PHYSICAL REVIEW D, VOLUME 63, 044023

Comparison of search templates for gravitational waves from binary inspiral
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We compare the performances of the templates defined by three different types of approaches: traditional
post-Newtonian templatgdaylor approximants “resummed” post-Newtonian templates assuming the adia-
batic approximation and stopping before the plund® gpproximants and further “resummed” post-
Newtonian templates going beyond the adiabatic approximation and incorporating the plunge with its transition
from the inspiral(effective-one-body approximantdhe signal to noise ratio is significantly enhanéedhinly
because of the inclusion of the plunge sigrat using these new effective-one-body templates relative to the
usual post-Newtonian ones for a total binary mass30M,, and reaches a maximum arounc-80M g, .
Independently of the question of the plunge signal, the comparison of the various templates confirms the
usefulness of using resummation methods. The paper also summarizes the key elements of the construction of
various templates and thus can serve as a resource for those involved in writing inspiral search software.
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[. INTRODUCTION the binary orbit and GW phase to an ordet beyond the
standard quadrupole formula. We shall use thesaccurate
The late stage evolution in a compact binary, when theesults in this work. At present, we cannot count on the
component stars are under the influence of the strong gravihopefu) extension of the post-Newtonid®PN) perturbative
tational fields of each other and are moving at relativisticcalculations by another two orders, to or@€ér because cur-
speeds, is dictated by the non-linear dynamics of generakntly used PN technigues leave undetermined a physically
relativity and is very difficult to model. In the early stages of crucial parameter entering at té level [1-3]. Moreover,
adiabatic inspiral(that is, when the inspiral time scale is as emphasized some time ajgtl, the PN seriegwhich is
much larger than the orbital time schleis possible to treat essentially a Taylor expansion in powers wf is a rather
the problem of motion perturbatively and to expand the genpoorly convergent expansion. More precisely, if one consid-
eral relativistic equations of motion and wave generation forers the PN expansion of the crucial GW fl(see, e.g., Fig. 3
mulas in a power series w/c, v being a characteristic ve- of [5]), one notices that the*-accurate ana®-accurate ap-
locity. (We henceforth use units such th&=c=1) proximations start significantly deviating, in opposite direc-
However, the phasing of the gravitational wal@W) signal  tjons, from the exadtest-massresult wheny =0.2. As such
Fierived from these perturbgtive results becomes increasing|5é|ative|y high values of are typically involved in the cal-
inadequate as the two bodies approach each other. The cha{jiation of the GW phasingv~uv,(m)=0.18 as soon as

acteristic velocityu,(m)=(7mf,)"*, corresponding to the .—5 gy o], one has to worry that search templates based

p_eak of the detector sensitivity t9 the |nsp|ral signal from %n a straightforward use of PN-expanded results might be
binary of total massn=m;+m,, is numerically equalfor

the initial L Interf tric Gravitational W ob inadequate for the detection and/or measurement of inspiral
va?olrr;/I I?LI Gaée)er ?O?r e&%ﬁzﬁ”cf _ri\g: II(-)|rZ]]a toa\:;e (m)ser'signals, especially for the more massive systepms

' P p = impli =0. [ i
=0.125(m/M ). For a double neutron star system one al- L0Mo implies vp(m)=0.34] which are likely to be the

. first potentially detectable events.
ready has v(2.8)=0.176, while, for an archetypal T hi ial | h .
(10M,,10M ) double black hole system one has(20) 0 address this crucial problem, we have been advocating

v . : ! 5-7] a new philosophy for making the optimal use of exist-
=0.340, quite close to the velocity corresponding to the las g PN results, namely, to use severatsummation tech-

stable orbit(LSO): v so~1//6=0.408. niquesto improve the convergence of the PN series, before
The_ present theqrethal understandln_g has enab!ed the P&sing them to compute the GW phasing. As of now, we have
turbative computatiorfvia post-Newtonian expansion®f  ,ron0sed and studied three successive stages in the definition
and use of such re-summation techniques. First, we con-
structed[5] time-domainsignals, calledP approximants—
Yt should be noted that the LIGO noise curve used in this paper istarting from the standard PN Taylor representation—which
the currently best available and different from that used in Damourp0ossess better convergence properties and capture the ex-
lyer-Sathyaprakash (DIS1) and DIS2. pected analytical behavidpoles and zerog®f the relevant

0556-2821/2001/63)/04402314)/$15.00 63 044023-1 ©2001 The American Physical Society



DAMOUR, IYER, AND SATHYAPRAKASH PHYSICAL REVIEW D 63 044023

physical quantities quite well. We have shown that these newlunge were treated by assuming that about 10% of the rest
signal models, when compared with standard PN signals, af@ass energy would be emitted during merger. This quite
both more effectual (larger overlaps and more faithful optimistic estimate was based on a crude model of the coa-
(smaller biases in the estimation of parameteepresenta- lescence of maximally spinning black holes, and was arbi-
tions of some fiducial “exact” signals. Thougime-domain trarily extended to all cases. A similar back-of-the-envelope
P approximants are better signal models than the standarePnsideration of the ring-down amplitude let them to opti-
“Taylor” approximants, they are computationally expensive mistically assume that about 3% of the rest mass energy
to use in a data analysis exercise that searches for inspirgiould be emitted during ring-down.
signals using hundreds of thousands of templates, which In this paper we discuss only non-spinriirignaries and
have to be correlated, with arbitrary time lags, with the de-we make noad hocassumption about the total energy radi-
tector output. This data-analysis computational cost is muchted during the merger phase. The effective one-t&dB)
reduced[thanks to the existence of efficient fast Fourier formalism does not treat the inspiral and plunge phases sepa-
transform (FFT) algorithmg when one disposes of explicit rately. Indeed, in this formalism the plunge is seen as a natu-
analytic expressions for the Fourier transform of the temtal continuation of the inspiral phase contributitfgr equal
plates. massepgabout 0.6 orbital cyclegor 1.2 GW cycleg with a
Second, we founfb] explicit frequency-domainepresen-  total energy associated with the plunge around 0.7%. The
tations of P approximantsas well as of standard PN tem- energy emitted during the followingmatched ring-down
plates that arecomputationally inexpensivand are yet as phase is also found to be around 0.7%]. These energy
faithful and effectualas the original time-domain models. losses are much smaller than the Flanagan-Hughes “guess-
This frequency-domain representation incorporates thémates” of 10% and 3%, respectively. Consequently, it is
“edge oscillations” due to théassumepabrupt shutoff of  unlikely that we will be able to detect the plunge phase of the
the time-domain signal occurring soon after the binaryEOB waveforms separately, irrespective of the mass of the
crosses the last stable orbit. [6] we emphasized that the System. This is in sharp contrast to the Flanagan-Hughes
signal to noisgSNR) ratio of the first interferometric detec- claim that the SNR contribution of the sole merger phase of
tors is large enough for detection only for massive binarymassive black holes of total mass in the range 30—¥DQ0
black hole systems of total mass=25M,. For such sys- Will dominate over the inspiral phase contribution. Note also
tems the characteristic velocity corresponding to the peak dhat (for a source at 100 Mpdhe (merger-dominatedSNR
the detector sensitivity is ,(25)=0.37, which is very close 0f [9] reaches a maximum of 40 arount~200M¢ , while
to v.so=1/\/6, the velocity at the last stable orbit. One, OUr (inspiral-dominatefl SNR reaches a maximum of 8
therefore, expects that the first detections are most likely tgroundm~80M, . [It seems that most of the difference be-
concern massive systems (2Mo<=m=40My) with Up tween Fig. 4 of Flanagan and Hughes and our Fig. 1 below,
~VLs0- e.g. a factor of Ibetween their 25 and our) detween the
It is therefore crucial to push the re-summation techniquesSNR for a 8¢ source at 100 Mpc, comes from the huge
introduced in5] further so as to be able to describe not onlydifference in energy loss during merger.
the GW phasing during the last cycles before LSO crossing, In this paper we make a prediction that the merger phase
but also during the transitidrbetween inspiral and plunge, Will enhance the inspiral phase SNR by about 10% rfor
and during the plunge itself. Recently, Buonanno and>~30Mg and by about 300% fom~80M . Our best can-
Damour[?] combined some of the re-summation techniqueéjidate sources are stellar mass black hole binaries of total
of [5] and[6] with a novel approach to the general relativis- mass in the range 30BN, . The inspiral phase is the domi-
tic dynamics of two-body systeni8] to devise an improved hant signal for most of this range, merger being important for
type of re-summation approach to the GW phasing of Coaonly the heavier SyStemS. We also conclude that the ring-
lescing binaries, able to describe in more detail the transitioflown phase is in itself not a significant contribution far
between inspiral and plunge. This “effective one-body” ap- =200Mg .
proach is the first one that goes beyond the “adiabatic ap- There is one word of caution regarding the plunge signal:
proximation,” used both in standafdon-resummedPN ap-  Even though the plunge lasts for only about half an orbital
proximants and irP approximants. cycle, its spectral content spreads over a large frequency
The data analysis of inspiral, merger and ring-down wagange. Consequently, the number of frequency bins over
pioneered by F|anagan and Hugl‘{@ They treated the which the signal spreads out is quite Iarge and it is not ad-
problem of inspiral rather accurately but the merger and/isable to use a non-optimal method to try to detect the
plunge part in isolation. In fact, we believe that one of the
robust predictions of the EOB approagdt least in the case
of slowly spinning holes is that the plunge signal is a

