dk~v !
; Tn@Pm

k ~v !#[Sn~v !, ~2.9!

where Nm and Dk are polynomialsin v of order m and k
respectively. If one assumes thatDk(v) is normalized so tha
Dk(0)51, i.e. Dk(v)511q1v1•••, one shows that Pad´
approximants are uniquely defined by Eq.~2.9!. In many
cases the most useful7 Padéapproximants are the ones ne
the ‘‘diagonal,’’ m5k, i.e. Pm

m if n52m is even andPm
m11

or Pm11
m if n52m11 is odd. In this work we shall use th

diagonal (Pm
m) and the ‘‘sub-diagonal’’ (Pm11

m ) approxi-
mants which can be conveniently8 written in a continued
fraction form @20#. For example, givenS2(v)5a01a1v
1a2v2 one looks for

P1
1~v !5

c0

11
c1v

11c2v

5
c0~11c2v !

11~c11c2!v
. ~2.10!

The continued fraction Pade´ coefficients of a series contain
ing six terms, i.e.S5(v), are given by

7The rare theorems dealing with the Pade´ technique concern the
convergence of ‘‘near-diagonal’’ Pade´ approximants, i.e.m→`
with um2ku fixed.

8A convenience of this form is that thenth continued-fraction
coefficientcn ~see below! depends only on the knowledge of the P
coefficients of order<n.
04402
- c05a0 , c152
a1

a0
, c252

a2

a1
1

a1

a0
,

c35
a0~a1a32a2

2!

a1~a1
22a2a0!

,

c452
c0c1~c21c1!31c0c1c2c3~c312c212c1!2a4

c0c1c2c3
,

c552
@~c21c1!21c2c3#2

c2c3c4

~c41c31c21c1!2

c4

2
a5

c0c1c2c3c4
. ~2.11!

In @5# and @6# we introduced several techniques for ‘‘re
summing’’ the Taylor expansions~in powers ofv) of the
energy and flux functions. Starting from the PN expansio
of E andF, in DIS1 we proposed a new class of waveform
called P approximants, based on two essential ingredient
~i! the introduction, on theoretical grounds, of two new, su
posedly more basic and hopefully better behaved, ene
type and flux-type functions, saye(v) and f (v), and~ii ! the
systematic use of Pade´ approximants~instead of straightfor-
ward Taylor expansions! when constructing successive a
proximants of the intermediate functionse(v), f (v). Sche-
matically, our procedure is based on the following map, s
‘‘ P’’:
3-5
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~ETn
,FTn

!→~eTn
, f Tn

!→~ePn
, f Pn

!

→~E@ePn
#,F@ePn

, f Pn
# !→hn

P~ t,lk!. ~2.12!

Our new energy functione(x), wherex[v2, is constructed
out of the total relativistic energyEtot(x) using

e~x![S Etot
2 2m1

22m2
2

2m1m2
D 2

21. ~2.13!

The functionE(x) entering the phasing formulas is the tot
energy per unit mass after subtracting out the rest mass
ergy, E(x)5@Etot(x)2m#/m, and is given in terms ofe(x)
by

E~x!5$112h@A11e~x!21#%1/221,

dE

dx
5

he8~x!

2@11E~x!#A11e~x!
. ~2.14!

Note that the quantityE8(v), needed in the phasing formula
is related todE(x)/dx via E8(v)52vdE(x)/dx. In the test-
mass limite(x) anddE(x)/dx are known exactly:

eh50~x!52x
124x

123x
,

Eh50~x!5hS 122x

A123x
21D ,

dEh50

dx
52

h

2

~126x!

~123x!3/2
. ~2.15!

The rationale for usinge(x) as the basic quantity rather tha
Etot(x) can be found in@5#; here we note the following two
points: ~1! In the test mass casee(x) is meromorphic in the
complexx plane, with a simple pole singularity, while th
functionE(x) is non-meromorphic and exhibits a branch c
~2! Second, in the test mass case, the Pade´ approximant of
eT2n

(x), for n>2, yields the known exact expression inclu
ing the location of the LSO and the pole. Therefore,
function e(x) is more suitable in analyzing the analyt
structure than isE(x). In the comparable mass case, und
the assumption of structural stability between the caseh
→0 and the case of finiteh, one can expect the exact fun
tion e(x) to admit a simple pole singularity on the real ax
}(x2xpole)

21. We do not know the location of this singu
larity, but Pade´ approximants are excellent tools for givin
accurate representations of functions having such pole si
larities @20#.

Our proposal is the following: Given some usual Tay
approximant to the normal energy function,ET2n

5

2 1
2 hx(11E1x1E2x21•••1Enxn), one first computes the

corresponding Taylor approximant for thee function, say

eT2n
~x!52x(

k50

n

ekx
k. ~2.16!
04402
n-

.

e

r

,

u-

~Remember that we consistently label the successive
proximants by the order in velocity; e.g. a 2PN-accurate
object has the label 4.! Then, one defines the Pade´ approxi-
mant ofeT2n

(x),9

eP2n
~x![2xPm1e

m F (
k50

n

ekx
kG ~2.17!

wheree50 or 1 depending on whethern[2m1e is even or
odd. We shall call the continued fraction Pade´ coefficients of
eP2n

as c1 ,c2 , . . . ~note thatc0[1). They are given in

terms ofek in Table I. Given a continued fraction approx
mant eP2n

(x) of the truncated Taylor serieseT2n
of the en-

ergy function e(x) the corresponding EP2n
(x) and

dEP2n
(x)/dx functions are obtained using formulas in E

~2.14! by replacinge(x) on the right hand side witheP2n
(x).

