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The relativistic time-dependent multipole expansion for electromagnetism and linearized gravity
in the region outside a spatially compact source has been obtained directly using the formalism of
irreducible Cartesian (i.e., symmetric trace-free) tensors. In the electromagnetic case, our results
confirm the validity of the results obtained earlier by Campbell, Macek, and Morgan using the De-
bye potential formalism. However, in the more complicated linearized gravity case, the greater
algebraic transparence of the Cartesian multipole approach has allowed us to obtain, for the first
time, fully correct closed-form expressions for the time-dependent mass and spin multipole mo-
ments (the results of Campbell et al. for the mass moments turning out to be incorrect). The first
two terms in the slow-motion expansion of the gravitational moments are explicitly calculated and
shown to be equivalent to earlier results by Thorne and by Blanchet and Damour.

I. INTRODUCTION

For sources localized in a finite region of space, the
multipole decomposition is one of the most convenient
and useful ways of describing the external field. Both the
derivation and structure of the multipole expansion are
simple in the stationary scalar case (appropriate to elec-
trostatics and Newtonian gravity) where the external
solution of the Poisson equation

Ap=—4mp (1.1

can be written either as
m Y (©,P)

sX)=4r3 3 21Qir1 ”;,H (1.2a)
or

dX)=3 (_)[Q, Y. P R (1.2b)

So toTvom R

where, respectively,

O = [ dx Y5, (0,0)rp(x) (1.32)
or

0 .= [axx" - x"pix), (1.3b)

where we use capital letters for the field point and lower-
case ones for the source point, R =|X|, 3,=9/3X’, and
where the angular brackets on the right-hand side of Eq.
(1.3b) mean “symmetrize and take the trace-free part.”
All the objects appearing in Eqgs. (1.2) and (1.3) are evalu-
ated at the same “instantaneous” time. In this simple
. case the “Y,, -type” [Eq. (1.2a)] or the equivalent (see
below) “symmetric and trace-free”” (STF) [Eq. (1.2b)] mul-
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tipole expansions are equally simple and equally con-
venient. On the other hand, the relativistic time-
dependent higher-spin case (which involves inhomogene-
ous wave equations for vectorial or tensorial fields) is
more complicated and less standardized. The usual
route' consists of (i) reducing the wave equations to Hel-
moltz equations via a time-Fourier transform and (ii)
decomposing the higher-spin fields in vectorial or tensori-
al spherical harmonics. However, this approach has the
double disadvantage of (i) masking the fact that the rela-
tivistic time-dependent moments involve not only a spa-
tial integration on the source, but also a time integration,
and (ii) leading to somewhat unwieldy final expressions
(because of the appearance of vectorial or tensorial spher-
ical harmonics).

In an earlier investigation Campbell, Macek, and Mor-
gan? (CMM) performed the multipole decomposition for
both the scalar, electromagnetic, and linearized gravity
cases without a time-Fourier transform and explicitly
demonstrated that the time-dependent multipole mo-
ments are the (usual type) spatial moments of some
effective source functions given as particular weighted
time averages over the actual source distributions.
Though the scalar case can be handled directly and
elegantly using standard spherical harmonics [Y},,(6,¢)],
the extension to the vector and tensor cases is more in-
volved. Rather than using directly vectorial and tensorial
harmonics, CMM have reduced the problem to an
equivalent scalar one, by means of the Debye potential
formalism.® This formalism is elegant and works with
gauge-invariant fields. However, it is somewhat indirect
and obliges one to add by hand to the general radiative
multipole moments the lower-order static multipoles / =0
for electromagnetism (spin = 1) and /=0,1 for linear
gravitation (spin = 2). On the other hand, it is well
known that a convenient alternative to the use of stan-
dard spherical harmonics consists of working with irre-
ducible Cartesian tensors.* In three dimensions the
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Cartesian tensors irreducible under the group of spatial
rotations can be expressed in terms of symmetric and
trace-free tensors. Let us recall that the set of STF ten-
sors with [ indices, T'¢; ;,...;), i, =1,2,3 constitutes a

(2/ +1)-dimensional vector space whxch spans the same
irreducible representation of SO(3) as the set of Y,,,
—1<m =< [the equivalence between Eqgs. (1.2a) and
(1.2b) follows from this]. The STF formalism has the ad-
vantage of rendering quite transparent the algebraic
structure of vectorial and tensorial harmonics expan-
sions. Its usefulness in the context of gravitation has
been particularly emphasized by Thorne® and confirmed
by several recent investigations.*’ For the scalar case,
Blanchet and Damour’ (BD-II) have obtained directly us-
ing the STF formalism the multipole expansion of a re-
tarded field in the region outside its spatially compact
support, as also simple closed-form STF expressions for
the multipole moments. These results were originally
worked on by CMM using spherical harmonics. In the
linearized gravity case,® Thorne® has derived the full
slow-motion expansions of the mass and spin moments
both in the STF and in the Y, forms, without, however,
obtaining closed-form expressions for the moments. In
the first post-Newtonian (1PN) approximation of general
relativity, Blanchet and Damour’ have derived the first
two terms in the slow-motion expansion of the mass mo-
ments.

In this paper we shall show how the use of STF tech-
niques makes possible an elegant generalization of the
closed-form scalar results to the vector and tensor cases
without going through the Debye potential route. The
analysis includes, automatically, the lower-order mo-
ments as particular cases, on the same footing as the oth-
er moments. In principle, the final results for the radia-
tive moments obtained via the STF technique should be
equivalent to those obtained via the Debye potential tech-
nique. However, the somewhat greater algebraic trans-
parence of the STF approach will allow us to detect an
error in the final results of CMM and to get, for the first
time, fully correct closed-form expressions for the time-
dependent linearized gravity multipole moments.