2 . .
Note that, even for less massive systems, the necessity to captu ®rooth . . . .
. ; ntinuation of the inspiral one and th ne shoul
more than 96.5% of the SNR, corresponding to a loss in the numbeér ooth co uation of the inspiral one and that one should

of events by no more than 10%, implies that one must accuratel;l/Jse templates that are phase coherent all over the inspiral-
control the phasing of the waveform at frequencies significantly.

higher thanf,,, corresponding to velocities significantly higher than

vp(M). “In view of current black hole binary formation mechanigié],
3The P approximants model this transition by a sharp cutoff in thewe think it likely that most of them will include only slowly spin-
signal. ning holes.
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plus-plunge phase. We are aware of the approximate natutbe one hand, we have sonenknowr) exact gravitational
of the EOB resultgespecially beyond the L9Gnd do not  waveformh*(t;\,) where\,, k=1, ... n,, are the param-
claim that the EOB waveform is the last word on the prob-eters of the signale.g., the masses; andm, of the mem-
lem, but our position is the followingi) in absence of com- bers of the emitting binajy On the other hand, we have
paratively accurate alternative results, it is important to studgheoretical calculations of the motion [3,1-3 and gravi-
in detail the predictions coming from the EOB waveform, tational radiation fron{14,15 binary systems consisting of
and (ii) we shall finally recommend to use a bank of filters Neutron stargNSs or black holesBHs) giving the PN ex-
which cover a large range of possibilities, with specialP@nsions of an energy functid@(x=u?), which is related to
weight being given to the best-tested “resummed” tem-the total relativistic energf,y via Eq=(my +my)(1+E),
plates. and a GW luminosity(or “flux” ) function F(v). Here, the
We also hope that our work will give an additional incen- dimensionless argumemz'xlﬂ is an invariantly defined
tive to numerical relativity groups toward computing wave- velocity” related to the instantaneous GW frequenéy
forms which are at least as accurdemd physically com- (= twice theorbital frequency by v=(7mF)**. Given PN
plete as the EOB one. In particular, let us recall thgthas ~ €xpansions of the motion of and gravitational rad_|at|on from
proposed a new approach to the numerical computation ¢t binary system, one needs to compute thghasing for--
binary black hole coalescences: namely, to start the numerUla” i.e. an accurate mathematical model for the evolution
cal evolution just after LSO crossing, i.e. at a stage wher@f the GW phase¢®"=p[t;),], involving the set of param-
one can still trust theesummedN estimate of the dynamics eters{\;} carrying information about the emitting binary sys-
of two black holes, but where there is only 0.6 orbit totem. In the adiabatic approximation the phasing formula is
evolve before coalescence. To this aim R&f.has provided €asily derived from the energy and flux functions. Indeed,
explicit results for the initial dynamical dafpositions and the standard energy-balance equatit,/dt=—F gives
momenta in Arnowitt-Deser-Misn€/ADM) coordinateyof ~ the following parametric representation of the phasing
this problem. However, apart from stimulating further formula:
thoughts on the problerfl2], we are not aware of the exis-

tence of numerical simulations implementing the proposal of t(0)=t,ert mfvrefdv M
Ref.[7], nor are we aware of other numerical work leading v F)
to explicit (non-adiabaticwaveforms for coalescing binaries , (2.1
which could be compared to the EOB one. B(0)= ot 2 "““dvst (v)
Data analysis groups associated with various ground- ¢ v Fu)'

based interferometers are now finalizing the analysis soft- _ ) )
ware that will be used for GW searches in data that ard/heretrerand 4y are integration constants angls an arbi-
expected to become available in a few years time. It is estrary reference velocitylIt is sometimes conver_nent, though
sential that these groups be aware of recent theoretical &Y N0 Means necessary, to takeuag the velocityv at the
velopments and of their respective merits so as to take thi@St stable orbitsee below.] From the viewpoint of compu-
best advantage of the current knowledge in writing their softiational purposes it is more efficient to work with the follow-
ware. With this view in mind the aim of this paper is two- INd pair of coupled, non-linear, ordinary differential equa-
fold: First, we wish to compare the performances of the tem!onS (ODES, which are equivalent to the above parametric
plates defined by the three different types of approachefrmulas:

mentioned above(traditional “non-resummed” PN tem- dé  2v° do Fw)
plates, “resummed” PN templates assuming the adiabatic ———=0, —+ =0. (2.2
approximation and stopping before the plunge, and further dt m dt  mE'(v)
“resummed” PN templates going beyond the adiabatic ap-
proximation and incorporating the plunge with its transition

We shall see later that, for massive systems, the adiabatic
approximation fails and one must replace the two ODEs by a

from the inspiral. Second, in view of the fact that the origi- more complicated ODE system. We now turn to a discussion
nal publications]5,6] are quite complex and technical, we : ) .
b sL5.6] d P Of what is known about the two functioris(v) and F(v)

wish to summarize in a more accessible manner the key e’ WN .
ements of the techniques introduced thened re-used, with entering the phasing formula and how that knowledge can be
further inputs, in[7].) The present work should serve as animproved.
easily accessible resource for data analysis groups. Readers

. . . . A. T approximants
interested in a more detailed understanding of our general PP

approach are referred f&—8| for motivation, formalism, ~ We denote byEy and 7y the n™-ordef “Taylor” ap-
logical reasoning, exhaustive tests and further discussion groximants(as defined by the PN expansjoof the energy
the new signal models. and flux functions:

