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Diffusion of particles moving with constant speed
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The propagation of light in a scattering medium is described as the motion of a special kind of a Brownian
particle on which the fluctuating forces act only perpendicular to its velocity. This enforces strictly and
dynamically the constraint of constant speed of the photon in the medium. A Fokker-Planck equation is derived
for the probability distribution in the phase space assuming the transverse fluctuating force to be a white noise.
Analytic expressions for the moments of the displacen{gfit along with an approximate expression for the
marginal probability distribution functioR(x,t) are obtained. Exact numerical solutions for the phase space
probability distribution for various geometries are presented. The results show that the velocity distribution
randomizes in a time of about eight times the mean free tini&)(8nly after which the diffusion approxi-
mation becomes valid. This factor of 8 is a well-known experimental fact. A persistence exponent of 0.435
+0.005 is calculated for this process in two dimensions by studying the survival probability of the particle in
a semi-infinite medium. The case of a stochastic amplifying medium is also discussed.
[S1063-651%9903808-9

PACS numbes): 05.40—a, 42.25.Dd, 78.9a:t

[. INTRODUCTION probability distribution functiorP(x,t) for the displacement
satisfies the telegrapher equation exactly. However, generali-
The propagation of light through a stochastic medium iszations of the telegrapher equation to higher dimensj@hs
traditionally described in the context of astrophysics by ahave been shown not to yield better results than the diffusion
Boltzmann transport equation for the specific intensityapproximation8]. Recently there have been a few attempts
|(F,ﬁ,t) in a heuristic radiative transfer theof{t]. How-  to overcome the shortcomings of the diffusion approxima-
ever, since the general analytic solutions are unknown, onéons and attack this problem using the concept of photon
resorts to the diffusion approximation which can be shown tgpaths. In Ref[9], a Monte Carlo approach was used to simu-
arise out of the radiative transport equation in the limit oflate photon paths and calculate their probabilities. An impor-
large length scale&>1*, wherel* is the transport mean tant advance was made in Reff$0,11], where the propaga-
free path of light in the mediurfil,2]. Recently there has tor for photons in highly forward scattering media was
been considerable interest in the description of multiple lighexpressed as a Feynman path integral. However, this attempt
scattering at small length scales £1*) and small time has had only limited success in that it was possible to calcu-
scales {~t* wheret* is the transport mean free tilméoth  late the probability distribution subject to the constraint of
from the point of fundamental physi€3] and from the point constant photon speed only in the weakaveragg sense
of medical imaging, where the early arriving “snake” pho- i.e., fi[(dr/dt)?>—c?]dt=0. Moreover, in addressing the
tons are used to image through human tisd4eS|. It has  backscattering from a semi-infinite mediym0] and reflec-
been experimentally shown that the diffusion approximationtion and transmission from a finite slqh1], the absorbing
fails to describe phenomena at distancesLef81* [6].  boundary conditions have not been rigorously implemented
Moreover, the diffusion approximation which is strictly a and it would be inappropriate to compare these to experi-
Wiener process for the spatial coordinates of a particle isnental data. It should be mentioned here that the Ornstein-
physically unrealistic. It holds in the limit of the mean free Uhlenbeck(OU) theory of Brownian motioi12] would also
pathl* —0 and the speed of propagatior»> while keep-  be able to incorporate the finiteness of the mean free path
ing the diffusion coefficienDy=cl*/3 constant. Thus the and a well-defined root-mean-squar@ohs) velocity but as-
diffusion approximation accounts neither for a finite meansuming, of course, a distribution of speeds. This process has
free path nor for a finite and constant speed of the particlé&een compared with Monte Carlo simulatidds$] and used
which is charecteristic of light propagation in a stochasticto explain the lowering of the effective diffusion coefficient
medium. While approximately describing light as a particlemeasured in pulse transmission experiments through thin
the constancy of speed should be preserved at the very leastabg3]. It can be shown that the finite rms speed defined by
Hence it is of importance to develop better and alternativehe fluctuation-dissipation theorem for the OU process is a
schemes to the diffusion approximation and also address thstronger global constraint than the average speed constraint
difficult question of the process of the randomization of aimposed in Refs[10,11].
directional beam in such media. The next important step in describing these photon ran-
For a particle moving with fixed speed in a one-dom walks with a constant speed was undertaken in Ref.
dimensional disordered medium, it has been shown that thigl4], where the authors describe this process as a non-
Euclidean diffusion on the velocity sphere and intuitively put
down a kind of a general Boltzmann equation for photons in
*Electronic address: sar@rri.ernet.in a highly forward scattering medium. The solution to this
"Electronic address: nkumar@rri.ernet.in equation was expressed as a path integral, which was then
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evaluated by a standard cumulant decompositiis] trun- y="f(t)x 3)
cated after the second cumulant. This yields a Gaussian dis- '