Apart from using it to improve the convergence of the P
series, Ref.@5# has also proposed to use the Pade´-resummed
function eP2n

(x) to determine the location of the LSO, th
Padéestimates of the LSO being defined by considering
minima of eP2n

(x). In contrast, in the Taylor case one mus

for consistency, use the minima ofETn
(v) to define the lo-

cations of the LSO. We have confirmed that in the test m
case this Pade´-based method yields the exact result at ord
v4 and beyond while the corresponding Taylor-based met
@considering the minima ofETn

(v)] gives unacceptably high

estimates ofvLSO, i.e. of the GW frequency at the LSO. I
the finiteh case, the Pade´-resummed predictions are in goo
qualitative~and reasonable quantitative! agreement with the
more recent predictions based on the ‘‘effective-one-bod
approach@8#. The location of the LSOs for the various ap
proximations and the location of the light ring@i.e. the pole
singularity ineP2n

(x)] are also tabulated in Table I.
Having defined a new energy function, we move on

introduce a new flux function. The aim is to define an an
lytic continuation of the flux function to control its analyti
structure as also to handle the logarithmic terms that app
in the flux function in Eq.~2.3!. Factoring out the logarith-
mic terms is what allows us to use standard Pade´ techniques
effectively in this problem.

It has been pointed out@19# that the flux function in the
test mass caseF(v;h50) has a simple pole at the light rin
v251/3. It has been argued that the origin of this pole
quite general@cf. @5#, discussion following Eq.~4.3!# and that
even in the case of comparable masses we should expe
have a pole singularity inF. However, as already pointe
out, the light ring orbit in thehÞ0 case corresponds to
simple polexpole(h) in the new energy functione(x;h). Let
us define the corresponding~invariant! ‘‘velocity’’ vpole(h)
[Axpole(h). This motivates the introduction of the followin
‘‘factored’’ flux function, f̂ (v;h):

9More precisely,eP2n
(x) is 2x times the Pade´ approximant of

2x21eT2n
(x).
3-6
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f̂ ~v;h![~12v/vpole!F̂~v;h!, ~2.18!

where F̂(v)[F(v)/FN(v)55F(v)/(32h2v10) is the
Newton-normalized flux. Note that multiplying by
2v/vpole rather than 12(v/vpole)

2 has the advantage o
regularizing the structure of the Taylor series off̂ (v) in in-
troducing a term linear inv, which is absent in the flux
function in Eq.~2.3! ~cf. Table II!. Three further inputs will
allow us to construct better converging approximants
f̂ (v). First, it is clear~if we think of v as having the dimen
sion of a velocity! that one should normalize the velocityv
entering the logarithms in the flux function in Eq.~2.3! to
some relevant velocity scalev0. In the absence of furthe
information the choicev05vLSO(h) seems justified~the
other basic choicev05vpole is numerically less desirable a
v will never exceedvLSO and we wish to minimize the effec
of the logarithmic terms!. A second idea, to reduce the pro
lem to a series amenable to Pade´ resummation, is to factorize
the logarithms. This is accomplished by writing thef̂ func-
tion in the form

f̂ Tn
~v;h!5S 11 (

k56

n

l̂ kv
kln

v
vLSO

D S (
k50

n

f̂ kv
kD , ~2.19!

where coefficientsf̂ k are f̂ 051, f̂ k115F̂k112F̂k /vpole and
l̂ k are constants determined from the coefficients ofF̂k by
relations~analogous to! Eq. ~4.9! of DIS1.10 Finally, we de-
fine Pade´ approximants to the factored flux functionf̂ (v) as

f̂ Pn
~v;h![S 11 (

k56

n

l̂ kv
kln

v

vLSO
Pn ~h!

D Pm1e
m S (

k50

n

f̂ kv
kD ,

~2.20!

wherevLSO
Pn (h) denotes the LSO velocity ([AxLSO) for the

vn-accurate Pade´ approximant ofe(x), and wherePm1e
m de-

notes as before a diagonal or sub-diagonal Pade´ approximant
with n[2m1e, e50 or 1. The corresponding approxima
of the flux F̂(v) is then defined as

F̂Pn
~v;h![S 12

v

vpole
Pn ~h!