Il. TIME-DOMAIN PHASING FORMULAS
IN THE ADIABATIC APPROXIMATION SWe work within the “restricted” waveform approximation

which keeps only the leading harmonic in the GW signal.
In searching for GWs from an inspiraling compact binary ®The labeln always refers to an approximant accurate up o
we are faced with the following data analysis problem: On=x{"? included.
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TABLE I. Taylor coefficients of the energy functioris; (x) into the (functiona) space of waveforms. Up to now, the
ander (x) and the corresponding location of the LSO and pole. Asliterature has consideregdne of the mags), sayT,
there are no terms of ordef*** we have exceptionally choséfor
this table only the expansion parameter to kev? rather tharv. T T
In all cases thé&=0 coefficient is equal to 1, the last stable orbit is (Er, Fr,)—hp(t,Ny), (2.9
defined only fork=1 in the case of approximants and fot=2 in
the case oP approximants antl denotes the “Newtonian value.” obtained by inserting the successive Taylor approximants
into the phasing formulp4,16]. For brevity, we often refer to

k N 1 2 these “Taylor” approximants as T approximants.” It must
5 3 also be emphasized that even within this Taylor family of
E, ot 9ty _81-57y+ 7y templates, there are at least three ways of proceeding further,
2 12 24 leading to the following three inequivalent constructs:
o —x(=—0?) 3+7 36— 357 (t1) One can retain the rational ponnomiE{-n/ETn as it
“ 3 12 appears in Eg2.2) and integrate the two ODEs numerically.
. ( 2 347 144- 819+ 472 We shall denote the phasing formula so obtained&%ﬂ%(t):
—x(=— - —_ - 7T
Pk Y =73 & 361127
Lso 6 —E,+(E2—3E,)12 de®  2u° dv . Fr (v) 0 26
X - _— —_— ——=0, _ —=0. i
T 97 3E, dt m dt mE; (v)
XLSO _ _ _1+(_C1/CQ)1/2 ) )
Py e (t2) One can re-expand the rational functiéh /Er_ap-
43+7) pearing in the phasing formula and truncate it at ordgrin
wPole _ _ 36-35, which case the integrals in ER.1) can be worked out ana-
Pi K lytically, to obtain aparametricrepresentation of the phasing
formula in terms of polynomial expressions in the auxiliary
variablev:
n n
Er, ()=En(X) 2, Ep(m)x¥, D)= D+ ¢ (1) S Brok
2n K=0 $1,0)= dret T dn(v) 2o biv”,
n n n
Fr (X)=Fy(X) k§=)o Fmv*+ k§=)6 Li(mlog(vlvo)vX|, t(Tzr])(v)=t§§f)+tl,Q(v);o thok, 2.7
(2.3
where a superscript on the coefficieriesg. ¢}) indicates
where thatv is the expansion paramet@s is explicit from Table
II, the coefficient of¢y include in some cases, a logde-
1 32 ” s pendencg
EnX¥)==—3mx  FnX)=5 7% 2.9 (t3)Finally, the second of the polynomials in E@.7) can

be inverted and the resulting polynomial forin terms oft
can be substituted i®(v) to arrive at an explicit time-

Here the subscripiN denotes the “Newtonian value,’n domain phasing formula

=m,m,/m? is the symmetric mass ratio, ang is a fiducial
constant to be chosen below. In the test mass limit, s.e. n n
H_o, E(x) is knqwn exactly, from which the Taylor expan- 4 (t)= 43+ ¢}\‘2 dLok, FO)= |:INE Flok, (2.9
sion of E (v,0) in Eq.(2.3), can be computed to all orders. " k=0 " k=0
In the »—0 limit, the exact flux is known numerically
[16,17] and the Taylor expansion of flux in Eq2.3) is
known[17-19 up to ordem=11. On the other hand, in the
physically relevant case wheng is finite, the above Taylor
approximants are knowfiL4,15 only up to five-halves PN
order, i.e.n=>5. Recently the energy function has been com-
puted up to 3PN order, i.en=6, though with the presence Before defining new “resummed” energy and flux func-
of an unknown parametg®,3]. All the completely known tions with improved performances we digress for a brief re-
coefficients in the expansions are enlisted in Table I. minder of Padere-summation, which is a standard math-
The problem is to construct a sequence of approximatematical technique used to accelerate the convergence of
waveformsh/(t;\,), starting from the PN expansions of poorly converging power series. L&,(v)=ag+av+- - -
E(v) and F(v). In formal terms, any such construction de- +a,v" be a truncated Taylor series. A Paalgproximant of
fines amapfrom the set of the Taylor coefficients BfandF  the function whose Taylor approximant to ordetis S, is

where  0=[7n(t—1)/(5mM)] ¥ and F=d¢/27dt
=v3/(mrm) is the instantaneous GW frequency. The coeffi-
cients in these expansions are all listed in Table II.

B. P approximants
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TABLE Il. Taylor coefficients of the flux, phase, time and frequendy.denotes the “Newtonian value” and=[ n(t so
—t)/(5m)]~*8. In all cases th&=0 coefficient is 1 and thk=1 coefficient is zero. In certain cases the 2.5 PN term involveday v or
6°log 0 term rather than @° or #° term. In those cases we conventionally include thevlatgpendence in the listed coefficient. Chirp
parameters k=1, are related to the expansion parametem@nd ¢ via 7= (8¢ —5t;)/3. We have given the simplified expressions for
these in all cases, excefpt5 where no simplification occurs due to the presence of the logarithm tegfg .in

k N 2 3 4 5
Fi 327°v 10 1247 359 A 44711 9271y 657> _(8191+ 535;7) _
5 336 12 9072 " 504 ' 18 672 24
v 5m 743 11y 327 3058673 542% 6177 7729
ty — = - + + — (5=t
~ 256m0° 252" 3 5 508032 504 ' 72 (Ggztm7
2 38645 15 v
& 1 3715 559 100 15293365 27145 3085 ( s +?7/ Wln(_)
1670° 1008 12 1016064 1008 ' 144 Uiso
o 2 3715 559 37 9275495 284875 18552 (38645+ 1577) ( 0 )
k -— et — -— et 5| TN
76° 8064 96 4 14450688 258048 = 2048 21504 256 bhso
Fl 63 743 . 11y 37 1855099 56975 +371772 _( 7729+ )ﬁ
8mm 2688 32 10 14450688 258048 2048 21504" 7
3 5743 . 1
T —— |+ — 167 2 — U __ GtV
‘ 128y 9( g4 11" 4 3(85—5t5)
defined by two integerm,k such thatm+k=n. If T,[---] a; a, aj
denotes the operation of expanding a function in Taylor se- Co=8p, C1=— -, Cp=—_—+_—

a a; aqp’
ries and truncating it to accuraey (included, the Py’ Pade 0 oo

approximant ofS,, is defined by

Nm(v)

PR(v)= . T PR(0)I=Sy(v), (2.9 Cs

_ _ao(ala?,_ag)
Dy(v)”’

= > ,
a;(ai—apag)

where N, and D, are polynomialsin v of order m and k

respectively. If one assumes thag(v) is normalized so that 3

Dy(0)=1, i.e. Di(v)=1+qu+---, one shows that Pade  , _ _ CoCa(CaC1)™+ CoC1CoCa(Cat2C,F 2Cy) — 2y
approximants are uniquely defined by E.9). In many 4 CoC1C2C3 '
cases the most usefuPadeapproximants are the ones near

the “diagonal,” m=k, i.e. PM if n=2m is even andPl"*

or Py, if n=2m+1 is odd. In this work we shall use the [(CotC1)?+CyC3]? (Cy+ CatCotCy)?
diagonal @) and the ‘“sub-diagonal” P}, ;) approxi- Cs=— C,CaCs ca
mants which can be conveniertlyritten in a continued
fraction form [20]. For example, givenS,(v)=ag+ajv as
2 - (2.1
+a,v” one looks for CoC1C2C3Cy
c Co(1+cyv)
Ply)= ———=""_"2" (210 _ .
14 ciw  l+(citcyv In [5] and[6] we introduced several techniques for “re-
1+cyv summing” the Taylor expansionén powers ofv) of the

i energy and flux functions. Starting from the PN expansions
The continued fraction Padmefficients of a series contain- of E andF, in DIS1 we proposed a new class of waveforms,
ing six terms, i.eS5(v), are given by called P approximantsbased on two essential ingredients:
(i) the introduction, on theoretical grounds, of two new, sup-

posedly more basic and hopefully better behaved, energy-

"The rare theorems dealing with the Padehnique concern the tyP€ and flux-type functions, sa&(v) andf(v), and(ii) the

convergence of “near-diagonal” Padepproximants, i.em—c«  Systematic use of Padepproximantginstead of straightfor-
with |m—k| fixed. ward Taylor expansionswhen constructing successive ap-