tribution similiar to the Ornstein-Uhlenbeck process. Morewhere the force ternfi(t) is a random function of time. We

recently, an explicit derivation of the Feyman path integralyj|| assume as-correlated force with Gaussian distribution,
representation for the propagator of the radiative transfeje

equation has been givéh6]. Here it was again evaluated by

truncating the cumulant expansion after the second term. (f(1))=0, (4
This was justified by declaring that photons are massless and
noninteracting. However, the imposition of the speed con- (f(O)f(t"))=Cas(t—t"), (5

straint would not allow this Gaussian approximation.

In this paper, we describe the light propagation in stochasand all higher moments df(t) being zero. This makes our
tic media as the motion of a kind of Brownian particle on treatment most valid for a very dense collection of highly
which the fluctuating forces act only perpendicular to theforward scattering weak anisotropic scatterers. This set of
direction of its velocity. This is effective in strictly and dy- stochastic Langevin equations yields on integration a first

namically preserving the speed of the particle. This procesgonstant of integration®+y?=c?, wherec is the constant

is shown to correspond to a diffusion in the angular coordi-speed_ So we can choose=c cosi(t) and y=c sin#(t)

nate in the velocity space for a white noise disorder. Exacf, o a o(t) is some function ot. ¢ is recognized to be the

expressions for the moments of the space ve}rlaples are prﬁhgular coordinate in the velocity space. Substituting these
sented and the second cumulant approximation is shown to

yield a Gaussian expression similiar to the traditional$XPressions back into E,3), we obtaing=f(t) or
Ornstein-Uhlenbeck theory of Brownian motion. An expres- i

sion is derived for the probability distribution for large force o(t)— gozf f(t)dt. (6)
strengths which preserves the light cone. The exact Fokker- 0

Planck equation for the probability distribution is derived i i

from the stochastic Langevin equations for a white noisd1€nced(t) follows a Wiener process and we can write the
process. Numerical solutions of this equation are presentedProbability for 6(t) as

It is shown that the probability distribution in infinite media 1 |12 (0— 09)?

is strongly forward peaked for short times and randomizes pt(g):(_) exp[ — —0}_ (7)
only at times of about 8 —1Q* . We have also solved nu- 2ml't 2T't

merically the equation for a semi-infinite geometry and ob-__ . . e .
tained the persistence exponent of 0.£36005 in two di- Th|s is the rgsult for a diffusion i the _angular coor_d_lnate
mensions for this process. Solutions for a finite geometry ard? the velocity space, and we recognize this modified OU
also given, showing that the effective diffusion coefficient asP'9¢€SS to be a random_ vyalk on the circle of radius the
measured in a pulse transmission experiment through ver locity space. Const_raln!ng_to t_he range 0,27}, we get
thin slabs [ ~1*) would be lowered. The effect of light € marginal probability distribution fof:

lification in the slab i ined briefly. o
amplification in e Slab IS examine retly 1 12 (0_ 00+2n71-)2
—| expp————=—1. (8
2mI't

Il. MODIFIED ORNSTEIN-UHLENBECK PROCESS n=-<

Light scattering in a stochastic medium is treated as a&he value of6, can be conveniently chosen to be zero.
probabilistic process where each scattering event only Now we will derive the probability distribution function
changes the direction of the photon. The wave nature anih the phase space. Consider the system of stochastic Lange-
polarization effects are ignored and light is treated as a pawin equations
ticle in a medium which exerts transverse fluctuating forces

on the particle. It should be remarked here that while the X=u, 9
actual disorder is maybe in spa¢guenched disordgrall

current treatments, including ours, are in terms of a Brown- y=v, (10)
ian motion (temporal disorder, i.e., a stochastic progess

This is a valid approximation for incoherent transport in the u=—f(t)yv, (11)

weak scattering limit KI*>1 wherek=2#/\, \ being the
wavelength of light in the medium. The equation for the
motion of a randomly accelerated particle with the special

condition that the random forces always act only perpendmu—Let TI(x,y,u,v) be the phase space density of points for the
lar to the velocity can be written as

given system andl be the vectorX,y,u,v). Now, Il satis-
fies the stochastic Liouville equation.