D 21

f̂ Pn
~v;h!, ~2.21!

where vpole
Pn (h) denotes the pole velocity defined by th

vn-Padéapproximant ofe(x). In the test mass case the exa
locations of the pole and the LSO arexpole51/3 andxLSO
51/6, respectively~cf. Table I!. We shall denote the contin
ued fraction Pade´ coefficients off̂ Pn

(v) by dk . They can be

found in terms off̂ k using Eqs.~2.11!. At present, the mos

10The variablesl̂ k and f̂ k used here are equal to the variablesl k

and f k used in DIS1. They are ‘‘careted’’ here as a reminder t
they represent coefficients of Newtonian-normalized quantities.
coefficientsAk and Bk appearing in the definition ofl k are com-
puted in Ref.@17#.
04402
o

t

accurate estimate of the flux would beF̂P11
, defined by using

the knownh-dependent coefficientsf̂ k for k<5 and the test-
mass values off̂ k and l̂ k for k>6.

III. FREQUENCY-DOMAIN PHASING FORMULAS
IN THE ADIABATIC APPROXIMATION

The time-domainP-approximant waveforms discusse
above are computationally intensive to use in a full-sc
data analysis. Recently, in DIS2 we have construc
frequency-domain representations of theP approximants
which are 10–50 times faster to compute than their tim
domain analogues but are yet as accurate. This increase
usefulness ofP approximants in data analysis.

The Fourier representations are based primarily on
newly derived improved version of the stationary phase
proximation appropriate to time-truncated signals.P approxi-
mants cannot be modeled using the standard stationary p
approximation over the entire frequency domain. Inde
close to the last stable orbit, where the inspiral phase ter
nates, one requires a modification of the stationary ph
approximation. In simple terms, Ref.@6# found a way of
taking into account the effect of an assumed abrupt term
tion of the waveform near the last stable circular orbit
introducing simple modifications to the usual stationa
phase approximation. We present only the final results h
the interested reader is referred to DIS2 for details. Note
the results summarized below are quite general and ca
applied to a generic chirp signal which shuts off abrup
~i.e., on a time scale&F21).

We begin with a discussion of the usual stationary ph
approximation for chirp signals. Consider a signal of t
form

h~ t !52a~ t !cosf~ t !5a~ t !@e2 if(t)1eif(t)#, ~3.1!

where f(t) is the implicit solution of one of the phasin
formulas in Eq.~2.6!, Eq. ~2.7! or Eq. ~2.8! for some choice
of functionsE8 andF @21#.

The quantity 2pF(t)5df(t)/dt defines the instanta
neous GW frequencyF(t), and is assumed to be continu
ously increasing.@We assumeF(t).0.# Now the Fourier
transformh̃( f ) of h(t) is defined as

h̃~ f ![E
2`

`

dte2p i f th~ t !

5E
2`

`

dta~ t !@e2p i f t 2f(t)1e2p i f t 1f(t)#. ~3.2!

The above transform can be computed in the stationary ph
approximation~SPA!. For positive frequencies only the firs
term on the right contributes and yields the followingusual
SPA:

h̃uspa~ f !5
a~ t f !

AḞ~ t f !
ei [c f (t f )2p/4], c f~ t ![2p f t2f~ t !,

~3.3!

t
e
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and t f is the saddle point defined by solving fort,
dc f(t)/dt50, i.e. the timet f when the GW frequencyF(t)
becomes equal to the Fourier variablef. In the ~adiabatic!
approximation where Eqs.~2.1! hold, the value oft f is given
by the following integral:

t f5t ref1mE
v f

vrefE8~v !

F~v !
dv, ~3.4!

wherev f[(pm f)1/3. Using t f from the above equation an
f(t f) in Eq. ~2.1! one finds that

c f~ t f !52p f t ref2f ref12E
v f

vref
~v f

32v3!
E8~v !

F~v !
dv.

~3.5!

The big computational advantage of Eq.~3.5! @with respect
to its time-domain counterpart, Eq.~2.1!# is that, in the fre-
quency domain, there are no equations to solve iterativ
the Fourier amplitudes are given as explicit functions of f
quency.

In the Fourier domain too there are many inequival
ways in which the phasingc f can be worked out. Here w
mention only the most popular:

~f1! Substitute~without doing any re-expansion or re
summation! for the energy and flux functions their PN e
pansions or theP approximants of energy and flux function
and solve the integral in Eq.~3.5! numerically to obtain theT
approximant SPA orP approximant SPA, respectively.

~f2! Use PN expansions of energy and flux but re-expa
the ratioE8(v)/F(v) in Eq. ~3.5! in which case the integra
can be solved explicitly. This leads to the following explic
Taylor-like, Fourier domain phasing formula:

c f~ t f !52p f t ref2f ref1tN(
k50

5

t̂k~pm f!(k25)/3 ~3.6!

wheret̂k are the chirp parameters listed in Table II. Equati
~3.6! is one of the standardly used frequency-domain phas
formulas. Therefore, we shall use that as one of the mo
in our comparison of different inspiral model waveform
We refer to it as ‘‘type-f2’’ frequency-domain phasing.

Just as in the time-domain, the frequency-domain phas
is most efficiently computed by a pair of coupled, non-line
ODEs:

dc

d f
22pt50,

dt

d f
1

pm2

3v2

E8~ f !

F ~ f !
50, ~3.7!

rather than by numerically computing the integral in Eq
~3.5!.