The paper is organized as follows. In the next section
we recall the principal features of irreducible Cartesian
tensors and summarize the relevant new formulas we
need for our analysis. In Sec. III the scalar case is sum-
marized briefly for completeness. In Sec. IV we extend
the formalism to deal with the electromagnetic case,
display the electric and magnetic moments, discuss the
/=0 moment, and compare our results with CMM. Sec-
tion V treats, directly by STF methods, the case of linear-
ized gravity. The retarded linearized gravitational field is
expressed, everywhere outside the source, in terms of
some relativistic mass and spin moments (modulo a gauge
transformation). In the slow-motion limit, both our mass
and spin moments agree with the earlier results of Thorne
and BD-II at 1PN level in contrast with the mass mo-
ments of CMM, which do not. We compare our results
with those obtained by the Debye potential technique
earlier and study the /=0,1 moments in detail. We
display different equivalent forms of the moments, and
Sec. VI contains our concluding remarks.
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II. IRREDUCIBLE CARTESIAN TENSORS
OR SYMMETRIC TRACE-FREE FORMALISM

In this paper we employ the multi-index notation intro-
duced by Blanchet and Damour® (BD-I). An upper-case
Latin letter denotes a multi-index, while the correspond-
ing lower-case letter denotes its number of indices. Thus
L=iyiy iy, P=iyiy iy, Q—1=ijiy - i,_,. When
many multi-indices appear simultaneously, it is implicit

that  distinct carrier letters are used, e.g.,
A PQ=A,~l gy For repeated multi-indices, sum-
P q
mation is implied so that A,Bf=A4,B,
=3 ) A; ... B; ... [spatial indices, i,j=1,2,3,
p

are freely raised or lowered by means of the Cartesian

metric --=8ij'"diag(+1,+1,+1)]. We also use
"—[21—1(3‘ V212, ny=x'/r, 8;=8/3x", xt=x"1---x",

nk=n't-..p' 3, =9; ~ -, M=1—2)(1—4) (2
or 1). The totally antisymmetric Levi-Civita tensor is

denoted by €;;; (with €,,3=+1).
Given a Cartesian tensor A4p, we denote its symmetric
part with parentheses so that

2 gy "7t ’

al(p)
o

Ap=Ay 0=

1 @.1)
) p!

o running over all permutations of (1,2,...,p).

The symmetric and trace-free part of A4p is denoted
equivalently by Ap=A(p)=A; i) and sometimes as
STF( A4p). The explicit expression for the STF part is’

P

~ [pr2]
AP:A<P)= é a£8 (iyiy - 8i2k~1i2kS12k+1 "'[P)alal cragag
(2.2a)
Sp=Ap) > (2.2b)
— k__ P! (2p —2k—1)
=(— R 2.2
=k (2p — N2k (2.2¢)
[p /2] denoting the integer part of p /2.
In particular, for /=2,
Tij:T(ij)n__jlisists ’ (2.3)

while, for [ =3,

fijk = Tijiy = 5085 Tikss) T8 Tiss) + 81 T jiss)) - (2.4)

At the heart of the STF formalism are the important
results that (i) the set of all symmetric-trace-free Carte-
sian tensors of rank / generates an irreducible representa-
tion of weight / and dimension 2/+1 of the group of
proper rotations SO(3), and (ii) any reducible tensor of
rank p can be decomposed in a sum of algebraically in-
dependent pieces each of which belongs to an irreducible
representation and hence is expressible in terms of some
“brick” STF tensor of rank =p.

More explicitly, one can decompose any arbltrary ten-
sor Tp 1nto a finite sum of terms of the form y5R,,
where y% is a tensor invariant under SO(3), i.e., made of
products of €;; and §,;, and where the “brick” R, is an
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irreducible STF [ tensor (/ <p) obtained by contracting
Tp with 8’s and €’s before applying a STF projection.
This result, a generalization of the well-known result of
decomposing an arbitrary matrix into its trace, antisym-
metric part, and symmetric traceless part, may be proven
by induction and corresponds in group theory to repeat-
edly expressing a product of representations in terms
of direct sums of irreducible representations:
D®D,=D_4® ‘' @®D;, (j=1+s addition rule in
quantum language). The simplest case (s=1) reads, in
STF notation®,

~ 21 —1 5(—)
UT,=R; 741 Esi¢hy ioll)s+ 21+15i(i,R2~1> g
(2.5)
where
RiYi=U, Ty, (2.6a)
R”=U, ?b(L~1€z,)ab ) (2.6b)

s; T, = ,j{2>+STF<

(+1) (0)
ij HpZVyje T8, Hi” 1) +e

al(i,

where the vertical bars around the index a on the right-
hand side mean that this index is excluded from the
bracketed (STF) operation, and where

2

H'E =8¢ .. Toy, (2.12a)
(o= 2l g pd (2.12b)

HiY = 1+2Sc<z, L—1€i, Ded > :

6/2I—1) & &

HO=—""—"=8 T 1y, 2.12
L (I+1)(21+3) a<ll L—1)a ( C)
(—p_20—1DR2[—1) 5 »

HL~1 (J+1)21 +1) Tbc(L 261, ab > (2.12d)

213 5 &

H~ 2’—71—15,,,,%“_2, (2.12¢)

K, =15,T, (2.12f)
As a particular case, we obtain

l
natyfip =g + 575 (Ao —18ipp TRy (1 -184)a)
Sapfir I(1—1)
(21 +3)  (2I+1)21—1)
X287 87y (2.13)
In proving Eg. (2.11) and also performing

simplifications later, one needs to make explicit or “peel”
a particular fixed index in an STF expression. The fol-
lowing “peeling” formula is useful in these cir-
cumstances:

ai{i
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RI”\=UT,_,. (2.6¢)

