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Tunneling conductance of Luttinger liquids: Resonances
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We have calculated the two-probe Landauer conductance of a one-channel quantum wire containing a
Luttinger liquid and connected to two noninteracting leads through tunnel barriers. The tunneling conductance
shows broad resonances as a function of the bias voltage, this being a manifestation of the spin-charge
separation. In the limit of zero bias and zero barrier, the tunneling conductance reduces to the ballistic contact
valuee?/h per channel[S0163-18206)51020-9

A quasi-one-dimensional micrometer-length quantumlength, that clearly reveal the spin-charge separation inherent
wire containing repulsively interacting electrons and con-to 1DLL, in that the oscillations may be interpreted as the
nected to wide electron reservoirs at the two ends is a noreatphenomenon resulting from the different speeds of the
trivial mesoscopic transport system of considerable currerdPin and the charge carriers. Our calculations are for the

interest, made realizable experimentally by the recent adg¢€ro-temperature case.

vances in nanoheterostructure technolbgyminimum elec- . For an infinitely long spm-charge—separate(_j 1D Luttinger
: : liquid, the retarded one-electron Green functi®x,E) in
tronic model for such a system is a homogeneous on

dimensional Luttinger liquid1DLL) for the quantum wire, ‘the mixed space_x?l— energy €) representation igin the

nsional ne : » obvious notatioj?
terminating into two 1D leads containing noninteracting
electrons. The latter is to simulate the higher-dimensional
reservoirs that act as perfect absorbers and emitters of elec-
trons. An exact well-known result for the ballistic case of

i o
G(x,E)= U—@(x)e'kF”'XE/ﬁ”HJO(AvxE/Zhvg)
g

noninteracting electrons' is thg quantization of t.he t\_/vo—probe + _@(_X)e—|kFx—|xE/ﬁvHJO(AUXE/2ﬁvé)
Landauer conductance in units ef/27% per spin orienta- Ug
tion per transverse chanrfel. Very recently, however, —Grt G,

Maslov and Storfehave shown theoretically that the same
result holds equally exactly also in the absence of a repulsivlé"'t
interaction among electrons in the quantum wire, modeled as
a 1DLL. That there is no renormalization of the quantized
conductance by a repulsive interaction is also consistent with Av=v,~v,. 1)
the recent experimental resdltsn very long, high mobility
GaAs wires, but disagrees with some earlier calculatfofis,
where the interaction parametére., thecorrelation expo-

— 1/2. -1_ -1 -1
vg_(vpvo') /1 Uy _%(Up +Uo. )l

Here we have assumed the simplest case of absence of the
large-momentum transfer backscattering. Also, the forward

for the wi licitly in th d scattering momentum cutoffA("!) has been set to zefo.
nent K) for the wire appears explicitly in the conductance 1y ggsential feature @(x,E) is its decomposition into the

=Ke*/2ah per channel. Her& =1 for the noninteracting right-only- and the left-only-moving parts. It is this feature
electrons an& <1 for repulsive interaction. of 1DLL that enables us, despite interactions, to treat the
This absence of renormalization of the conductance byWo-probe tunne”ng conductance pr0b|era_ la
interaction, while presumably exact, does conceal the essepandauer—as one of multiple scattering and transmission of
tial feature of the Luttinger liquid, namely, the spin-chargean electron through the two tunnel barriers separating the
separatio. ! In this work, we have calculated a related finite-length quantum wire and the terminal leads as follows.
guantity of interest, namely, the tunneliggjfferential) con- Consider an electron wave of unit amplitude incident on
ductancedl/dV as function of the bias voltagevj for a  the barrier atx=0 from the left lead at an enerdy above
1DLL quantum wire of lengtiL connected to the two ideal the Fermi energy. Let the amplitude transmission coefficient
(noninteracting electromdeads through tunnel barriefdthe  of the tunneling barrier b&(E). Then the amplitude for the
latter make it possible to inject electrons at a tunable energglectron injected ak=0 will be t(E). Now this injected
E=(eV) above the Fermi level for the wieThe derived amplitude atx=0 will be propagated adiabatically towards
expression for the conductance shows broad, roughly equthe right barrier by the right-moving propagat@g(x,E)
spaced resonances as a function of the bias voltage, or wirgoperly normalized to unity at=0. Thus the propagated
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amplitude at x=L wil be t(e)gr(L,E) with  function matching. In this case we can propagate the injected
gr(X,E)=GRr(X,E)/GR(0,E). The barriers atx=L trans- wave amplitude ¢;,(x=0,E) at the incident energyE
mits t(E)gr(L,E)t(E) and reflects t(E)gr(L,E)r(E), through the composition ruté

wherer(E) is the amplitude reflection coefficient for the

barrier, with|t(E)|?+ |r (E)|2= 1. This reflected amplitude is .

now propagated to the left barrierxat0 with an amplitude , ih o .
t(E)gr(L,E)r(E)g.(—L,E), and so on for the multiple P(X,E)=Go(x—x -E)(ﬁ W) Pin(x",E), (4)
scatterings. The total transmitted amplitu@éE) is then

given by the series

where (#/2m) alax’' gives the mean of the velocities on the

T(E)=t(E)gr(L,E)t(E)+t(E)gr(L,E)r(E) two sides ofx’ =0, andGy is the Green function for a one-
electron problem fox>0. This ensures that thg(x,E) for
Xg (—L,E)r (E)gr(L,E)t(E)+ - -- x>0 is matched to the incident amplitudg;,,(0,E) at
x=0. In the present case we have assumed such a matching
_ t?(E)gr(L,E) ) for the case of our 1DLL, made plausible in the absence of
- 1-r%E)gr(L,E)g (—L,E)" @ backscattering.