8A convenience of this form is that theth continued-fraction ~proximants of the intermediate functioe¢v), f(v). Sche-
coefficientc, (see belowdepends only on the knowledge of the PN matically, our procedure is based on the following map, say
coefficients of ordern. “P
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(E1,Fr)—(er . fr)—(ep ,fp) (Remember that we consistently label the successive ap-
nor non nor proximants by the order in velocity; e.g. aPR-accurate
—(E[ep 1,Fep ,fp ])—>h,ﬁ’(t,)\k). (2.12 object has the label #Then, one defines the Padpproxi-
" nor mant ofer, (x),°
Our new energy functioe(x), wherex=uv?, is constructed

out of the total relativistic energl,(x) using n

= k
ePZn(X) =X Pm+ e|: I(ZO X

(2.17

e(x)z( ~1. (2.13

2 2 2\2
Efot—m1— mz)
2mym,

) i ) . wheree=0 or 1 depending on whetha=2m+ € is even or
The functionE(x) entering the phasing formulas is the total 5qq. We shall call the continued fraction Paueefficients of

energy per unit mass after subtracting out the rest mass eg, as ¢, c, (note thatco=1). They are given in
b > actlt _ . ,Coy vt .
grgy, E(X)=[Ewo(x) ~m]/m, and is given in terms 0é(x) terms ofe, in Table I. Given a continued fraction approxi-
y mantep, (x) of the truncated Taylor series, of the en-
E(x)={1+29[J1+e(x)—1]}*?-1, ergy function e(x) the corresponding EPZn(X) and
dEPZn(x)/dx functions are obtained using formulas in Eg.
dE 7€’ (X) (2.14 (2.14 by replacinge(x) on the right hand side witbp, (x).
dx 2[1+E(X)] /1+e(x) ' ' Apart from using it to improve the convergence of the PN

series, Ref[5] has also proposed to use the Raggummed
Note that the quantitf’ (v), needed in the phasing formula, functionep, (x) to determine the location of the LSO, the
is related todE(x)/dx via E'(v) =2vdE(x)/dx. In the test-  Padeestimates of the LSO being defined by considering the
mass limite(x) anddE(x)/dx are known exactly: minima ofep, (x). In contrast, in the Taylor case one must,

for consistency, use the minima Eﬁrn(v) to define the lo-

cations of the LSO. We have confirmed that in the test mass
case this Padbased method yields the exact result at orders
v* and beyond while the corresponding Taylor-based method
E7=0(x)= 77( 1-2x 1) , [considering the minima dEr (v)] gives unacceptably high
1-3x estimates ob 5o, i.e. of the GW frequency at the LSO. In
the finite 7 case, the Padesummed predictions are in good
qualitative (and reasonable quantitatjvagreement with the
more recent predictions based on the “effective-one-body”
approach8]. The location of the LSOs for the various ap-
The rationale for using(x) as the basic quantity rather than proximations and the location of the light riige. the pole
Ei(X) can be found if5]; here we note the following two singularity inep, (X)] are also tabulated in Table I.
points: (1) In the test mass cas£x) is meromorphic in the Having defined a new energy function, we move on to
complexx plane, with a simple pole singularity, while the introduce a new flux function. The aim is to define an ana-
function E(x) is non-meromorphic and exhibits a branch cut.lytic continuation of the flux function to control its analytic
(2) Second, in the test mass case, the Paglgroximant of  structure as also to handle the logarithmic terms that appear
er, (x), forn=2, yields the known exact expression includ- in the flux function in Eq.(2.3). Factoring out the logarith-
ing the location of the LSO and the pole. Therefore, themMiC terms is what allows us to use standard Pedaniques
function e(x) is more suitable in analyzing the analytic effectively in this problem. o
structure than i€(x). In the comparable mass case, under It has been pointed outl9] that the flux function in the
the assumption of structural stability between the cgse t€st mass casé(v;#=0) has a simple pole at the light ring
—0 and the case of finitg, one can expect the exact func- v>=1/3. It has been argued that the origin of this pole is
tion e(x) to admit a simple pole singularity on the real axis, duite generalcf. [5], discussion following Eq(4.3)] and that
°<(X—Xpo|g)_l. We do not know the location of this singu- €ven in the case of c_om_parable masses we should expect to
larity, but Padeapproximants are excellent tools for giving Nave a pole singularity i. However, as already pointed
accurate representations of functions having such pole sing@t, the light ring orbit in thep#0 case corresponds to a

1—4x
1-3x’

€,-0(X)=—X

dE”™® 7 (1-6x)

dx 5(1_3)()3/2'

(2.195

larities [20]. simple polexy 7) in the new energy functioe(x; 7). Let
Our proposal is the following: Given some usual Taylor us define the correspondin@variany “velocity” vpoid 7)
approximant to the normal energy fUﬂCtiOFET2n= = \Xpoid 77) - This motivates the introduction of the following

— L yx(1+Eqx+Epx2+ - - - +Ex"), one first computes the “factored” flux function, f(v;7):
corresponding Taylor approximant for tleefunction, say

n
9 . . _ . - .
eTZn(X): _XE eka. (2.16 M?re preC|ser,ep2n(x) is —x times the Pad@pproximant of
k=0 —X eTZn(x).
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f(v;m)=(1—vlvpee Flv;n), (2.18

where  F(v)=F(v)! Fny(v)=5F(v)/(327%'9) is the
Newton-normalized flux. Note that multiplying by
—vlv e rather than 1—(v/vpo|92 has the advantage of

regularizing the structure of the Taylor seriesf¢f) in in-

accurate estimate of the flux would Béll, defined by using

the knownz-dependent coefficients, for k<5 and the test-
1 mass values ofy andiy for k=6.