__ A particular case of the above formula is when U; =n;
T, = . In this case we obtain simply

—ﬁ,L+211+18,(,1nL_1> (2.7
Related formulas of direct use in later sections are
ro; A, =+ n;y, — (21 + 1Ay , (2.8)
a,.()?L)=15,.<,.12L_1> , (2.9)
ro n, =8, —n,n, . (2.10)

To address the case of gravitation (spin 2), i.e., the
symmetric tensor case, we need to generalize Egs. (2.5)
and (2.6). In group-theoretic terms, we need to decom-
pose into irreducible pieces the product D;®D;®D,.
This can be implemented by repeated use of Egs. (2.5)

and (2.6). This leads, for the decomposition of the ten-
sorial product of a symmetric tensor of rank 2, S;;, with a
STF tensor of rank /, T}, to
Hi Y08, o +8i,HLZ58, 1) +8,K, 2.11)
[
(l +1)V(i?L): Vi?L +l?i(L~1Vi1>
2] N
Y VaTa<L—18i1>i . (2.14)

In the above we have collected various formulas
relevant to this paper. For a more complete list, the
reader is referred to Thorne® and to Appendix A of BD-1.

Finally, our signature is (— + -+ +), spacetime indices
range from O to 3, and are denoted by Greek indices,
while space indices (1,2,3) are denoted by Latin indices.
We use the summation convention for all repeated indices
irrespective of their position. The flat metric is denoted
by f,, Wwith components diag(—1,+1,+1, +1) in
Lorentzian coordinates. We denote the field point by
X*=(¢T,X), while the source points are denoted by
x*=(ct,x), where c is the velocity of light. Beware of the
fact that we use the same notation 9, for 3/0X # and
d/8xH", since it is clear from the context what we mean.
We denote szﬂva#ava—c‘zaz/atl, G denotes
Newton’s gravitational constant, and the electromagnetic
units are Gaussian.

III. SCALAR FIELD

In order to make our presentation self-contained, we
review briefly the scalar case in this section. The stan-
dard textbook discussion of the relativistic time-
dependent multipole analysis is via the time Fourier
transform and may be found, in e.g., Jackson.! This ap-
proach, however, does not make explicit the time integra-
tion linking multipole moments to the actual evolution of
the source and motivated CMM (Ref. 2) to discuss mul-
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tipole decomposition without time-Fourier expansion.
Their analysis exhibits the time-dependent multipole mo-
ments in a form akin to the well-known stationary-case
expressions with the source functions being replaced by a
weighted time average over the source. The same result
was reworked directly using STF methods in BD-II, and
we shall summarize their treatment. Though for the sca-
lar case the above two treatments are similar, the general-
ization via the STF route to the vector and tensor cases,
as shown in this paper, is more straightforward than via
the Debye potential route, the latter in addition having
an inherent blind spot with regard to the constant low-
order multipoles (i.e., / <s, where s is the spin of the con-
sidered field).

Consider a source S(x,t) that is spatially confined in a
region |x| <7, i.e., S(x,2)=0if |x| >r,. Let V be the re-

tarded solution of
av=—4xrS , (3.1)

i.e.,

rx,1= [ (3.2)

Then, in the region exterior to the source, V(X,T) ad-
mits the exact multipole expansion

s x,T~%lX—x|‘.

. (—)]a FL(T_R/C)
V(X,T)—I§O T R , (3.3)
where aLEal/aXi‘E)Xi2 ~'~8Xi’, and where the func-

tions F; (U)=F,

tipole moments of a particular /-dependent weighted time
average of the source S(x,t), namely,

.,-I(U) are just the usual STF mul-

F (U= [d*x 2 15,(x,U) , (3.4)
where X LEx“‘ cee xi’),

§,(x,U)=f_‘ldz 8,(2)S x,U+% (3.5)
where r =|x|, and

B(z)=2LE D1 (1 oy (3.6)

21+11!

The time average (3.5) has its physical origin in the
time delays T—|X—x|/c due to the finite velocity of
propagation. From Eq. (3.6) it follows that

S dz82)=1 (3.7)

and

]lim 5,(z)=6(z) , (3.8)

where 8(z) is the one-dimensional Dirac distribution.
Equation (3.8) thus implies that for large / the time delays
can be neglected. It may also be worth mentioning that
the following expression for §,(z) provides the link be-
tween the CMM or BD analysis and the Fourier-
transform approach:
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Mf+wd(wr)eiwrz—-l—l£w_") (39)

Y(1—2z%)8,(z)= ,
z 12 2 — (wr)l

where Y(x) denotes Heaviside’s step function.

In some applications (notably post-Newtonian expan-
sions of gravitational fields), it is necessary to consider
slow-motion or long-wavelength expansion of the time
average in Eq. (3.5). Using Euler’s B function, one finds’

E (21+1) r¥ g%
s 2pMQI+2p+1)1 2 U
1 r?

U+ o3 23

1 rt
. S—f— ~ C )]
821 13)21+5) o> ®UIF

xU)—

S(x,U)

(x,U)

(3.10)

where S"(x, U)=(38"/3U")S(x,U).