A number of remarks are in order now to clarify the main
Here we have assumed the two barriers to be identical an@PProximation involved in the idealized Luttinger-liquid
symmetrical. The tunneling conductanGV) with E set model adopted here, and.the extent of its robustn.ess relevant
; ; to our treatment of tunneling. First, we have considered here
equal toeV is now given by - . : - :
a minimum model of spin Luttinger liquid that retains the
spin-charge separation, but without the additional complica-

_ 5[ INn 5 tion of the anomalous power-law correlation function. The
G(V)= av) "l E T(E)] latter involves scattering between the left- and the right-
going branches caused by the unscreened short-ranged two-
(ezlwﬁ)|t(E)|4J§(eAv LV/ZﬁUS) body repulsion. Our expressidiEq. (1)] for the electron

= |1—exp(iQ)rz(E)Jé(eAvLV/2ﬁv§)|2' () propa_gator is valid only 12 ltlhe corresponding Iimit of the
coupling constang-ology.”™ " Second, the question natu-
o ) rally arises as to whether our tunneling results are robust
whereQ=2L[kg+E/Aivy]. This is our main result. against this neglect of interbranch backscattering. This ques-
It is readily seen that in the limiv—0 andt(E)—1,  {jon becomes particularly relevant in view of the recent pub-
r(E)—0, i.e., in the zero-bias zero-barrier limit, the conduc-jished work* where the short-ranged repulsive interaction is
tance reduces to the well-known express@iinfi (as for  ghown to lead to vanishing linear conductance even for an
the spin case As function of the bias voltag¥, the differ-  apitrarily weak one-body scatterer—a subtle manifestation
ential tunneling conductand8(V) shows oscillations, with  of the (soft) Coulomb gap. Inasmuch as in our case the tun-
equispaced peaks separatedd~ (fivg/eL)(vg/Av). FOr  ne| parrier does cause backscattering, one could conclude
vg~10° ms™!, Av/vg~0.1, and L~10 pm, we get that there would be a vanishing tunneling conductanae—
oV~0.5 mV. Of course, the bias voltage must be kept lowyanishing bias voltageThe latter, of course, is the whole
enough to keep the number of active transverse channejpint. We have considered here the differential tunneling
fixed (=1 in the present cageThese oscillations, of course, conductance as a function of the bias voltage. The latter in-
disappear with the velocity differenc&v—0, suggesting volves carrier injection at energiemvay from the Fermi
their origin in the spin-charge separation. level. The vanishing of the tunneling density of statesd
Above, we have taken the leads to contain noninteractin%ence of the linear Conductar)aéue to the repu|sive inter-
electrons. If the leads are modeled by yet another 1D Lutaction and the one-body scattering mentioned above refer
tinger liquid, all we have to do is to recalculate the prefactorstrictly to the zero bias-voltage limit, i.e., the condition at the
2 H H : . .
e“(dn/JE)vg in our Eq.(3) for a 1DLL. This can be done Fermi level. Thus, our tunneling conductance and its reso-
very generally through an identity stating that for a system imant qualitative features should persist at nonzero bias volt-
a stationary state the expectation value of the time derivativgge. It is only in the limit of zero bias voltage that they will
of the current operatdi(x) must vanisi? Applying thisto a  pe washed out by the soft Coulomb gap due to the relevant
1DLL in the presence of a local potentidU(x), and using  repulsive interaction. Of course, we do expect quantitative
the well-known expressidhfor j(x), we get for the change modifications at all bias voltages due to the soft Coulomb
in the local electron densityon(x) due to 6U(x) as gap.
— 8U(X)(K/2arhv ) giving for (9,/JE)v=K/2xf, where Finally, we would like to point out that the earlier study of
K is the standard interaction parameter as defined in Ref. 15pin-charge separatibtinvolved the effect of an Aharonov-
This gives G(V) (with interacting leads =KG(V) (with Bohm (AB) magnetic flux through a Luttinger-liquid loop on
noninteracting leads the transmission through the loop. This is qualitatively quite
The following comment on our Eq?2) for the transmis- different from the present study in that our tunneling at finite
sion amplitude seems in order. As mentioned earlier, thibias voltage involves carrier injection away from Fermi level
equation is exact in the case of a strictly one-electron probwhile their AB-flux effects are related to the conditions at
lem, or, equivalently, in the absence of mutual interaction inFermi level. The latter could, therefore, be relatively more
the wire, where this can be obtained directly by wave-subject to the blockade effects discussed above.
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In conclusion, we have shown that the tunneling conducagrees with the known result in the appropriate limit of zero
tance of a Luttinger-liquid quantum wire connected to thebias and no barrier.
leads through tunnel barriers shows resonances as function of .
9 One of us(V.A.) would like to thank Professor C. N. R.

the bias voltage. This is due to the spin-charge separation

and should be observable. Physical arguments based Jtpo, President of the Jawaharlal Nehru Centre for Advanced
forward-only scattering for the 1DLL are given to justify our Scientific Research, for financial support during the course of

Landauer-type one-electron-scattering approach. Our resuffis work.
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