v=f(t)u. (12

r=rxf(t). (1)

oIl .
This we term as the modified Ornstein-Uhlenbeck process. = T Vo (UID =0, (13
We will consider two dimesions for simplicity, and write
) ) where V= (d/dx,d/ dy,dl du,dl av). Substituting forU and
x=—f(t)y, (2 averaging over all possible configurations of disorder, by the
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van Kampen lemma[l7], the probability distribution 2t 2/2\2 . 1/2)\2
P(x,y,u,v)=(II(x,y,u,v)) and satisfies ((x—xg)?)=c? F_g(f) (1-e 1% Tz(f)
P 9P 9P d J X(1—-e Y|, (22)
E-‘rUW+V0,'—y—V£<f(t)n>+UE<f(t)H>—0.
14
19 2_22'[4221 e 12V
_ o (y=yo)=c’ |3\ 1" O+l 7
By the Novikov theoren18] for a white noise proces{t),
x(l—e_rt)}, (23
(FONF)) F<5H“]> F( i ap) 15
== )=3|v——u—|.
2\ of(t 2 J J
v v ((x=X0)(y ~Y0))=0. 24)

Using the above, we obtain fd?(x,y,u,v) the differential  This reproduces the result of the traditional Ornstein-
equation Uhlenbeck process in that the first moment saturates at a
mean free path* and the second moment increases linearly
with time at long times ['t/2>1). For short times I(t/2
16 <1), the longitudinal spread Ax?)~t? and the lateral
spread(Ay?)~t® which are considerably slower than the
diffusive linear behavior. From these relations, we identify
the mean free timé&* to be 2I" and the transport mean free
path I* =ct*. The diffusion coefficient is identified as the
coefficient of the linear term of the second moment, i.e.,

at  Yox Vay T2

P P P T[ 9 azp
Uov T Vau

Now expressings andv in terms of the angular coordinate
0, we finally get

2

ci/T.
JP P P T &2P It is of interest to note that an analytic expression for
— +ccosfh——+cCsinf—=— —. (17)  moments of all orders for the displacements can be obtained.
dJt 2 ay 2 96? This expression is given in the Appendix. The marginal

probability distribution functionP(x,y,t;Xq,Y0,0) can be
. . . . written in terms of a cumulant expansitee the Appendjx
This differential equation explicitly preserves the constancyrryncation of the cumulant series after the second term

of the speed of the photon. This Fokker-Planck equation igje|ds the result of Ref,14] for the probability distribution:
the same equatiofin two dimensions which was written

down in Ref[14]. It is rigorously proved therein that this has

-1
a path integral solution and the two approaches are equiva- . - - 0 FF ).
lent. It appears that this equation has solutions in terms of PGy X0 Yo O)= 5 det(M) exp[ 2 (TTom @
Mathieu functions. However, we have not been able to ana-
lytically solve the equation. X (F—To— 5)1,} , (25)
The moments of the displacements can, however, be cal-

culated analytically. The displacements can be written in
terms of# as . 2c
a=?(1—e*“’z)(cosao,sinao),

t
X~ %= Joccosa(t at’, (189 Mij:<(F_Fo)i(F—Fo)j>_<(F_Fo)i><(F—Fo)j>-

t The distribution is Gaussian in this approximation and simil-
Ly — ; At iar to the distribution for the traditional OU procefk2].
y=Yo= j0c5|n0(t yar’. (19 Thus it does not exactly preserve the light cone and would
appear to constrain the speed only in an average sense.
Higher cumulants would be required to describe this feature
Using these and a Gaussian distribution fi¢t), we get of fixed speed.
An approximate solution which preserves the light cone
can be obtained under the assumption thas completely
(X—Xo) = Ecosgo(l_e—Ft/Z)’ (20) randomized in Fimet*, o] .tha.tQ hgs a un!fqrm distribution
r over[0,27r]. This can be justified in the limit of large force
strength ("), when the scattering events change the momen-
tum by a large amount. Now the time can be discretized on
- Tuz) 21) this time scale and the probability distribution can be written