IV. ELECTROMAGNETIC CASE

In the Lorentz gauge (3, 4#=0), the four-potential 4*
satisfies

OAXX,T)= —4—7TJ"(X T), (4.1a)
where
O=£"3,9, A*=($,4%, J¢=(cp,J°) . (4.1b)

Each component of 4# may be considered as a scalar
field, and if the source J* is spatially compact supported,
then, in the region exterior to the source, r > r,, we have
from Egs. (3.3)-(3.6) the following relativistic multipole
expansion of the retarded potentials A4#:

w (_ 1 F, (U)
X, T)=3 ) (4.22)
=0 R
w0 (_ G, (U)
A,~(X,T)=%2 (l') . LR , (4.2b)
1=0 N
where
UzT—% , (4.3a)
FL U= [dx %, f_lldz 8,(z)p |x, (4.3b)
G ()= [d xfo dz 8 X, U+% , (430
and
n
al(z)z%}ll;;(l—zz)’ : 4.3d)

The Cartesian tensor G; is reducible and may be
decomposed as explained in Sec. II [Egs. (2.5) and (2.6)]
into three irreducible pieces denoted by U (up), C (cen-
tral), D (down), and defined as
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U 1=Gyry s (4.4a) l 21—1

G =U+ 77, Cr-at 578G P-n -
CL=Gu(L—1€i)ab » (4.4b) 4.5)
D; =Gy, » (4.4¢) Substituting the decomposition (4.5) in the expansion
(4.2b) and simplifying the ensuing expressions, we finally
so that N obtain, after suitable changes of the summation index,
_ 5 =), |2 (4.62)
¢ EO notlR ’ -oa
12 (=) Uip - / Dy,
A,(X, T)=— or —1
i : c,§1 I [ Lt R (I +1)(21+3) R
/ Cor—1 2] —1 D,
+—c¢. . —_— .
l+1elabaaL~l R + 21+181L~1 R > (46b)

where A=23,9,, and where all the irreducible tensors on the right-hand side of Eq. (4.6b) are evaluated at the retarded
argument U=T—R /c.

Since D;; =D,; (U), we have A[R ~'D;; _(U)]=c 2R ~'D,; _,. Further, the last term in (4.6b) can be transformed
away by the gauge transformation

, 1 © (=) 21—1 Dy,
A::A——— . .
=AY 21 I 2041 E71TR ] (4.72)
1 =2 (=) 21—1 Dy _,
=g+ — _ .
¥'=¢ 2/ 1t 204+1 FTHOR @70
Introducing
1 20 +1 - o
—F, —— =Ty >0, 4.8
C=F— G Uinai i Pe 120 (4.82)
! ..

K,=—IU,+———————P,, I>1, (4.8b)
r L+ +3)c? F
M,=—C,, 1>1, (4.8¢)

where all quantities are evaluated at the retarded argument U, and where the overdot denotes the derivative with
respect to U, we obtain, after the gauge transformation (4.7),

L& (=) oL

¢_IE:0 n LR | 4.92)
1 2 (=) Ky l M,

4 == B —_t _ 4.9b
i czl I O - R 1+1€'"”a"L ! R (4.90)

The expressions for F, U, C, and D in terms of the source charge p and current J¢ follow from Eqs. (4.4), (4.3b), and
(4.3c). We have

F,o=[d% [ dz8,z)p, 4.10

7 f x X f_l 2 8,(z)p (4.10a)
1 ~ ~

U = [dx fﬂdz 81202 1Ty (4.10b)
1 F

c.=[d*x f_ldz 81T R —1€iyab > (4.10c)

D, = [a [’ T % .

=[d xf_ldz 841207, Rar (4.10d)

where the left-hand sides are evaluated at the retarded argument U, and where the tilde denotes a functional depen-
dence of the z-retarded form
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Tr=Jg# x,U+ﬁcz— : (4.11)
Let us now evaluate explicitly the combination Q; +K; (for / >1). From Egs. (4.8),
. . 1 1 .
+K,=F, —1lU,—— ——D, . .
193 L= LT 2 43 (4.12)
The first term on the right-hand side using Eq. (4.10a) yields
. 1 rz
F (U)= | d’x% dz8p |x,U+—= |, 4.13
L (U) f xfoﬂlz,px p ( a)
which on using the local conservation of charge
9,J#=0 (4.13b)
leads to
Fo=[dxz, [dzs, |—-L T+ 20, 2501, (4.13¢)
dx'! c 'oU

where d /dx' denotes the “total space derivative” of J *=J%(x,7(x)), which includes an extra term coming from the
space dependence of the z-retarded time argument: 7(x)=U+|x|z/c. On integrating by parts the first term with
respect to x and the second term with respect to z and reorganizing the terms, we obtain

_ 3! N - 1 .. 1 3. (1, dr N 7
Fo=1d xf_ldzs,x(L_lJ,.[>+ S Dt G ey fd xf_]dzdzz(ﬁlﬂ)x(L_IJ,[) ) 4.13d)

Substituting for FL in Eq. (4.12) using (4.13d), we then obtain

1 d?

o — 3 1 _ —
0, +K; ldef_le oSt 2 +3) dz?

841 |XL1diy - (4.14)

From the definition (4.3d) of §;(z), it is easy to check that the expression in parentheses vanishes identically. Thus we
have proven that, for / > 1,

K, =—0,, (4.152)

and one checks easily that the same method of proof for / =0 yields the conservation of charge

We finally obtain, from Eq. (4.9),
o (.l (U) |
sx,n=3 L3, & , (4.162)
= R
1 & (=) Qi _,(U) 1 My, —,(U)
' - ) _— 4.16b
AI(X’T) c 1§1 N aL—l R + 1+1 6wzbaaL—l R ( )

Equations (4.16) show that, modulo a gauge transformation which preserves the Lorentz condition (3,4 "*=0), the
exterior electromagnetic potentials can be expressed in terms of two infinite sets of STF time-dependent multipole mo-
ments: the “electric moments” Q(; ...;)(U) and the “magnetic” ones M; ...;)(U). The structural simplicity and

transparence of the STF multipole expansion (4.16) is to be contrasted with the corresponding results written with vec-
torial harmonics! or Debye potentials.?
From Eqgs. (4.8a), (4.10a), and (4.10d), we have our final expression for the electric multipole moments:

~ -~ 1 21 +1 s 0 %
X p——3

— 3 1 21 9 >
o (= [d xf_ldz U T3 R g de [ 120, (4.17a)

where we recall that the tilde denotes the functional dependence (4.11), and that X; denotes the STF projection on all
indices of x'! - - x ! [so that one must beware that £, V, %%, (x,V,)].