Ill. FREQUENCY-DOMAIN PHASING FORMULAS

troducing a term linear iy, which is absent in the flux
function in Eq.(2.3) (cf. Table Il). Three further inputs will

IN THE ADIABATIC APPROXIMATION

The time-domainP-approximant waveforms discussed

allow us to construct better converging approximants toabove are computationally intensive to use in a full-scale

f(v). First, it is clear(if we think of v as having the dimen-
sion of a velocity that one should normalize the velocity
entering the logarithms in the flux function in E@®.3) to

data analysis. Recently, in DIS2 we have constructed
frequency-domain representations of tRe approximants
which are 10-50 times faster to compute than their time-

domain analogues but are yet as accurate. This increases the
usefulness oP approximants in data analysis.

some relevant velocity scaley. In the absence of further
information the choicevy=v go(7) seems justified(the
other basic choice y=v e is numerically less desirable as ~ The Fourier representations are based primarily on a
v will never exceed), so and we wish to minimize the effect newly derived improved version of the stationary phase ap-
of the logarithmic terms A second idea, to reduce the prob- Proximation appropriate to time-truncated sign&spproxi-

lem to a series amenable to Padeummation, is to factorize mants cannot be modeled using the standard stationary phase

the logarithms. This is accomplished by writing théunc-
tion in the form

fr (vim)

f vk), (2.19

where coefficientd, arefo=1, . 1= Fs1— F /v and
I, are constants determined from the coefficientsFpfby
relations(analogous tpEq. (4.9 of DIS11° Finally, we de-
fine Padeapproximants to the factored flux functidgv) as

fp(v:mE(HE i )Pm(x )
! UL§0(77) k=
(2.20

wherevfso( 7) denotes the LSO velocity=t \x, go) for the

v"-accurate Padapproximant ofe(x), and wherer 4+ de-
notes as before a diagonal or sub-diagonal Remeoximant

approximation over the entire frequency domain. Indeed,
close to the last stable orbit, where the inspiral phase termi-
nates, one requires a modification of the stationary phase
approximation. In simple terms, Reff6] found a way of
taking into account the effect of an assumed abrupt termina-
tion of the waveform near the last stable circular orbit by
introducing simple modifications to the usual stationary
phase approximation. We present only the final results here;
the interested reader is referred to DIS2 for details. Note that
the results summarized below are quite general and can be
applied to a generic chirp signal which shuts off abruptly
(i.e., on a time scalesF 1),

We begin with a discussion of the usual stationary phase
approximation for chirp signals. Consider a signal of the
form

h(t)=2a(t)cosg(t)=a(t)[e ¢O+e¢®] (3.1
where ¢(t) is the implicit solution of one of the phasing
formulas in Eq.(2.6), Eq.(2.7) or Eq.(2.8) for some choice

with n=2m+e¢, €=0 or 1. The corresponding approximant of functionsg’ and 7 [21].

of the flux F(v) is then defined as

-1
J“fpnw;mz(l— — ) to(vim), (22D

U pole 7)

where v I(7;) denotes the pole velocity defined by the
v Padeapproxmant ok(x). In the test mass case the exact

locations of the pole and the LSO axgy.=1/3 andx so

=1/6, respectivelycf. Table ). We shall denote the contin-

ued fraction Padeoefficients off pn(v) by d,.. They can be
found in terms off, using Eqs(2.11). At present, the most

OThe variabled, andf, used here are equal to the variablgs

The quantity 2rF(t)=d¢(t)/dt defines the instanta-
neous GW frequenc¥ (t), and is assumed to be continu-
ously increasing[We assume=(t)>0.] Now the Fourier

transformh(f) of h(t) is defined as

h(f)= f:dtezm“h(t)

— fw dta(t)[ezwift7¢(t)+GZWift+¢(t)]. (32)

The above transform can be computed in the stationary phase
approximation(SPA). For positive frequencies only the first
term on the right contributes and yields the followiagual
SPA:

and f, used in DIS1. They are “careted” here as a reminder that

they represent coefficients of Newtonian-normalized quantities. The hUSp%f)_

coefficientsA, and B, appearing in the definition df, are com-
puted in Ref[17].

eilwf(tf)—ﬂm],

gr()=2mft— (1),
3.3

F(ts)
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and t; is the saddle point defined by solving fdi s to useF ., as a free model parameter, to be varied so as to
dy(t)/dt=0, i.e. the timet; when the GW frequenci(t) maximize the overlap (see Sec. Y between the
becomes equal to the Fourier variatlein the (adiabati¢  t__-truncated template and the real signal. Such time-
approximation where Eqs2.1) hold, the value of; is given  truncated signals can be represented as

by the following integral:

velE' () h(t) =2a(t)cose(t) O(tmax—1t), (3.9

251 F(U)

ti=t et M dv, (34)

where # denotes the Heaviside step function, &éx) =0 if
x<0 and 6(x)=1 whenx=0. The effect of this time win-
dowing has been modeled in DIS2 and the result is that the

Fourier transform of such a time-truncated signal can be ac-

wherev ;= (7mf)3 Usingt; from the above equation and
¢(t;) in Eqg. (2.1) one finds that

bt E'(v) curately represented in the two regiofissF,, and f
¢f(tf):27ftref_ qsr(;f"—ZJ’vf (U?_Us) F) dv. =F maxs by
(3.5 act)
The bi i i FF o RSP ) = O (F)) e el Lt~ 4
g computational advantage of E8.5 [with respect max- < < : '
to its time-domain counterpart, E€R.1)] is that, in the fre- F(tr)
guency domain, there are no equations to solve iteratively;
the Fourier amplitudes are given as explicit functions of fre- a(t;a)
quency. f=F, . PSPAF) = C(¢= (F))——e
In the Fourier domain too there are many inequivalent meee - ‘/I':(t )
ways in which the phasing; can be worked out. Here we ma
mention only the most popular: 7(f = F a2
(f1) Substitute (without doing any re-expansion or re- Xexp i i(tpa) T1———— —i7/4|, (3.9
summation for the energy and flux functions their PN ex- F(tmax

pansions or th® approximants of energy and flux functions

and solve the integral in E3.5) numerically to obtain th&  where the label “ispa” stands for improved SPAjs essen-

approximant SPA oP approximant SPA, respectively. tially the complementary error function, CR)
(f2) Use PN expansions of energy and flux but re-expand=erfc(e' 7*7), and ¢ is computed using

the ratioE’ (v)/ F(v) in Eqg. (3.5 in which case the integral

can be solved explicitly. This leads to the following explicit, < v = _ 112
Taylor-like, Fourier domain phasing formula: F<Fmax: {<= = [d1(t0) = Yr(tmad 175
5 Jr
~ m(f—Fmay
Pi(t) =27 tier— rert TNKZO n(mmfH B (3.6 f=Fnax §-(f) =——. (3.10

VF (tmay

where;k are the chirp parameters listed in Table II. Equation_l_he error function needed in calculatiijf) may be nu-

(3.6) is one of the standardly used frequency-domain phasinﬁ1 icall ted using the NAE2] lib Sy15DDF

formulas. Therefore, we shall use that as one of the modefs oY €OMPU _e using e . orary '

in our comparison of different inspiral model waveforms. Note the denominatorVF(tn,,) entering Egs.(3.9) and

We refer to it as “type-f2” frequency-domain phasing. ~ (3.10. We define a generic time-truncated signal as a chirp
Just as in the time-domain, the frequency-domain phasinf?r which thls_denomlnator is flnlte(nelthgr |n_f|n|te_ nor

is most efficiently computed by a pair of coupled, non-linear,Zero. [These signals were called “Newtonian-like” in Ref.