2c .
(Yy=Yo)=psinfp(1—e as(see the Appendix
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FIG. 1. The marginal probability distributions
P(x,t;Xq,0) predicted by the approximate solu-
tion given by Eq.(28) at different times indicated
in the figure. There is a clear cutoff at the light
front and initially the probability accumulates at
. the light front (for t=t*).
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(28)

n
><<exp{ —iwcY, cosot* > (26)
=1
Using the fact that the Fourier transform&fl wct*) is zero
. for [x—xo|>ct* and the fact thaP(x,t,x,,0) is annth con-
where we have used that, &t 0, the angley was uniformly  yoution of Jo(wct*), it is seen thaP(x,t,xo,0) is zero for

distributed. To evaluate the average, we will use the fact that, _y |~ nct* =ct. Thus the light cone is preserved. In Fig.
in this approximation eacld; is independent of all others, 1 we plot theP(x,t,x,,0) obtained by numerical evaluation

giving for different times. It is seen that, for=t*, the probability is
accumulated at the light front, and all the curves show a
n cutoff at|x—xo|=ct. At long times, using the Laplace ap-
<exy{ —iwc_El cosajt*D =[Jo(wct*)]", (27)  proximation, we havéfor largen)
i=
where J, is the ordinary Bessel's function of order zero. 3 (wct*)]”zexp{ - CZt*szn]
Using n=t/t*, we have 0 4 ’

FIG. 2. The probability distributiongP) in
the phase space of a particle in an infinite me-
dium at different times obtained by numerically
propagating Eq(17). The particle is released at
t=8t x=0 along the positivex direction (#=0) att
=0. The probability distribution is clearly for-

0.045

A ward peaked and becomes almost flat alongé&he
10.03 axis only at times of aboutt8.

o

0.015
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12 (X—Xq)2 numerically propagate the probability distribution in time,
P(X,t;Xq,0)= ox o (299  we use an alternating direction implicit-explicit methid®]
meTt ctrt for x and 6. A local von Neumann stability analys[49]

shows that this differencing scheme is unconditionally
stable. The initial condition is & function atx=0, =0
which is approximated by a sharp Gaussian for numerical
lll. NUMERICAL SOLUTIONS AND RESULTS purposes. For infinite media, the boundary conditiRy{ix,t)

In this section, numerical solutions for the differential =0 for [x|>ct is used. For a semi-infinite mediumo<x
equation(17) are presented. The particle is released in the<L With an absorbing boundary at=L, the appropriate
x-y plane at the origir(generally along an initial direction boundary condition is given by(L,6,t;Xo,6,,0)=0 for
6. Here @ is the angle made by the velocity vector with the — 7< 6< — /2 and w/2<6<, corresponding to no flux
x axis. Let us first further simplify by assuming invariance e€ntering the medium from free space. Also, we can write the
with respect toy; i.e., we have a line source along thaxis. ~ Fokker-Plank equation in the form of a continuity equation:

Then the derivative with respect todrops out and and we

Thus we recover the diffusion limit at long times.

have a partial differential equation in three variables. This is P o .
. . . . . —+V.j=0, (30
essentially a parabolic equation with an advective term. To at
2 T T Ll Ll T T 1
8
2150 .
B
o 1k n
£ —t=2t
3
S 0.5F . i
o ..".‘——t =3t
0 1 ool
-4 -3 4 FIG. 4. The marginal probability distribution
P(X,t;XO,eo,O):fzﬂ.P(X,0,t;X000,0)d0 at d|f'
0.2 : : . : . ferent times. The marginal probability distribu-
c tion becomes almost a Gaussian at times f. 8
S —t = 5t*
5 0.15} t="5t 1
0.1 B
£ -t = 8t*
9
£0.05F -
& —t = 16t"
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'1"."%'-" FIG. 5. The probability distributiongP) in
G the phase space of a particle in a semi-infinite
medium at different times. The particle is re-
leased atx=0 along the positivex direction (¢
=0) att=0. The absorbing boundary is located
t=32t* at 41* . The probability distribution is zero in the
range —w<0<-—m/2 and w/2<6<mw at the
boundary, implying that there is no incoming flux
into the medium.
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. .9 9 In Fig. 2, we show the probability distributions in an in-
V=ex(7x +e0ﬂ—9, finite medium with the initial condition,P(x,6,t=0)
=3d(x) 8(0). Itis clearly seen that the probability distribution
for times up to 5* is peaked in the forward directiofi~0

for x>0, with a tail in the backward directiom¢- = ) at
x<0. There is also a clear cutoff pt| =ct, which is promi-
nently noticeable for positive. The small amount of tailing
Sincel'=0 outside the medium, we can conclude that thearises from the finite width of the Gaussian by which the
current density in the real(x) space is conserved across the function was approximated. One can also note that the prob-
boundary in the forward direction—(7/2< 6#<=/2) while  ability distribution becomes almost flat along thexis only