Next we correct the performance of the usual SPA
includingedge correctionsarising as a consequence of mo
eling the time-domain signal as being abruptly terminated
a time t5tmax ~time-truncated chirp! when the GW fre-
quency reachesF5Fmax. In practice, we expect thatFmax
will be of order the GW frequency at the LSO. However, w
prefer to leave unspecified the exact value ofFmax. The idea
04402
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is to useFmax as a free model parameter, to be varied so a
maximize the overlap ~see Sec. V! between the
tmax-truncated template and the real signal. Such tim
truncated signals can be represented as

h~ t !52a~ t !cosf~ t !u~ tmax2t !, ~3.8!

whereu denotes the Heaviside step function, i.e.u(x)50 if
x,0 andu(x)51 whenx>0. The effect of this time win-
dowing has been modeled in DIS2 and the result is that
Fourier transform of such a time-truncated signal can be
curately represented in the two regionsf <Fmax and f
>Fmax, by

f <Fmax:h̃,
ispa~ f !5C„z,~ f !…

a~ t f !

AḞ~ t f !
ei [c f (t f )2p/4],

f >Fmax:h̃.
ispa~ f !5C„z.~ f !…

a~ tmax!

AḞ~ tmax!

3expF ic f~ tmax!1 i
p~ f 2Fmax!

2

Ḟ~ tmax!
2 ip/4G , ~3.9!

where the label ‘‘ispa’’ stands for improved SPA,C is essen-
tially the complementary error function, 2C(z)
[erfc(eip/4z), andz is computed using

f ,Fmax:z,[2@c f~ t f !2c f~ tmax!#
1/2,

f >Fmax:z.~ f !5
Ap~ f 2Fmax!

AḞ~ tmax!
. ~3.10!

The error function needed in calculatingC( f ) may be nu-
merically computed using the NAG@22# library S15DDF.

Note the denominatorAḞ(tmax) entering Eqs.~3.9! and
~3.10!. We define a generic time-truncated signal as a ch
for which this denominator is finite~neither infinite nor
zero!. @These signals were called ‘‘Newtonian-like’’ in Re
@6#. We do not keep this name here to emphasize that
results, Eqs.~3.9! and ~3.10!, apply also to relativistic mod-
els, as long asḞ(tmax) is finite.#

The exceptional~non-generic! case whereAḞ(tmax) be-
comes infinite arises if one tries to keep using the sim
adiabatic phasing approximation up to the last stable o
defined by the corresponding~approximate! energy function
E(v). This exceptional case can also be dealt with at
price of a more complicated modification of the usual s
tionary phase result~see Ref.@6# for details!. We do not enter
into details here because the recent work@7# on the transition
between the adiabatic inspiral and the plunge has shown
the adiabatic approximation breaks down just before
LSO, and thatḞ(t) never becomes infinite.
3-8
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IV. TIME-DOMAIN PHASING FORMULA
BEYOND THE ADIABATIC APPROXIMATION

In the above, we restricted ourselves to the stand
‘‘adiabatic approximation,’’ where one estimates the phas
by combining the energy-balance equationdEtot /dt52F
with some resummed estimates for the energy and flux
functions of the instantaneous circular orbital frequency. R
cently, Buonnano and Damour@7# have introduced a new
approach to GWs from coalescing binaries which is
longer limited to the adiabatic approximation, and which
expected to describe rather accurately the transition betw
the inspiral and the plunge, and to give also a first estimat
the following plunge signal. The approach of@7# is essen-
tially, like @5,6#, a re-summation technique which consists
two main ingredients:~i! the ‘‘conservative’’~damping-free!
part of the dynamics~effectively equivalent to the specifica
tion of theE(v) in the previous approaches! is resummed by
a new technique which replaces the two-body dynamics
an effective one-body dynamics@7# and ~ii ! the ‘‘damping’’
part of the dynamics@equivalent to the specification of th
F(v)] is constructed by borrowing the re-summation tec
nique introduced in@5#. In practical terms, the time-domai
waveform is obtained as the following function of the r
duced timet̂5t/m:

h~ t̂ !5C vv
2 ~ t̂ !cos@fGW~ t̂ !#, vv[S dw

d t̂
D 1/3

, fGW[2w.

~4.1!

The orbital phasew( t̂ ) entering Eq.~4.1! is given by inte-
grating a system of ODEs:

dr

d t̂
5

]Ĥ

]pr

~r ,pr ,pw!, ~4.2a!

dw

d t̂
5v̂[

]Ĥ

]pw

~r ,pr ,pw!, ~4.2b!

dpr

d t̂
1

]Ĥ

]r
~r ,pr ,pw!50, ~4.2c!

dpw

d t̂
5F̂w„v̂~r ,pr ,pw!…. ~4.2d!

The reduced HamiltonianĤ ~of the associated one-bod
problem! is given, at the 2PN approximation, by

Ĥ~r ,pr ,pw!

5
1

h
A112h FAA~r !S 11

pr
2

B~r !
1

pw
2

r 2 D 21G ,

~4.3a!
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where

A~r ![12
2

r
1

2h

r 3
, B~r ![

1

A~r !
S 12

6h

r 2 D .

~4.3b!

The 3PN version ofĤ has been recently obtained@2#. The
damping forceFw is approximated by

F̂w52
1

hvv
3
FPn

~vv!, ~4.4!

whereFPn
(vv)5 32

5 h2vv
10F̂Pn

(vv) is the flux function used
in P approximants discussed above.