ODEs: [6]. We do not keep this name here to emphasize that the
results, Eqs(3.9) and(3.10, apply also to relativistic mod-
dy dt  7m? E'(f) els, as long a$ (ty,y) is finite]
W—Zm=0, W-‘_ 3,2 F(f) =0, (3.7 The exceptionalnon-generit case whereyF(tmg) be-

comes infinite arises if one tries to keep using the simple

rather than by numerically computing the integral in Egs.2diabatic phasing approximation up to the last stable orbit
(3.5). defined by the correspondirgpproximate energy function
Next we correct the performance of the usual SPA byE(v). This exceptional case can also be dealt with at the
includingedge correctionsirising as a consequence of mod- Price of a more complicated modification of the usual sta-
eling the time-domain signal as being abruptly terminated ationary phase resu{see Ref[6] for details. We do not enter
a time t=t,, (time-truncated chirp when the GW fre- into details here because the recent wdtkon the transition
quency reache§ =F,,,. In practice, we expect thd,, Petween the adiabatic inspiral and the plunge has shown that
will be of order the GW frequency at the LSO. However, wethe adiabatic approximation breaks down just before the
prefer to leave unspecified the exact valud-gf,. The idea LSO, and thaF(t) never becomes infinite.
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IV. TIME-DOMAIN PHASING FORMULA
BEYOND THE ADIABATIC APPROXIMATION

where

2 27q
Ar)=1--—-+
r

1
B(r)E m

In the above, we restricted ourselves to the standard
“adiabatic approximation,” where one estimates the phasing
by combining the energy-balance equatiok;,/dt=—F
with some resummed estimates for the energy and flux as
functions of the instantaneous circular orbital frequency. ReéThe 3pN version ofi has been recently obtaingd]. The
cently, Buonnano and Damol(] have introduced & new gamping forceF, is approximated by
approach to GWs from coalescing binaries which is no ¢

r3

(4.3b

longer limited to the adiabatic approximation, and which is

expected to describe rather accurately the transition between
the inspiral and the plunge, and to give also a first estimate of

the following plunge signal. The approach [af] is essen-
tially, like [5,6], a re-summation technique which consists of
two main ingredients(i) the “conservative”(damping-freg
part of the dynamicseffectively equivalent to the specifica-
tion of theE(v) in the previous approacheis resummed by

a new technique which replaces the two-body dynamics b
an effective one-body dynami¢g] and(ii) the “damping”
part of the dynamic$equivalent to the specification of the
F(v)] is constructed by borrowing the re-summation tech-
nique introduced if5]. In practical terms, the time-domain
waveform is obtained as the following function of the re-

(
dt

h(t)=Cv?(t)cod paw(D], v,

13
) , Pow=2¢.
4.9

The orbital phasep(t) entering Eq.(4.1) is given by inte-
grating a system of ODEs:

dr oA 23
_A:_(rvp P )1 4.2
dt 9Py rre
de 9H
—=w=—(,p;,Py), (4.2b
dt Py
dp, dH
—+—(r,p;,py) =0, (4.20
dt ar
dp, . .
¥= Folo(r,py,py))- (4.20

The reduced Hamiltoniad (of the associated one-body
problem is given, at the 2PN approximation, by
) - 1] ,

Vue
(4.33

H(r,p,,p,)

\/l+277

2 2

r p(p
1+ —+—
B(r) r2

1

7

. 1
Fom——Fp (02,
I

(4.9

where Fp (v,) =% 7% Fp (v,,) is the flux function used

in P approximants discussed above.
The system, Eq4.2), allows one to describe the smooth
transition which takes place between the inspiral and the

%Iunge[while the systen{2.2) becomes spuriously singular

at the LSO, wheré’ (v, 50) =0]. Referencd 7] advocated
to continue using Eq94.2) after the transition, to describe
the waveform emitted during the plunge and to match around
the “light ring” to a “merger” waveform, described, in the
first approximation, by the ringing of the least-damped quasi-
normal mode of a Kerr black ho[see Eq(6.2) of [7]]. This
technique is the most complete which is available at present.
It includes(in the best available approximation and for non-
spinning black holgsmost of the correct physics of the prob-
lem, and leads to a specific prediction for the complete wave-
form (inspiral + plunge + mergej emitted by coalescing
binaries. Because of its completeness, we shall use it as our
“fiducial exact” waveform in our comparison between dif-
ferent search templates.

The initial data needed in computing this effective one-
body waveform are as follows: In gravitational wave data

analysis we are normally given an initial frequenty(
=mmf,) corresponding to the lower cutoff of a detector’s
sensitivity window, at which to begin the waveform. The
initial phase of the signal will not be known in advance but
in order to gauge the optimal performance of our approxi-
mate templates we maximize the overlgee Sec. Yover

the initial phases of both the fiducial exact sigfiaé., the
effective-one-body waveformand the approximate tem-
plate. The general analytical result of this maximization was
discussed in Appendix B of DIS1. In the terminology of this
appendix, these fullphase-maximizedverlaps were called
the bestoverlapgthey are given by EqB.11) of DIS1]. As
discussed in Appendix B of DIS1, there are two distinct mea-
sures of the closeness of two signals: biestoverlap(maxi-
mized over the phases of both the template and the exact
signa) and theminimaxoverlap (maximized over the tem-
plate phase, with the worst possible exact phalsean in-
vestigation such as oufsvhere we are interested in the op-
timal mathematical closeness between different signtis
bestoverlap is the mathematically cleanest measure of close-
ness of two families of templates, and we shall use it here. In
addition, we shall also maximize over the other template
parametersin particular, the massgto get an intrinsic mea-
sure of the closeness of two families of templates. Note that
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the resultingfully maximizedoverlaps are different from the where c.c. denotes complex conjugation &df) is the
maximized ambiguity functioof Ref. [23] and thefitting  one-sided detector noise spectral —densifys)"e s
factor of Ref.[24]. The latter(identical, but given different zzshwo-side%eading to the factor of 2 in Eq5.2), compared
names by different authorgiuantities are well-defined mea- to the definition used ifi6], where we always use the two-
sures of the closeness of two signatdy within the (simpli-  sided nois¢ See the Appendix below for the noise perfor-
fying) approximation where signals in quadrature are ormances of the various detectors.
thogonal. This is, however, not the case for the signals we First, in Fig. 1 we compare the signal-to-noise ratios
consider, and at the accuracy at which we are working.  (SNR9, expected in GEO, LIGO and VIRGO, for equal
For the computation of the best overlaps, it is sufficient tomass binaries located at 100 Mpc, when detecting an “ex-
construct two signal waveforms and two template waveact” signalh by means of a bank of templatks
forms, one with phase equal to 0 and another with phase

equal tow/2. The rest of the initial datarg,p?,p?) are

- S (k)
found using p=—=——=|OkN|NH2 (53
N (kk)¥?
| 12Nz -n] .,
r —w
1—377/rg 0 Thick lines plot the SNR obtained whée=h, i.e. when the
template perfectly matches our fiducial exact waveform
=0, the effective one-body waveform including its “ringing
tail” ), and thin lines show how that gets degraded when we
0 ra—37 vz 0 j—'(P((L) use fork the best post-Newtonian templaf& [cf. Eq.(3.6)]
= = W _ _
Py 331215, Pr C(ro,pg)(dpg/dro) truncated at the test-mass LSEfsy=4400M/m Hz, as

4.5 suming still that the true signdd is the one-body effective
' waveform.(As usual, see, e.g., Sec. IV A §6], where we
averaged over all the anglg3he overlapgO(k,h) are maxi-

wherez(r) andC(r,p,) are given by ' . . .
mized over the time lag and the two phasas explained in

r3AZ(r) the previous section as well as over the two individual
2(f)= —— ", massesn; andm,*! The greater SNR achieved by effective
r3—3r2+5y one-body waveforms for higher masses, as compared to Fig.
1 of DIS2, is due to the plunge phase present in these wave-
1 A2(r) forms. We have checked that the final merger signal, mod-
C(r,py)= (4.6) eled as a quasi-normal mode, has a numerically insignificant

P (r,0p,)\z(r) (1—67/r?)

effect in both the SNR and the overlaps: the overlap between
our fiducial exact waveform and an effective one-body wave-

The plunge waveform is terminated when the radial coordiorm minus quasi-normal modes is greater than 0.98 for

nate attains the value at the light ring given by the solu-

tion to the equation,

ri—3r2+57=0. 4.7

The subsequent “merger” waveform is constructed as in

Ref.[7].