the current density in the velocity) space is not conserved. at times of about 8 times the mean free time¢*(8 In Fig. 3,
This explains why the output flux at the boundary is propor-the first and second moments of tkeoordinate are shown.
tional to the value of the probability distribution function at The solid lines show the analytical results of E{0) and

the boundary itselfrather than the space derivative of the (22) and the symbols@) represent the results of the nu-
probability distribution §P/9x) given by Fick’s law as ob- merical solutions. Excellent agreement is found between
served in experimen{R0]. For a finite slab we use a similiar them. In Fig. 4, we show the marginal probability distribu-
boundary condition at the other boundary. tion for x, i.e., P(X,t;Xg,60,0)= [T _dOP(X, 0,t;Xq,09,0). At
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FIG. 6. The marginal probability distributions
in a semi-infinite medium with an absorbing
boundary at=41*. The plot on the right shows
an expanded view of the distributions near the
boundary. The solid straight lines are the linear
extrapolations of the behavior near the boundary.
All of them are seen to cross thxeaxis roughly at
0.7* outside the boundary.
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FIG. 7. The surviving probability of the par-
ticle inside the semi-infinite medium for an ab-
sorbing boundary atl4 (O) and 2* (*). The
persistence exponerit is obtained from the long
time behavior of the survival probability. The
dotted and dot-dashed lines show the linear fits
and give a persistence exponent of 0.4309 and
0.4364, respectively.

]
-

1
-
[4)]

In(Surviving probability)

-2

_2.5 1 1 1 1
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In(Time) (Time in units of t*)

short times {=3t*), there is a clear ballistic peak, separateand symmetric about the first moment. Higher cumulants are
from the more randomized tail. The probability distribution clearly required to describe these asymmetric features.

for these times is also clearly forward peaked. One can also The probability distribution functions for a semi-infinite
note that the probability distribution randomizes and be-medium are shown in Fig. 5. Here the particle is released at
comes almost Gaussian, centeredkatl* only at timest  the origin inside the random medium and the initial direction
=8t*. As noted above, this is also the time by which theis towards the boundargin this case ak=4I*). For times
angular coordinat® randomizes. This is when the diffusion lesser than &, there is no difference in the probability dis-
approximation becomes valid. This can be understood byribution from the case of the infinite medium. This is be-
noting that, by Eq(7), the time required foP,( ) to attain  cause the wave front has not propagated up to the boundary
an angular width of 2 is T where T is given by (A 6?) and the effect of the boundary is not felt. This is to be con-
=(2m)%2~2I'T. This yields (using I'/2=t*) a value of T trasted with the diffusion approximation where the effect of
=m’t*=10t* for the randomization time. Thus we now the boundary is felt everywhere simultaneously and causality
have a clear picture of the reason for this long known experiis violated. At long times the probability distributions attain
mental facf6]. This forward-peaked behavior at short timesa typical shape with a long tail at negatixevithin the me-
also illustrates the deficiency of the second cumulant apeium and a sharp cutoff at the boundary. In Fig. 6, we show
proximation where the probability distribution is a Gaussianthe marginal probability distribution for x, i.e.,
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S04 1 = FIG. 8. The first and second moments of the
g | § displacement of a particle in a finite slab of thick-
80_3% | & _i5| § ness 2* (left plot). The right plot shows the sur-
g il §’ vival probability in a semi-infinite medium and a
B [ = finite slab. The distance between the point where
202 ! 1 & the particle is released and the boundary is the
= ‘| £-201 | same in both cases (%2).
011 1
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0.3f
FIG. 9. Total light emittedfrom both sides

by a disordered slab with amplification for differ-
ent values of the gain coefficiest in the me-
dium. The output increases exponentially at long
R - times.