The system, Eq.~4.2!, allows one to describe the smoo
transition which takes place between the inspiral and
plunge@while the system~2.2! becomes spuriously singula
at the LSO, whereE8(vLSO)50]. Reference@7# advocated
to continue using Eqs.~4.2! after the transition, to describ
the waveform emitted during the plunge and to match aro
the ‘‘light ring’’ to a ‘‘merger’’ waveform, described, in the
first approximation, by the ringing of the least-damped qua
normal mode of a Kerr black hole@see Eq.~6.2! of @7##. This
technique is the most complete which is available at pres
It includes~in the best available approximation and for no
spinning black holes! most of the correct physics of the prob
lem, and leads to a specific prediction for the complete wa
form ~inspiral 1 plunge 1 merger! emitted by coalescing
binaries. Because of its completeness, we shall use it as
‘‘fiducial exact’’ waveform in our comparison between di
ferent search templates.

The initial data needed in computing this effective on
body waveform are as follows: In gravitational wave da
analysis we are normally given an initial frequencyf 0(v̂0
[pm f0) corresponding to the lower cutoff of a detector
sensitivity window, at which to begin the waveform. Th
initial phase of the signal will not be known in advance b
in order to gauge the optimal performance of our appro
mate templates we maximize the overlap~see Sec. V! over
the initial phases of both the fiducial exact signal~i.e., the
effective-one-body waveform! and the approximate tem
plate. The general analytical result of this maximization w
discussed in Appendix B of DIS1. In the terminology of th
appendix, these fullyphase-maximizedoverlaps were called
thebestoverlaps@they are given by Eq.~B.11! of DIS1#. As
discussed in Appendix B of DIS1, there are two distinct me
sures of the closeness of two signals: thebestoverlap~maxi-
mized over the phases of both the template and the e
signal! and theminimaxoverlap ~maximized over the tem-
plate phase, with the worst possible exact phase!. In an in-
vestigation such as ours~where we are interested in the op
timal mathematical closeness between different signals!, the
bestoverlap is the mathematically cleanest measure of clo
ness of two families of templates, and we shall use it here
addition, we shall also maximize over the other templ
parameters~in particular, the masses! to get an intrinsic mea-
sure of the closeness of two families of templates. Note t
3-9
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the resultingfully maximizedoverlaps are different from the
maximized ambiguity functionof Ref. @23# and thefitting
factor of Ref. @24#. The latter~identical, but given different
names by different authors! quantities are well-defined mea
sures of the closeness of two signalsonly within the ~simpli-
fying! approximation where signals in quadrature are
thogonal. This is, however, not the case for the signals
consider, and at the accuracy at which we are working.

For the computation of the best overlaps, it is sufficient
construct two signal waveforms and two template wa
forms, one with phase equal to 0 and another with ph
equal to p/2. The rest of the initial data (r 0 ,pr

0 ,pw
0) are

found using

r 0
3F112h~Az~r 0!21!

123h/r 0
2 G2v̂0

22

50,

pw
05F r 0

223h

r 0
323r 0

215h
G 1/2

, pr
05

Fw~v̂ !

C~r 0 ,pw
0 !~dpw

0/dr0!
~4.5!

wherez(r ) andC(r ,pw) are given by

z~r !5
r 3A2~r !

r 323r 215h
,

C~r ,pw!5
1

hĤ~r ,0,pw!Az~r !

A2~r !

~126h/r 2!
. ~4.6!

The plunge waveform is terminated when the radial coo
nate attains the value at the light ringr lr given by the solu-
tion to the equation,

r lr
323r lr

215h50. ~4.7!

The subsequent ‘‘merger’’ waveform is constructed as
Ref. @7#.

V. RESULTS AND CONCLUSIONS

In this section we compare the performances of vari
signal models by choosing as fiducial ‘‘exact’’ signal mod
the effective one-body waveforms discussed in the previ
section. An important yardstick for comparing differe
waveforms is theoverlap: Given two waveformsh and g
their overlap is defined as

O~h,g!5
^h,g&

^h,h&1/2^g,g&1/2
. ~5.1!

In the above equation the scalar product^,& is defined as

^h,g&52E
0

` d f

Sh~ f !
h̃~ f !g̃* ~ f !1c.c. ~5.2!
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where c.c. denotes complex conjugation andSh( f ) is the
one-sided detector noise spectral density@Sh

one-sided

52Sh
two-sidedleading to the factor of 2 in Eq.~5.2!, compared

to the definition used in@6#, where we always use the two
sided noise#. See the Appendix below for the noise perfo
mances of the various detectors.

First, in Fig. 1 we compare the signal-to-noise rati
~SNRs!, expected in GEO, LIGO and VIRGO, for equa
mass binaries located at 100 Mpc, when detecting an ‘‘
act’’ signal h by means of a bank of templatesk:

r[
S

N̄
5

u^k,h&u

^k,k&1/2
5uO~k,h!u^h,h&1/2. ~5.3!