V. RESULTS AND CONCLUSIONS

double black holes of masses smaller than (4QV40)

The origin of the enhancement in SNR is easily under-
stood. The plunge waveform begins aroufheF 5o and
lasts until f=2F g5 [7]. The mass of a binary whose last
stable orbit velocity is equal to the characteristic velooity
of LIGO’s peak sensitivity isn=34.8M . Therefore, effec-
tive one-body waveforms from binaries of masses in the
range 381 ,=m=<70Mg have larger SNRs for LIGO, than
the usual SPA models. It is, therefore, crucial to go beyond

In this section we compare the performances of varioushe waveforms given i_n the adiabatic approximation to take
signal models by choosing as fiducial “exact” signal model @dvantage of these higher SNRs for larger masses. Indeed,
the effective one-body waveforms discussed in the previou!® SNRs being as high as 8, for one detector and a source at
section. An important yardstick for comparing different 100 Mpc, a network of four detectofsvo LIGOs, GEO and

waveforms is theoverlap Given two waveformsh and g
their overlap is defined as

(h.g)
<h,h>l/2<g,g>1/2'

In the above equation the scalar prod(igtis defined as

O(h,9)= (5.7

df

<h,g>=2JO %h(f)g*(f)Jrc.c. (5.2

VIRGO) will be able to reliably search for such systems as
far as 150—200 Mpc.

Next, in Table Il we show thdully maximizedoverlaps
of effective one-body waveforms with signal model$
(column 2, T® (column 3, T™ (column 4, T% (column §
andP (column 6 for four typical binaries. The time-domain

The plots are jagged because we have computed the SNR nu-
merically by first generating the waveform in the time domain and
then using its discrete Fourier transform in E§.3).
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TABLE lII. Fully maximized overlaps of the fiducial exatX) waveform(effective-one-body signair])
with (1) the standard time-domain post-Newtonian approximations of type t1 ant%3'f), given in Eq.
(2.6) and Eq.(2.8) and Table 11,(2) the frequency-domain usual stationary phase approximations of type 1
and 2 (T™, T™), given in Egs.(3.5), (3.3 and(3.6) and Table II, and?3) the time-domairP approximants
(P)—energy function as given by Eq&.14) and Egs.(2.16), flux function in Egs.(2.20 and(2.21), and
coefficients enlisted in Tables | and Il. The overlaps, which are computed using the LIGO noise curve, are
maximized not only over the time lag and the initial phases of both the fiducial exact signal and the
approximate templatéy using two signal and two template waveforms, with phases equal to @/2{&)),
but also over the two masses, andm, of the approximate signal model&he optimal masses are given
below the overlaps.The time-domairT® approximants are terminated whEr=0 and the other signals are
terminated wherF(t)=f, g0, the LSO frequency being determined consistently udijgv)=0 where
Ea(v) is the corresponding approximate energy function.

k (X.T) (X.T) (X.Ti) (X.T) (X,Po

m1: m2: 15M®

4 0.8881 0.9488 0.8644 0.8144 0.8928
(15.2,14.1 (16.3, 16.4 (14.7, 14.9 (16.0,16.1 (14.7, 15.1

5 0.8794 0.8479 0.7808 0.8602 0.8929
(17.3, 16.4 (17.6, 17.9 (16.8, 16.7 (15.2,14.4 (15.4,14.3

m;=m,=10Mg

4 0.9604 0.9298 0.9581 0.9109 0.9616
(10.1,9.6 (10.5, 10.3 (10.0, 9.7 (10.5, 10.6 (10.0, 10.2

5 0.8814 0.8490 0.8616 0.9529 0.9610
(11.4, 10.6 (11.4, 11.7 (10.7, 11.0 (10.3, 9.7 (10.4, 9.7

m1: 10M@ ,m2: 14M@

4 0.9847 0.9673 0.9835 0.9721 0.9937
(1.27,11.) (0.95,16.6 (1.27,11.) (0.96, 16.4 (1.35,10.5
5 0.9452 0.6811 0.9394 0.9922 0.9941
(0.82, 20.4 (1.11, 15.7 (0.82, 20.4 (1.34,10.5 (1.37,10.2

ml: m2: 14M®

4 0.8828 0.8538 0.8830 0.8503 0.9719
(1.40, 1.39 (1.42, 1.39 (1.40, 1.39 (1.44, 1.37 (1.47, 1.34

5 0.8522 0.7643 0.8522 0.9994 0.9945
(1.46, 1.35 (1.43, 1.38 (1.46, 1.35 (1.45, 1.3 (1.49, 1.32

T®® approximants are terminated whén=0 and the other be compared since they quote values for the “advanced”
approximants are terminated whEft) = f o, the LSO be- LI_GO.) Some Taylor models are “_effec_tual(’la_lrge maxi-
ing determined consistently usifth(v) =0, whereE,(v) is mized overlapk but at the cost of high biases in the param-
the corresponding approximate energy function. The overeters(i-e. in the terminology of5] they are not “faithful”).
laps are computed with th@nitial) LIGO noise curve given FOr eéample in the case of a fiducial exact (1.4)0) sys-
in the Appendix. temTg reaches 0.9452 for mass values (0.8)20). ThusT

In addition to maximization over the time lags and the approximants in the time domain are significantly inferior to
phases as explained earlier, we also maximize over th&e other models, both for their erratic convergence proper-
masses of the approximate waveforms, keeping the masstigs (the v°-accurate templates being worse than the
of the exact waveforms fixed. We note that none of the modv *-accurate ongsand for their poor parameter estimation
els have good overlaps with the “exact” one for heavier performance.
mass binaries. This is as expected since it is for heavier To further explore the performance of the various models
masses that the characteristic plunge phase makes a signiie plot in Fig. 2 their intrinsic frequency evolutions in the
cant difference between the approximate and the exact moddiGO band; i.e., we plotF/F? versusF. The plot corre-
els. The relative performances of the 2PN and 2.5PN Taylosponds, in the fiducial exact case, to a binary black hole of
templates depends on the choice of the scheme used as(#0,10M . For the approximate models we exhibit the fre-
evident from columns 3 and 4 in Table Ill. This is consistentquency evolution of the system that achieves the maximum
with the results of Refl.25]. (The numerical results must not overlap. As expected, the maximum overlap is obtained for
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FIG. 3. The effective noisén,=\fS,(f) in various ground-

FIG. 1. Signal-to-noise ratios in GEO, LIGO-I and VIRGO ased interferometers.

when using as Fourier-domain template the post-Newtonian mode
Eq. (3.6 (T'?), truncated at the test maB§so=4400Mo/m Hz  template parameters such that the intrinsic frequency evolu-
(thin lines, compared to the optimal one obtained when the tem+jon of the template waveform is “tangent” to the exact one,
plate coincides with the fiducial “exactleffective one-bodysig-  near the maximum sensitivity of the detector. This can al-
nal (thick lines. As usual, we averaged over all the angles. Theways be achieved by fitting the mass parameters. The ques-
overlaps are maximized over the time lags, the phases, and the MWRn is whether such a local “tangency” ensures a suffi-
individual massesn,; and m,. The plots are jagged because we iently good “global” agreement. For instance, we note that
have computed the SNR numerically by first generating the fiducia, he T%3 2.5 PN models fare poorly iglobally r’nimicking
“exact” waveform in the time domain and then using its discrete the frequéncy evolution of the exact waveform. This is con-
i ter SNR achieved by effec- . . . . )
Fourier transform in Eq(S.3). The greater achieved by etiec gistent with their returning the worst overlaps of all. On the

tive one-body waveforms for higher masses, as compared to Fig. 2
of DIS2, is due to the plunge phase present in these waveformgther hand, even though tfié” models do not reproduce the