Similarly, from Egs. (4.8¢c) and (4.10c), we obtain after some straightforward manipulation the following expression
for the magnetic multipole moments:
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x<L_1m, y, 121,

fdxf sz

where the “magnetization density” m; is given by

m=xXJ .
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(4.17b)

(4.17¢)

The above forms can be transformed into forms earlier obtained by CMM using the Debye potential formalism with

some amount of algebra. We obtain

_ (41 21 ~
QL= —2]+1(l+1 fdxfo dz(1—z)' (I +1)p+—

_ 1 @i+ Vo
My==7 0, [axz, [’ dz(1=2*)V-(xXT), 1

Unlike the corresponding result obtained by CMM,
our method of proof shows that the expression (4.18a) is
also valid for / =0 and that we do not have to append the
I =0 multipole (i.e., the total charge) by hand. Note also
that in Eq. (4.18b) the tilde operation could be performed
after the spatial divergence [because x X V#(x)=0].

For / =0, Eq. (4.17a), integrating by parts with respect
to z, gives

0=[" dzy(z) [d’x |p—Zn,T (4.19)

The above expression [in which 8y(z) is simply 1] for
the total charge looks unfamiliar compared to the stan-
dard one:

0= [d’xp(x,0) .

However, as J* is conserved, one can more generally
write

(4.20)

0= [ Jraz, “21)

where X is an arbitrary spacelike hypersurface with sur-
face element dEH. On the surface t=const, Eq. (4.21)

yields Eq. (4.20), while if we consider the ‘“z-retarded
cone” =, defined by t —rz/c =const (=U), Eq. (4.21)
yields
-1 0_ 3
Q= p fzz(J zn“J")zzd X
= [dx ﬁ—%n“i“ , (4.22)

whose average over z&[—1,+1] leads indeed to Eq.

(4.19). A direct technical proof of the z independence of
the spatial integral of J* =p—n?J “z/c follows from
*
7 1 d 5, 4.23)
9z ¢ dx'

which is easily seen to be a consequence of 9,J#=0.

V. LINEARIZED GRAVITY

The field equations of linearized  gravity
(8uv=SpvTh,, ) may be conveniently written in the har-
monic gauge (3,4 *¥=0) in terms of

A
2p , 120, (4.182)
>1. (4.18b)
[
hy= fuh (5.1
as
O (X, == 278 7 (x,1) . (5.2)

As in the previous section, if the source T#" is compact
supported, then, in the region exterior to the source, we
have the following multipole expansions for 4,

N
B X, T)=—7 2 = | (5.3a)
C
e — I G[ (U)
RO, =27 z =1 s
1=
i 4G (—) H;; (U)
h X, T)"'CT]:O N 9, R , (5.3¢c)
where
_ 3. 1 0 1z
=[d xfoﬂdz 8/(2)T% |x, U+ J ,  (5.42)
d 2T |x, U+ 2 .
f xfo sz X, - | (5.4b)
Hy (U)= [dx %, f_lldz 8/(2)T" |x, U+~ (5.4¢)

As before, we note that G,; is reducible and may be
decomposed into three irreducible pieces (for convenience
the numerical factors are absorbed in the “bricks” in this
section):

Gl(‘t_)l EG<L+1> , (5.5a)
go=—t_ €; (5.5b)
L = 1+1 ab(L —1%i;)ab > .
_ 21 —1
Gl =—or0 57 q Gaar—1 > (5.5¢)
such that
Gy =Gl +€ui;,Gr’l 1ya +8:(;,GL =) - (5.6)

Similarly, H;; is also reducible and, adapting Egs.
(2.11) and (2.12), can be decomposed into six irreducible
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. 20 —=1D2I—1
pieces H{ Y= (l+1)(21+1)) STF (H (cqyper —26; ap) » (5.7d)
(+2) — L—1 -1
H; 5 =H 1)) 5 (5.7a)
5l gy =23y (5.7¢)
L {ac)acL —2 > Te
H{YY =775 STF(H (cippar 1€, yea) > (5.7b) 21 +1
Ky =3Hyyp » (5.79
H(0)= M—)—STF(H ) (5.7¢) e
L= u+1)2r+3) (i) dal —1 : such that
J
H =H{f +STFSTF( €ai Hup Uy + 8 Hip —y +85 €0y, Hop 5 +8; 8 H~%)+8;K, . (5.8)

Substituting the decompositions, Egs. (5.6) and (5.8), in (5.3b) and (5.3c¢), respectively, and simplifying the ensuing ex-
pressions we finally obtain, after some lengthy algebra,

ROX,T)=3 3, [R A (U], (5.9a)
120
RO%UX,T)=3 9, [RT'B(U]+ I {3, 1[R 'C;p _(U)]+ €00, 1[R "Dy _(N]}, (5.9b)
120 1~1
RYUX,T)=3 {aijL[R_lgL )1+96;; AL [RTIFLUN+ I (8- 1i[R™ gj)L~1 U) 1+ €ai8jyar —1[R "' Hyp ()]}
120 1>1
+12 {0, 2[R “ljijL —2(U)]+3,, »[R _leab(i‘Tj)bL (O, (5.9¢)
=2
where
_\
A, =2 (zv) F,, 1>0, (5.10a)
Cc !
__46 (=) G
B, TR 120, (5.10b)
4G (—) (+) / H(—)
e, === IG , 1>1, 5.10
DT INT L 0+ 0+t (5.10¢)
Y
$L=§ (l—')Gg‘”, 1>1, (5.10d)
c !
_4G (=) HY .
e TRV ES TS TR (310¢)
rr(—2)
4G (_)[ 1 (0) HL
F, = K, —~H®— , 1>0, (5.10f)
Lot i TR 3TE 42U+ 1210 +3)c?
4G (—) (0) 21 iy (—2)
g, === HO— H , 1>1, 5.10
Loes L a+2u+n@i+3)e2 - (5.10g)
7, =— 4G (=) H Y 1>1 (5.10h)
t P T .
_4G6 () (+2) I—1 7 (0) =1 d* (—2) ;
I, == I—1DH (H™M) |, 1=2, (5.10)
LT l( ) Q- U2+ D@ +3)21 + et dU ‘
4G (=) (+1) I—1 (=) .
T,="Z L | g — , 1>2. (5.10)
Eooer L (I+1)020+1)e2 b !

