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Mean-Field to Tricritical Crossover Behavior near the Smectic-A4 ~Smectic-C * Tricritical Point
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Precise x-ray measurements of the tilt angle near the smectic-4-smectic-C* tricritical point show
clear evidence of mean-field to tricritical crossover behavior; the mean-field region shrinks to zero at the

tricritical point.
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Smectic-4 (hereafter denoted as 4) and smectic-C
(denoted C) liquid crystals are orientationally ordered
fluids which possess quasi-long-range positional order in
one dimension represented by a mass-density wave. The
wave vector of this density wave is along the director in
the case of the A4 phase, while it is tilted in the case of
the C phase. When the constituent molecules are opti-
cally active, a chiral C (or C*) phase is observed which
exhibits ferroelectric properties.! Experimental evi-
dence?* indicates that the A-C* transition is mainly
driven by intermolecular forces producing the C phase
and hence the primary order parameter associated with
the A-C* transition is, as in the case of the A-C transi-
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tion, the tilt angle.

The nature of the A-C or A-C* transition is of consid-
erable interest. Although it was initially proposed that
this transition should exhibit heliumlike critical behav-
ior,> subsequent studies®!! have clearly shown that the
A-C as well as the 4-C* transition is mean-field-like
with a sixth-order term in the Landau free-energy ex-
pansion. As first pointed out by Huang and Viner,!' the
presence of the sixth-order term implies that the mean-
field-like A-C transition is always close to a mean-field
tricritical point with a concomitant existence of a “cross-
over” behavior from a mean-field-like region to a tri-
critical-like region. It is also to be expected that as the
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FIG. 1. Tilt angle (¢) vs temperature plots in the C* phase of the X =16.92 mixture of 7JOPDOB in C;. The solid lines are fits of
the data by a power law. The exponent B has been evaluated by our limiting the data (see text) to four temperature ranges, viz., (a)
103 mK, (b) 240 mK, (c) 490 mK, and (d) 930 mK. The corresponding B values are marked. The error bars represent one standard

deviation statistical error.
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tricritical point (TCP) is approached the mean-field
(MF) region should shrink, going to zero at the TCP.
Recent x-ray studies'’ on 4-(3-methyl-2-chloropenta-
noyloxy)-4'-heptyloxy biphenyl or C5, a material exhibit-
ing large spontaneous polarization,'> have established
that the A-C* transition in this material is first order. It
was also shown that addition of a second compound, viz.,
4-heptyloxy-4'-decyloxybenzoate (7JOPDOB), drives the
transition towards second order, leading to a TCP.

In this Letter we present the results of our high-
resolution x-ray measurements of the tilt angle on the
second-order side of the TCP in the C;-7OPDOB binary
system. These results clearly show a mean-field to tri-
critical crossover behavior, the mean-field range shrink-
ing to zero at the TCP. We also show that the data for a
concentration very close to the TCP yield a tricritical ex-
ponent (0.25) for the tilt angle.

The x-ray diffraction experiments have been conduct-
ed with use of a computer-controlled Guinier diffracto-
meter (Huber model 644). The details of the setup have
been described earlier.!*'> In order to acquire the ex-
haustive data that are necessary for an accurate deter-
mination of the critical exponent (8) associated with the
tilt angle, the temperature of the sample was varied at a
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FIG. 2. Variation of  with temperature range for different
mixtures of the C;-7OPDOB binary system. The concentra-
tions are 16.92 (filled triangles), 15.49 (squares), 14.02 (open
circles), 13.60 (open triangles), and 13.30 (filled circles). In
the mean-field (MF) region $=0.5 and is independent of the
temperature range. In the crossover region B values are strong-
ly dependent on the range. The MF range is seen to shrink
with decreasing X. The mixture with X=13.30 for which no
MF region is seen by power-law fit is practically at the tricriti-
cal point (TCP). Inset: Plot of B vs range for this mixture
over an extended temperature range (=10°C) shows the satu-
ration of B at the tricritical value of 0.25.
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slow rate (=100 mK/h) and the data were collected at
temperature intervals of =5 mK, the temperature being
constant to about 2 mK during any data collection. The
relative accuracy in the determination of the wave vector
was 2x10”% A~'. In all, five mixtures of the C;-
70PDOB system was studied whose concentrations (X,
expressed in mole percent of 70PDOB) were 16.92,
15.49, 14.02, 13.60, and 13.30. The tilt angle in the C*
phase was evaluated from the expression ¢ =cos _'(dct/
d,4), where the subscripts denote the phases in which the
layer spacing d (=2n/q) was measured. The efficacy of
such an evaluation (which assumes a “rigid-rod” behav-
ior'®) has been verified by a direct determination of ¢
from the “four-spot” x-ray diffraction photographs.'’
The values of ¢ obtained by these two methods agreed
exactly.