Thick lines plot the SNR obtained whenk5h, i.e. when the
template perfectly matches our fiducial exact waveform~i.e.
the effective one-body waveform including its ‘‘ringin
tail’’ !, and thin lines show how that gets degraded when
use fork the best post-Newtonian templateTf 2 @cf. Eq.~3.6!#
truncated at the test-mass LSO,FLSO

GW 54400M ( /m Hz, as-
suming still that the true signalh is the one-body effective
waveform.~As usual, see, e.g., Sec. IV A of@6#, where we
averaged over all the angles.! The overlapsO(k,h) are maxi-
mized over the time lag and the two phases~as explained in
the previous section!, as well as over the two individua
massesm1 andm2

11 The greater SNR achieved by effectiv
one-body waveforms for higher masses, as compared to
1 of DIS2, is due to the plunge phase present in these wa
forms. We have checked that the final merger signal, m
eled as a quasi-normal mode, has a numerically insignific
effect in both the SNR and the overlaps: the overlap betw
our fiducial exact waveform and an effective one-body wa
form minus quasi-normal modes is greater than 0.98
double black holes of masses smaller than (40,40)M ( .

The origin of the enhancement in SNR is easily und
stood. The plunge waveform begins aroundf .FLSO and
lasts until f .2FLSO @7#. The mass of a binary whose la
stable orbit velocity is equal to the characteristic velocityvp
of LIGO’s peak sensitivity ism534.8M ( . Therefore, effec-
tive one-body waveforms from binaries of masses in
range 35M (&m&70M ( have larger SNRs for LIGO, than
the usual SPA models. It is, therefore, crucial to go beyo
the waveforms given in the adiabatic approximation to ta
advantage of these higher SNRs for larger masses. Ind
the SNRs being as high as 8, for one detector and a sour
100 Mpc, a network of four detectors~two LIGOs, GEO and
VIRGO! will be able to reliably search for such systems
far as 150–200 Mpc.

Next, in Table III we show thefully maximizedoverlaps
of effective one-body waveforms with signal modelsTt1

~column 2!, Tt3 ~column 3!, Tf1 ~column 4!, Tf2 ~column 5!
andP ~column 6! for four typical binaries. The time-domain

11The plots are jagged because we have computed the SNR
merically by first generating the waveform in the time domain a
then using its discrete Fourier transform in Eq.~5.3!.
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TABLE III. Fully maximized overlaps of the fiducial exact~X! waveform~effective-one-body signal@7#!
with ~1! the standard time-domain post-Newtonian approximations of type t1 and t3 (Tt1,Tt3), given in Eq.
~2.6! and Eq.~2.8! and Table II,~2! the frequency-domain usual stationary phase approximations of ty
and 2 (Tf1, Tf2), given in Eqs.~3.5!, ~3.3! and ~3.6! and Table II, and~3! the time-domainP approximants
(P)—energy function as given by Eqs.~2.14! and Eqs.~2.16!, flux function in Eqs.~2.20! and ~2.21!, and
coefficients enlisted in Tables I and II. The overlaps, which are computed using the LIGO noise curv
maximized not only over the time lag and the initial phases of both the fiducial exact signal an
approximate template~by using two signal and two template waveforms, with phases equal to 0 andp/2 @5#!,
but also over the two massesm1 andm2 of the approximate signal models.~The optimal masses are give

below the overlaps.! The time-domainTt3 approximants are terminated whenḞ50 and the other signals ar
terminated whenF(t)5 f LSO, the LSO frequency being determined consistently usingEA8 (v)50 where
EA(v) is the corresponding approximate energy function.

k ^X,Tk
t1& ^X,Tk

t3& ^X,Tk
f1& ^X,Tk

f2& ^X,Pk&

m15m2515M (

4 0.8881 0.9488 0.8644 0.8144 0.8928
~15.2,14.1! ~16.3, 16.4! ~14.7, 14.9! ~16.0,16.1! ~14.7, 15.1!

5 0.8794 0.8479 0.7808 0.8602 0.8929
~17.3, 16.4! ~17.6, 17.9! ~16.8, 16.7! ~15.2,14.4! ~15.4,14.3!

m15m2510M (

4 0.9604 0.9298 0.9581 0.9109 0.9616
~10.1,9.6! ~10.5, 10.3! ~10.0, 9.7! ~10.5, 10.6! ~10.0, 10.2!

5 0.8814 0.8490 0.8616 0.9529 0.9610
~11.4, 10.6! ~11.4, 11.7! ~10.7, 11.0! ~10.3, 9.7! ~10.4, 9.7!

m1510M ( ,m251.4M (

4 0.9847 0.9673 0.9835 0.9721 0.9937
~1.27,11.1! ~0.95,16.6! ~1.27, 11.1! ~0.96, 16.4! ~1.35, 10.5!

5 0.9452 0.6811 0.9394 0.9922 0.9941
~0.82, 20.4! ~1.11, 15.7! ~0.82, 20.4! ~1.34, 10.5! ~1.37, 10.2!

m15m251.4M (

4 0.8828 0.8538 0.8830 0.8503 0.9719
~1.40, 1.39! ~1.42, 1.39! ~1.40, 1.39! ~1.44, 1.37! ~1.47, 1.34!