The F’s, G’s, and H’s on the right-hand side of Eq. (5.10) are explicitly known in terms of the source T#". From Egs.
4), (5.5), and (5.7), we have

F (D= [d*%, f_lldz 8T, (5.11a)

G W= [ax ! dzs, g, (5.11b)
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GOU)= 1+1 —[d xf dz 8T “Ry(1 1€ yab » (5.11¢)
(-) 20+1 ¢ o3 7 Oaz
GLW=3" [d xf_1d28,+1T RaL > (5.11d)
H{Y( U)=fd3xf1 dz8, % T i) (5.11e)
H{TV(U)= 2(1de3 f dz 8, ISTF( iy Rar —2€ica) > (5.11f)
(0) — 61(21 3
(U)= __"—_(1+1)(21+3 [d*x f dz 8 STF( R —1) > (5.11g)
_ 20021 +1)
H = gy S [ dz 8 e —i€pan - (5.11h)
_ + .
H(U)= ;h; fax[' A28, TocRuar (5.119)
— 1 3 aa :
K, (U) dexfoAleS,T , (5.11j)

where f’[j =T;;—95;T,, /3, and where the tilde denotes the same z-retarded functional dependence as in Eq. (4.11) of the
previous section.
As in BD-I, we find it convenient to introduce the new STF tensors

M (U)=—(A, +2B, +&, +F,), 1=0, (5.12a)
S, (=+ [D +g?'{L}, 1>1, (5.12b)
W, (U)=— [$L+%{§L], 120, (5.12¢)
X, (NH=—16,, 120, (5.12d)
Y, (U)=+B,+E,+F.), 120, (5.12¢)
Z,(U)=—1H, 121. (5.12f)
In Egs. (5.9) the & “¥ are given in terms of ten functions AL,.ZBL, ey T, . However, not all of them are independent.
To explore the various relations among them, consider (¢; —M; — Y, ), which, employing Egs. (5.10) and (5.12), gives
S : Gi
@L——ML—Y,_~—IG‘L+’+FL—2I+1 , (5.13)
where ~ denotes equality up to an overall factor (4G /c*)(—)'/1!
Using Egs. (5.11) and the conservation equation for 7%, i.e.,
. d 0, 2 d o0
TOO —_ . T01+_ '__TOI’ .14
0 dx'( ) Cn,aU (5.14)
we obtain, after some amount of manipulation involving integration by parts with respect to both x“ and z,
2
AL —17 100 1 d78; 4
Y, ~ T —&,_;+ , 5.15
e, =M =Y, ~1 [d'x [ dz 2 %ttt i) 4 613

which vanishes since as before the bracketed expression is identically zero. Note that this is the counterpart in linear-
ized gravity of the electromagnetic identity Eq. (4.15). Thus

C,=M,+Y, . (5.16)

Next, from Egs. (5.10) and (5.12),

2G;™ 2

1+1 + (I +1)21+3)
Using Eq. (5.11), the conservation equation
d

T == (T +T %, %, (5.18)
,0 dx bc

9L+2YL~%H£°’+2KL— H{? (5.17)
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and suitable integration by parts with respect to x? and z, after some algebra we obtain, for the last two terms of Eq.
(5.17),

_(Ti(li)l(jl—:T) [ax2, [ e S’Tm—% Jaix [ laz 8T %, 8,5, (5.19)
which is identical to the first two terms except for a sign. Thus
G, =-2Y, . (5.20)
Similarly,
(I+2) g

— (T, +28,)~IH TV =260+ H{Y ., (5.21)

(I+1)21+1)
Using Eqgs. (5.11) and (5.18) and the identity satisfied by the second derivative of §, , ;, it follows

T,=-28, . (5.22)
Finally,
T M)~ FL - Ti’f dd—(;Gi_)+KL TIU=DHTE 3(21_—21 ) H+ (I+1 )(2311:11)(21 +3) dd[;“ (H7
(5.23)
Using Egs. (5.11), (2.13), and the following identity coming from Egs. (5.14) and (5.18):
T® = é ﬁ( T9)—an; % ;%( TH=TU3n)Z+T "fn,.njz—i , (5.24)
we obtain, after a fair amount of algebra,
N 2
—LH M)~ = fd3x%fildz (21 +3)1(21 +5) d:;;z +8,41—8 T, (5.25)
which vanishes because of the same §, identity as before.
Thus
I, =—M, . (5.26)
Summarizing, Egs. (5.16), (5.20), (5.22), and (5.26) are the relations between the ten coefficients in Eq. (5.9):
C,=M,+Y,, I>1, (5.27a)
G,==-2Y,, 121, (5.27b)
T,=—28;, 1=2, (5.27¢)
I, =—M;, 1>2. (5.27d)
It is easy to show that for / =0 and 1 the same method of proof yields
Y=0, (5.28a)
M=0, (5.28b)
M=0, (5.28¢)
S;=0, (5.284)
which include the conservation laws for mass, center of mass, and angular momentum.
Adapting the treatment in BD-I to our case, Eqgs. (5.27) together with the inverse of (5.12),
AL =—(M, — W, +X,+Y,), (5.29a)
B, =—(W,—X,), (5.29b)
D, =+, +Z,), (5.29¢)