Observe that the presence of the plunge phase in the latter signifX@Ct model over as large a range as fhapproximants,

cantly (up to a factor of 1.5 increases the SNR for masses  (hey achieve nearly as large overlaps asRi@pproximants,

>35M,,. Using the effective one-body templates will, therefore, Pecause they can be maday optimizing the massgso

enhance the search volume of the interferometric network by a facagree well with the exact model over most of the sensitive

tor of 3 or 4. part of the LIGO band. Theé® approximants are able to
mimic the “exact” evolution the best with little bias in the
masses but, being based on the adiabatic approximation, they
fail to capture the smooth transition to pluntfeThe filters

10" 102 10° 10" 102 10° using the effective one-body approach go beyond the adia-
10° : | 10° batic approximation and include a smooth transition to
plunge and merger. They, therefore, supersede the adiabatic-
107" L -1 limited P approximants. This difference between the two re-
summed versions of binary signal models is important for
102 27T TN _2 masses larger than aboutM\2g .
// \\\ Note that, following[ 7], we have generated the effective-
10 / 107 one-body model using the adimensional titvet/m. (This
. trivially extends beyond the 2PN approximatif2].) It has
10° o/ 10 been recently emphasizg26] (in the context of tha andP
------------ 2PN approximants, where one can also simplify formulas by
107 S ™| Gk Y p 1107 working with t=t/m) that there are many computational ad-
e //\\ vantages in working with such adimensionalized time mod-
10° g NG B 77 S 107 els. Indeed, the phase evolution becomes completely inde-
/’ N i’ N pendent of the total mass of the system. This, together with
,04101, L B e W L s ‘4..1‘0310-3 the fact that the evolution can be computed from a system of
F(Hz) F(Hz)

FIG. 2. The frequency evolution of the various approximate ?We have confirmed that tHeapproximants return the best over-
models is compared with the fiducial exact (10Q) model inthe  laps when truncated at tiedefined LSO. Maximizing over a cut-
LIGO band. To indicate the effect on the overlap, we also plot theoff frequency smaller than the-definedF o (Which turns out to
weighting function 1t,(f) for initial LIGO (not to scalg whichis  be higher than the effective-one-body-defined Jodees not im-
a measure of the detector’s sensitivity. prove the overlaps.
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TABLE IV. One-sided noise power spectral densiti®$SDsg of initial interferometersS,,(f). For each
detector the noise PSD is given in terms of a dimensionless frequendyf, and rises steeply above a
lower cutoff fg.

Detector fo/Hz fo/Hz 10x S, (x)/Hz !

GEO 40 150 [(3.4x) 39+ 34x 1+ 20(1— X2+ x*2)/(1+x?/2)]
LIGO-I 40 150 9.00(4.4%) %5+ 0.16¢*52+ 0.52+ 0.32%?]
TAMA 75 400 79x 5+ 13 1+ 9(1+x3)]

VIRGO 20 500 3.2/(6.23) ®+2x 1+ 1+x?]

ODEs, makes the computation and storage of templates revhich introduces some flexibility both in the phasing evolu-
quired in a search for binary black holes and neutron stars ition during the plunge and in the location of the matching to
interferometer data computationally inexpensive as comthe ring-down(with the possible inclusion of several quasi-
pared to the conventional method that uses a 2-dimensionabrmal modes Finally, we emphasize the importance of
lattice of templates. modelling the transition to the plunge and of including the
We are currently estimating the effects of unknown pa-signal emitted during the plunge: this leads to a very signifi-
rameters in the 3PN motion and wave generaf@r]l. The cant enhancement of the signal-to-noise ratio, from about 4.5
extension of the type of work presented here to go beyontb 8, for a source at 100 Mpc.
the restricted post-Newtonian approach and also to include
the effects due to spin and eccentricity, needs to be system- ACKNOWLEDGMENTS
atically investigated. ] ) ]
To conclude, we believe that many of the new technical The GEO noise curve is based on data provided by G.

tools developed if5,6] and briefly summarized above are Cagnoli and J. Hough, LIGO is a fit to the envelope of the
useful ingredients for constructing effectual and fast-data from K. Blackburn, TAMA is from M.-K. Fujimoto and

Padebased resummation of the GW flux introduced5his ~ for sharing hemATHEMATICA codes for waveform genera-

an important ingredient of the construction [m] of an ac- tion with us. B.R.l. and B.S.S. WOUld. ||k.e to thank |HES,
curate non-adiabatic waveform arid) the improved SPA France, and AEI, Germany, for hospitality during the final
technique derived ifi6] could be used to derive analytical Stages of this work.

approximations to the frequency-domain version of these

effective-one-body waveforms. In view of our ignorance of APPENDIX: NOISE POWER SPECTRUM

the “exact” waveform emitted near and after the LSO cross- OF INITIAL INTERFEROMETERS

ing, the best strategy is probably to construct a bank of tem-

I which cover a large ran f ibilities with ial . . :
plates ch cover a large range of possibilities with specia ower spectral densities of the various ground-based inter-

weight being given to the templates incorporating the bes ) .
testged re-su?n?nation methO(EJEh asP apprrt;ximang[s, and erometers(Table IV) and plot the effective noise hn
=fS,(f) in Fig. 3.

the effective-one-body approa€h]). Because of the admit-

tedly quantitatively rough, but plausibly qualitatively correct,

description of the plunge signal given by the EOB approach,

we also recommend to include some sort of multi-parameter **0ur effective noisé, is the same as what has been convention-
template which qualitatively looks like Fig. 12 ¢¥], but  ally calledh,,in the literature.

In this short appendix we list the expected one-sided noise
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Recently [1], an erratum has appeared correcting some coefficients in the computation of tails in the flux of gravitational
waves L from compact binaries in Ref. [2]. As a consequence, some post-Newtonian coefficients in the paper [3] are
modified. The correction affects only the n-dependent terms in the coefficients at 2.5PN order, i.e. column 6 of Table 1.

TABLE . Taylor coefficients of the flux, phase, time and frequency. N denotes the ‘“‘Newtonian
value” and 0 = [n(ts, — 1)/(5m)]" /3. In all cases the k = O coefficient is 1 and the k = 1
coefficient is zero. In certain cases the 2.5 PN term involves v> loguv or #° log term rather than a
v or #° term. In those cases we conventionally include the logv dependence in the listed
coefficient. Chirp parameters 74, k = 1, are related to the expansion parameters ¢} and ¢} via
7 = (8¢pY — 517)/3. We have given the simplified expressions for these in all cases, except
k =5 where no simplification occurs due to the presence of the log term in ¢?.

k N 2 3 4 5
N 220 1247 _ 35y 44711 92717 657> _ (8191 5837
Fi 5 336 12 4m 9072 504 T 18 (o2 + 550
v __ 5m 743 4 lln _ 27 3058673 | 5429n 4 6177’ _ (177129 _ 13
Iy 256m0° T3 5 508032 ) , % 3T
v 1 3715 4 557 _ 15293365 | 271457 | 308579 38645 _ 657 v
bk 16m0° 008 T 12 107 fot6064 | 1008 T 144 o~ g)7InGH)
(Z;t 2 3715 4 557 _ 3w 9275495 2848750 185577 38645 _ “J)Wln(i)
k 76 8064 ' 96 4 14450688 ' 258048 2048 21504~ 256 O1so
fit 03 743 g _ 3w 1855099 . 569757n , 371x? _ (729 _ 13
Fy Sam %88 T 32 T0 14450688 1 258048 T 2048 Gis01 ~ 2356 MT
A 3
4 %7 3+ 11n) 167 268 1(8¢pY —51%)
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