The tilt-angle data were analyzed with use of a power
law,'® viz., ¢ =¢ol(T 4o+ —T)/T 4c+1? and a “variable-
range” procedure— we chose (arbitrarily) different limit-
ing values of temperature (7}) in the C* phase and in
each case the data between T and T ,» were fitted by
the power law and the exponent 8 was evaluated. A non-
linear least-squares-fit program was used, with ¢o, T 4+,
and B being free parameters. For each concentration,
about fifteen limiting ranges varying from 40 mK to 1 K
were chosen and the x2 values for the fits were typically
in the range 0.6-2.0. The accuracy in the determination
of B is reckoned to be *0.01 or better. Fits carried out
with use of the data for the 16.92 mixture for four typi-
cal ranges, viz., 103, 250, 490, and 930 mK are shown in
Fig. 1. It is seen that for the lowest range (103 mK) the
power-law fit gives a mean-field exponent, i.e., 8 =0.50.
With increasing range, B decreases, signifying mean-field
to tricritical crossover behavior. Figure 2 shows the plot
of B versus temperature range for the different concen-
trations. It is seen that with decreasing X, i.e., as the
TCP is approached, the temperature range (Tqp) over
which the mean-field g value of 0.5 is obtained gets pro-
gressively smaller, until finally, for the X =13.30 mix-
ture, there appears to be no mean-field range at all. For
this mixture, we have also evaluated B over a wide range
of temperature (=10°C) in the C* phase. Such an

TABLE I. The transition temperature (7 ,.+), mean-field
range (1mr), crossover temperature (7o), and the range of the
smectic-A phase for the different mixtures of C7-7OPDOB sys-
tem. (74 is the isotropic-smectic-A transition temperature.)

Mole TAC‘ T]A-TACt
percent (°0) 10%tmF 10320 (@)
16.92 44.668 1.03 2.17 15.5
15.49 45.120 0.72 1.41 14.8
14.02 45.738 0.31 0.71 14.1
13.60 46.095 0.13 0.39 13.7
13.30 46.271 cee 0.05 13.4
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evaluation (inset of Fig. 2) shows that B gets saturated
at 0.25, the tricritical value.

We have also fitted our tilt-angle data for all the con-
centrations to an equation derived from the extended
mean-field expression with a sixth-order term,’ i.e.,

o=00l(1+31/1) /2 =112,

where t( is the mean-field to tricritical crossover temper-
ature expressed in reduced temperature. The values of
to, obtained from such fits, are listed in Table I along
with the mean-field range, tmr (i.e., Tmr expressed in re-
duced temperature), as obtained from power-law fits. It
is clear that both t¢ and #pmF become smaller as TCP is
approached. Interestingly, for X =13.30, tmF is nearly
zero, while the value of #¢ is also extremely small, viz.,
5x%10 3, showing that this concentration is practically at
or extremely close to the TCP. This inference is also
substantiated by the power-law fit which yields g =0.25.
Thus we have shown clear evidence of mean-field to tri-
critical crossover behavior near the 4-C* mean-field tri-
critical point. The mean-field range, as determined from
the power-law fit, shrinks and goes to zero at TCP. This
scenario is represented in Fig. 3.

Finally, it is relevant to comment on the origin of the
A-C* tricritical point. It has been shown'® that the tem-
perature range of the A phase plays an important role in
determining the nature of the 4-C or A-C* transition.
The decrease of the A phase range appears to lead to
smaller zo values, i.e., the mean-field-like transition is
driven towards a tricritical point and subsequently
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FIG. 3. Phase diagram for the C7-70PDOB system showing
the mean-field to tricritical crossover behavior near the
smectic-4~-smectic-C* tricritical point. The A-C* phase
boundary on the first-order (triangles) as well as on the
second-order (circles) side of TCP have been obtained optical-
ly. The dashed line representing the MF to tricritical crossover
has been identified by power-law fits of the tilt-angle data (see
Fig. 2). The MF region shrinks to zero at TCP.

to a first-order transition. The range of the 4 phase
for C;, which exhibits a first-order A-C* transition,
is =7°C. Recently another material'® 4-(3-methyl-2-
chlorobutanoyloxy)-4'-heptyloxybiphenyl (A7) also ex-
hibiting large spontaneous polarization and with an A4
phase range of =8°C has been found to exhibit a first-
order A-C* transition. On the other hand, a number of
chiral substances with a similar or even smaller 4 range
are known to exhibit only a second-order 4-C* transi-
tion.'® These are, however, materials with a small spon-
taneous polarization. Thus the first-order nature of the
A-C* transition in C; and A; may perhaps be associated
with large spontaneous polarization. Clearly, further
studies are needed to understand the origin of the 4-C*
tricritical point.
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