6, =—2X, , (5.29d)
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7L=+(WL +XL+YL) , (5.29¢)
H,=—22Z, , (5.29f)
show that the general 7“8 can be expressed in terms of M, S, W, X, Y, and Z. We also redefine
Mpev=—1 27— )IMEM , (5.30a)
!
Snew %CJLII)'( — )ISEId . (5.30b)

Denoting by M the set of STF tensors { M/*"(U),S;*(U)} and W the set { W, (U),X,(U),Y (U),Z,(U)} and denot-
ing by brackets a functional dependence, we transform the 4 °? to the “canonical” form by a gauge transformation of
the form ,

h 2B [M]=h “P[M, W ]+3"wP[ W]+ 3w [W]—f*P wH W], (5.31a)
where

AW]=3 oL [R™'W (U],

>0
wW]=3 3, [R™'X (N]+ 3 (3, _4[R 'Y, (V)] + €458, 1[R'Zyp (D]} . (5.31b)
>0 =1

It is easily seen that the gauge transformation (5.31) preserves the harmonicity condition th can =0 and yields a mul-
tipole expansion for the external canonical & % field depending only on M= {M,,S }:

FRXD=+% 5 ‘,,) 3LIR MU, (5.320
C” >0
1\
fon X, D= _i LR My (D)) —24? <(1 M ¢ sdar 2[R 'Sy (U] (5.32b)
=1 121 '
Fixn=+4 s Sl R, v+ —) [R e, :Sp —o(U)] (5.32¢)
can'“»» C4 < I - ijL —2 C4 =, (l+1 aL—2 ab(iPj)bL —2 . .

From Egs. (5.10)-(5.12) a d (5.30), we have our final expression for the ‘“mass multipole moments” on eliminating
H}% using Egs. (5.20) and (5.17):

! o 4(21+1) 3 2(21 +1) 3’ -
M (U)=G [d’x | dz |82, 60— —5— o~ G 814 R —T |,
L J f-l FLOT a0 F 21 +3) o 3u % T A U 12l +5) O 5
120, (5.33)
where, following BD-II, we have introduced
00 sS
o= (5.34a)
c
Oa
o= r R (5.34b)
c
and where the tilde has the same meaning as before [Eq. @.11)].
Similarly, using Egs. (5.10)-(5.12) and (5.30), we get, for the “spin multipole moments,”
1 2] +1 0 =
S;(U)=GSTF [ d? dz |8,%, _\€; px 0 ————"————8, 1€ Raer 12T |, 121 (5.35)
L 1 f kal Z |0y X, 16[ pX O cz(l+2)(21+3) 1+1%iabXacL laU

It can be noted that, both in Egs. (5.33) and (5.35), the spatlal stresses T%° can be replaced by their trace-free projec-
tion 7%= T —§%T /3. Moreover, it will be important in future applications'® of our results to note that, in deriving
Egs. (5.33) and (5.35), the only integral identity satisfied by T#" which has been used is Eq. (5.20).

The expressions for M; and S; [Egs. (5.33) and (5.35), respectively], can be rewritten, after some amount of algebra
and the use of the local conservation law for T#", in the forms
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=_G_+ 700 ss 7400 4 AP ssy 7 Oa
M, =3 (l+1)(1+2)fdxfo dz 8, |(1 + 1) +2)( TP+ T=)+2L [(:r +T5)—2(1+2)T %“n, ]
2r 00 ab Oa
(T ©+T %n,n,—22T %n,) |, 120, (5.36)
c
sp=—9 — 1 [a%xz, [dzs0,(rxsy, 121 (5.37)
L c I1(1+2) L - :
where
. ~ . s . xa,L .
§)i=(1+2)T %+ LCZ—TO’——C—T‘" ) (5.37b)

It should be emphasized that, as in the electromagnetic case, both our original expressions (5.33)—-(5.35), and our al-
ternative forms (5.36) and (5.37), are valid not only for the radiative moments (/ = 2), but also for the static ones (I <1).

Though the expression for .S; matches that CMM obtained by the Debye potential formalism, the one for M; does
not. To investigate further this difference, we proceed to obtain the first two terms in the slow-motion expansion
(¢ ~'—0) of the above expressions for M; and S; in Egs. (5.33) and (5.35). Recalling that T®=0(c?), T**=0(c), and
T°=0(1), and expanding the retarded expressions in powers of 7z /c, we find, on using Eq. (3.10),

12,7 41+l o T,

2 00 S5
fdx (TZ+ T+ (I+1)20+3)

+0

1
= ] , (5.38)

where now the tildes have disappeared because all the source terms on the right-hand side are evaluated at the same
(coordinate ) time U as the left-hand side, M, (U). The expression (5.38) for the mass moment coincides with the
(linearized gravity limit of the) result of BD-II for the first post-Newtonian (1PN) radiative mass moment of weakly
self-gravitating isolated systems. This confirms the validity of Eq. (5.36) in contrast with the corresponding final result
in CMM which does not satisfy this necessary limit requirement. As the Debye method should, in principle, give re-
sults equivalent to the STF ones, some algebraic mistake must have crept in the analysis of CMM. However, there are
not enough intermediate steps of their calculation in the paper to allow one to trace back where this occurred. Let us
note in passing that it has been further shown in BD-II that Eq. (5.38), as it stands (i.e., written in terms of the contra-
variant components of T#"), is (surprisingly) still valid when the 1PN nonlinearities are taken into account.