5 0.8522 0.7643 0.8522 0.9994 0.9945
~1.46, 1.35! ~1.43, 1.38! ~1.46, 1.35! ~1.45, 1.35! ~1.49, 1.32!
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Tt3 approximants are terminated whenḞ50 and the other
approximants are terminated whenF(t)5 f LSO, the LSO be-
ing determined consistently usingEA8 (v)50, whereEA(v) is
the corresponding approximate energy function. The ov
laps are computed with the~initial! LIGO noise curve given
in the Appendix.

In addition to maximization over the time lags and t
phases as explained earlier, we also maximize over
masses of the approximate waveforms, keeping the ma
of the exact waveforms fixed. We note that none of the m
els have good overlaps with the ‘‘exact’’ one for heav
mass binaries. This is as expected since it is for hea
masses that the characteristic plunge phase makes a si
cant difference between the approximate and the exact m
els. The relative performances of the 2PN and 2.5PN Ta
templates depends on the choice of the scheme used
evident from columns 3 and 4 in Table III. This is consiste
with the results of Ref.@25#. ~The numerical results must no
04402
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be compared since they quote values for the ‘‘advance
LIGO.! Some Taylor models are ‘‘effectual’’~large maxi-
mized overlaps!, but at the cost of high biases in the param
eters~i.e. in the terminology of@5# they are not ‘‘faithful’’!.
For example in the case of a fiducial exact (1.4,10)M ( sys-
temT5

t1 reaches 0.9452 for mass values (0.8,20)M ( . ThusT
approximants in the time domain are significantly inferior
the other models, both for their erratic convergence prop
ties ~the v5-accurate templates being worse than t
v4-accurate ones! and for their poor parameter estimatio
performance.

To further explore the performance of the various mod
we plot in Fig. 2 their intrinsic frequency evolutions in th
LIGO band; i.e., we plotḞ/F2 versusF. The plot corre-
sponds, in the fiducial exact case, to a binary black hole
(10,10)M ( . For the approximate models we exhibit the fr
quency evolution of the system that achieves the maxim
overlap. As expected, the maximum overlap is obtained
3-11
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FIG. 1. Signal-to-noise ratios in GEO, LIGO-I and VIRG
when using as Fourier-domain template the post-Newtonian m
Eq. ~3.6! (Tf 2), truncated at the test massFLSO54400M ( /m Hz
~thin lines!, compared to the optimal one obtained when the te
plate coincides with the fiducial ‘‘exact’’~effective one-body! sig-
nal ~thick lines!. As usual, we averaged over all the angles. T
overlaps are maximized over the time lags, the phases, and the
individual massesm1 and m2. The plots are jagged because w
have computed the SNR numerically by first generating the fidu
‘‘exact’’ waveform in the time domain and then using its discre
Fourier transform in Eq.~5.3!. The greater SNR achieved by effe
tive one-body waveforms for higher masses, as compared to F
of DIS2, is due to the plunge phase present in these wavefo
Observe that the presence of the plunge phase in the latter sig
cantly ~up to a factor of 1.5! increases the SNR for massesm
.35M ( . Using the effective one-body templates will, therefo
enhance the search volume of the interferometric network by a
tor of 3 or 4.

FIG. 2. The frequency evolution of the various approxima
models is compared with the fiducial exact (10,10)M ( model in the
LIGO band. To indicate the effect on the overlap, we also plot
weighting function 1/hn( f ) for initial LIGO ~not to scale!, which is
a measure of the detector’s sensitivity.
04402
template parameters such that the intrinsic frequency ev
tion of the template waveform is ‘‘tangent’’ to the exact on
near the maximum sensitivity of the detector. This can
ways be achieved by fitting the mass parameters. The q
tion is whether such a local ‘‘tangency’’ ensures a su
ciently good ‘‘global’’ agreement. For instance, we note th
the Tt1,3 2.5 PN models fare poorly inglobally mimicking
the frequency evolution of the exact waveform. This is co
sistent with their returning the worst overlaps of all. On t
other hand, even though theTf 2 models do not reproduce th
exact model over as large a range as theP approximants,
they achieve nearly as large overlaps as theP approximants,
because they can be made~by optimizing the masses! to
agree well with the exact model over most of the sensit
part of the LIGO band. TheP approximants are able to
mimic the ‘‘exact’’ evolution the best with little bias in the
masses but, being based on the adiabatic approximation,
fail to capture the smooth transition to plunge.12 The filters
using the effective one-body approach go beyond the a
batic approximation and include a smooth transition
plunge and merger. They, therefore, supersede the adiab
limited P approximants. This difference between the two
summed versions of binary signal models is important
masses larger than about 20M ( .