One can give an alternative expression for M; (valid only in the linearized gravity limit) by exploiting the conserva-
tion law T#" =0. Integrating by parts and simplifying yields

_G 3
ML—:;S”{Ffdx

004 2[(1—1) S50
d +(l+1)(21+3)

61(1—1) . s,
O e sy
(I+1)20+3)  Fr—%

[(I—-1)+9)

UL/ERPN 2
E S A

) (5.39)

in agreement with the linearized gravity limit of the otherwise formally divergent radiative mass moments derived by
Thorne? [his Eq. (5.32a)] (see also Appendix A of BD-II).
Similarly, the first two terms of the slow-motion expansion of the spin moment expression (5.35) are

TOb 1 r2 TOb

N 2 A+1
c 221 +3) ¢2 ¢

Ror 1€ T
X1 +2)(21 +3) ek 1Thab

5. =G STF J & |20 160 +0

1
—4] . (5.40)

Equation (5.40) is the spin analogue of the BD expression (5.38). Using manipulations similar to the ones above, it
can be transformed into

S.=GSTF [d’x|3,_, |e B PR
L L L—1 ijab ¢ c2(1+2)(21+3) ijab L—1
1 (—1)+4) o P 1
_—— T +0|—= |, (5.41)
T2 20220 +3) Cie™ R 4

which agrees with the linearized gravity limit of the formally divergent result of Thorne [his Egs. (5.32b)-(5.33)] for ra-
diative spin moments at the 1PN level.

Let us go back to the exact closed-form expressions for the gravitational multipoles obtained above and consider the
properties of the low-order moments (! <1). For [ =0 the expression (5.33) reduces to (when putting G =1 for simplici-
ty)
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1 ~ ~ 4 T 1. Xap T
Mc?= [d’x f_ldz BT O+T )= T8x,——+ 58, “Cz (5.42)
After some simplification, using properties of the §,’s, we obtain
1 ~ ~
Mc*= | d’ dz 8o(T ©—znT %) . 5.43
c f X fAl z 8¢ zn ) ( a)

In this form this is completely analogous to the expression (4.19) for Q in the electromagnetic case and a similar argu-
ment using the conservation equation (5.14) yields the standard expression for the total mass:

Mc?= [d’x T(x,1) .

(5.43b)

As before, the difference in (5.43a) and (5.43b) is due to the surfaces on which one integrates: a family of z-retarded
cones in (5.43a) and the constant-¢ surface in (5.43b). Next, we consider the mass dipole (putting also ¢ =1 for simplici-

ty)
4X3

1 [ 7 & A 0a
Mi=fd3xf_ldz ST O+ T %) —===5,2, T %+

2X35

which, after some manipulation, yields

M,—=fd3x flidz 8, [x(TO—zn, T —rz(T%—2zn, T™)] .

The compatibility between Eq. (5.45a) and the usual form
M,-=fd3x x ‘T

2—3(2;‘3?83*\“1,[7;“17 ’ (544)
(5.45a)
(5.45b)

is proven in a manner similar to the one used for Q or M, i.e., by noting that Eq. (5.45a) is an average over z of a family
of integrals over z-retarded cones. We must, however, now make use not only of the conservation of four-momentum,
but also of the conservation of relativistic angular momentum:

3,J*"=0,
with
JoBY = xaBv— xBrav

(5.46a)

(5.46b)

Similarly, we find, with the help of Egs. (5.46), that the total spin can be written in the equivalent forms

S;= [d f_lldz €10y (8%, T 00— 18,2, T %)
=fd3x fdz 81[€iapXo (T —2zn T *)]

— 3 0b
—fd X €gpXg T .

VI. SUMMARY AND CONCLUSION

In this paper we have shown explicitly how the use of
irreducible Cartesian tensors allowed a unified, and
structurally transparent, treatment of the relativistic
time-dependent multipole expansion for long-range fields,
generated by a compact source, having helicities O (sca-
lar), 1 (electromagnetism), or 2 (linearized gravity). Our
treatment differs from previous ones in making use nei-
ther of Fourier transforms,! vectorial or tensorial har-
monics,! nor Debye potentials.? Our direct time-domain
analysis makes clear that, as in the scalar case,? the mul-
tipole moments are just spatial symmetric and trace-free
(STF) moments of particular weighted time averages over
the source distribution.

In the electromagnetic case, our results [Eqgs. (4.17a)
and (4.17b)] for the electric and magnetic moments are
new alternative forms equivalent to, and therefore
confirming, the corresponding expressions earlier ob-

(5.47a)
(5.47b)

(5.47¢)

tained by Campbell, Macek, and Morgan.2 However, our
treatment allows us to encompass straightforwardly the
nonradiative zeroth-order moment (total charge) instead
of having to add it by hand as in Ref. 2. In the linearized
gravity case, the added efficiency of the STF technique
has allowed us to obtain for the first time correct closed-
form expressions for both the mass and spin moments in
terms of the stress-energy distribution of the source: our
Egs. (5.33)—(5.35) or, equivalently, Egs. (5.36) and (5.37).
Only the spin moments had been correctly obtained in
the earlier attempt of Campbell, Macek, and Morgan. As
in the helicity-1 case, our treatment encompasses directly
the nonradiative low-order moments (mass, dipole, and
spin) and obtains new closed-form expressions for these
[Egs. (5.42), (5.44), and (5.47a)], whose equivalence with
the usual ones is discussed. Finally, we have given, in
various forms, the first two terms of the slow-motion ex-
pansions of the gravitational moments and shown their
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equivalence with the corresponding earlier results of
Thorne® and Blanchet and Damour.” We shall show in a
separate publication!® how the new form (5.40) for the
slow-motion expansion of the spin moments is a useful
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tool in the study, within the nonlinear general-relativistic
framework, of the generation of gravitational waves at
the sesqui-post-Newtonian (1.5PN) approximation (i.e.,
one ¢ ~ ! order beyond the recent results of Ref. 7).
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