Note that, following@7#, we have generated the effective
one-body model using the adimensional timet̂5t/m. ~This
trivially extends beyond the 2PN approximation@2#.! It has
been recently emphasized@26# ~in the context of theT andP
approximants, where one can also simplify formulas
working with t̂5t/m) that there are many computational a
vantages in working with such adimensionalized time mo
els. Indeed, the phase evolution becomes completely in
pendent of the total mass of the system. This, together w
the fact that the evolution can be computed from a system

12We have confirmed that theP approximants return the best ove
laps when truncated at theP-defined LSO. Maximizing over a cut
off frequency smaller than theP-definedFLSO ~which turns out to
be higher than the effective-one-body-defined one! does not im-
prove the overlaps.
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FIG. 3. The effective noisehn5Af Sh( f ) in various ground-
based interferometers.
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TABLE IV. One-sided noise power spectral densities~PSDs! of initial interferometers,Sh( f ). For each
detector the noise PSD is given in terms of a dimensionless frequencyx5 f / f 0 and rises steeply above
lower cutoff f s .

Detector f s /Hz f 0 /Hz 10463Sh(x)/Hz21

GEO 40 150 @(3.4x)230134x21120(12x21x4/2)/(11x2/2)#
LIGO-I 40 150 9.00@(4.49x)25610.16x24.5210.5210.32x2#

TAMA 75 400 75@x25113x2119(11x2)#

VIRGO 20 500 3.24@(6.23x)2512x21111x2#
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ODEs, makes the computation and storage of templates
quired in a search for binary black holes and neutron star
interferometer data computationally inexpensive as co
pared to the conventional method that uses a 2-dimensi
lattice of templates.

We are currently estimating the effects of unknown p
rameters in the 3PN motion and wave generation@27#. The
extension of the type of work presented here to go bey
the restricted post-Newtonian approach and also to incl
the effects due to spin and eccentricity, needs to be sys
atically investigated.

To conclude, we believe that many of the new techni
tools developed in@5,6# and briefly summarized above a
useful ingredients for constructing effectual and fa
computed inspiral templates. For example,~i! the specific
Padé-based resummation of the GW flux introduced in@5# is
an important ingredient of the construction in@7# of an ac-
curate non-adiabatic waveform and~ii ! the improved SPA
technique derived in@6# could be used to derive analytica
approximations to the frequency-domain version of th
effective-one-body waveforms. In view of our ignorance
the ‘‘exact’’ waveform emitted near and after the LSO cro
ing, the best strategy is probably to construct a bank of te
plates which cover a large range of possibilities with spe
weight being given to the templates incorporating the b
tested re-summation methods~such asP approximants, and
the effective-one-body approach@7#!. Because of the admit
tedly quantitatively rough, but plausibly qualitatively corre
description of the plunge signal given by the EOB approa
we also recommend to include some sort of multi-param
template which qualitatively looks like Fig. 12 of@7#, but
00

.

.
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which introduces some flexibility both in the phasing evo
tion during the plunge and in the location of the matching
the ring-down~with the possible inclusion of several quas
normal modes!. Finally, we emphasize the importance
modelling the transition to the plunge and of including t
signal emitted during the plunge: this leads to a very sign
cant enhancement of the signal-to-noise ratio, from about
to 8, for a source at 100 Mpc.
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APPENDIX: NOISE POWER SPECTRUM
OF INITIAL INTERFEROMETERS

In this short appendix we list the expected one-sided no
power spectral densities of the various ground-based in
ferometers~Table IV! and plot the effective noise13 hn

[Af Sh( f ) in Fig. 3.

13Our effective noisehn is the same as what has been conventio
ally calledhrms in the literature.
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Recently [1], an erratum has appeared correcting some coefficients in the computation of tails in the flux of gravitational
waves L from compact binaries in Ref. [2]. As a consequence, some post-Newtonian coefficients in the paper [3] are
modified. The correction affects only the �-dependent terms in the coefficients at 2.5PN order, i.e. column 6 of Table I.
TABLE . Taylor coefficients of the flux, phase, time and frequency. N denotes the ‘‘Newtonian
value’’ and � � ���tlso � t�=�5m���1=8: In all cases the k � 0 coefficient is 1 and the k � 1
coefficient is zero. In certain cases the 2.5 PN term involves v5 logv or �5 log� term rather than a
v5 or �5 term. In those cases we conventionally include the logv dependence in the listed
coefficient. Chirp parameters 
k; k � 1; are related to the expansion parameters tvk and �v

k via

k � �8�v

k � 5tvk �=3: We have given the simplified expressions for these in all cases, except
k � 5 where no simplification occurs due to the presence of the log term in �v

5 :

k N 2 3 4 5

F̂ k
32�2v10

5 � 1247
336 � 35�

12 4
 � 44711
9072 � 9271�

504 � 65�2
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t̂vk � 5m
256�v8

743
252 �

11�
3 � 32
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3058673
508032 � 5429�

504 � 617�2

72 ��7729252 � 13
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�̂v
k � 1

16�v5
3715
1008 �

55�
12 �10
 15293365

1016064 � 27145�
1008 � 3085�2

144 �38645672 � 65�
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 ln� v

vlso
�

�̂t
k � 2

��5
3715
8064 �

55�
96 � 3


4
9275495
14450688 �

284875�
258048 � 1855�2

2048 �3864521504 �
65�
256�
 ln� �

�lso
�

F̂t
k

�3
8
m

743
2688 �

11�
32 � 3
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1855099
14450688 �

56975�
258048 �

371�2

2048 �� 772921504 �
13
256��
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