Total Light Emitted (arb. units)

1
5 10 15 20 25 30
Time (units of t*)

P(X,t;Xg,00,0)= 7 _d6P(X,6,t;X,00,0). The value of Thisisto be compared with the mirror-image solution in the
P(x,t;Xq,00,0) is finite at the boundary and zero outside. Asdiffusion approximation, where equal weightage is given to
seen in Fig. &), if the points near the boundary are linearly both boundaries at all times.
extrapolated outside the boundary, they all roughly cross the Finally we turn to the case of an amplifying stochastic
x axis at about 0J7 which is the value of the extrapolation medium. The effect of medium gain can be incorporated
length used in the diffusion approximati@l]. In Fig. 7, the  straightforwardly by noting that in our treatment the time of
surviving  probability inside the medium, P,  exit from the slab directly translates into a path length tra-
= [dx[dOP(x,0,t;Xq,6,,0), is plotted with time. For long Versed within the medium because speed is kept absolutely
times, this quantity should scale &is” whered is the per-  fixed. In the presence of amplification in the medium, there-
sistence exponent for this procd€2]. We have performed fore, the net gain is directly proportional to the time. Thus
these calculations for several source-boundary distances atfge output flux at the boundary in a given direction is simply
obtained a value of 0.4350.005 as the persistence exponentP(L, 6,t)coséexplat), wherea is the gain coefficient in the
for this process in two dimensions. medium. It is thus simple to obtain a picture of amplified
Finally we present solutions for a finite slab with absorb-e€mission from such a medium. In Fig. 9, we show the total
ing boundaries ak=*L. The particle is released from the light emitted by a slab with boundariesat = 21* for sev-
Origin att=0 a|0ng the positive( direction. Figure &) eral amplification factors. The phOtOﬂ is released from the
shows the first and second moments of the probability withPrigin in the positivex direction. For large times, the output
time in a thin slab of thickness|®. The first and second increases exponentially because of the presence of an expo-
moments initially increase as in an unbounded medium untinential gain in the medium with no saturation. It is seen that
the photon front hits the boundary and dips before increasinge ballistic part is only slightly amplified while the output in
again and saturating at an almost constant value. The dighe tail regions is increased considerably. To obtain a more
occur because just after the ballistic and near-ballistic comeealistic picture of lasing in random medi23,24, however,
ponents exit the slab, only the photons which are effectivelypne would have to consider the lasing level population deple-
moving in the opposite directions are left behind. In fact, thetion and saturation effects.
first moment is seen to become negative, implying that the
net transport is in the backward direction for some time. The ACKNOWLEDGMENT
dip in the second moment implies that the photon cloud is
effectively expanding at a slower rate. This would cause a}
lowered “effective diffusion coefficient” to be measured in 0"
a pulse transmission measurement. This reinforces the con-
clusions reached in Ref13] based on Monte Carlo simula- ~ APPENDIX: EXPRESSION FOR THE MOMENTS (X")
tions and explains the experimental results of R8f.on a
more rigorous footing. Figure(B) shows the survival prob-
ability for the case of a finite slab. This decays considerably . .
faster than in the case of the semi-infinite slab, though at ((X—Xo)”>=CnJ f j dt,dt,_;---dt;
early times {~t*) the decay rates are comparable. The ini- 0J0 0
tial rates of decay are comparable because of the forward-
peaked nature of the probability distribution at early times, x(cos6(t1)COSb(t) - - -COSH(tn)).
when the effect of the boundary at the back is hardly felt. (A1)

S.A.R. would like to thank Professor Rajaram Nityananda
very helpful discussions.

The nth-order moment is given by
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Writing 6(t;) as#6;, the quantity within the angular brackets A similiar expression can be obtained for #{g—y,)") by

can be expressed as follows: noting that sirg=cos@/2— 0).
Now we can obtain the joint probability distribution »f
(cos#,cosh;- - - cosb,) andy as

:27n<(eif}1+e*iﬁl)(eif}z_’_e*iﬁz). . .(ei9n+e7i9n)>

=2 X <exp{i_§n‘, 76,

o=*1 =1

t
P(X,y,t;Xo,yo,0)=< 5(x—x0—cf cosa(t’)dt’)
0

t
S y—yo—cf sine(t’)dt’>>.
0

b

01,02 -0p

This can be expressed as a path integral using a Gaussian

distribution for f(t): (A5)
O Expressing thed functions in terms of the Fourier trans-
|Z o 0; forms,
1)\2 (=
fD[f(t)]eXp{ H +|E oif(t’ )}dt] P(X1y,t;Xo,YO10):<Z) f dwy
r * i . -
=exp{—— > (2 UJ‘) (tk—rk—l)], (A3) Xf daryellext ot om0l
2 =1\ =k -
where t,=0 and we assumed a time ordering @Kt, . ft ,
X —
<...<t,. Thus, exg —ic | [wycosH(t")
t t, ty
— M —cN(nt)2— " . ,
((x=x)") =c"(n!1)2 fodt”fo dtn_; fo dty +wy sing(t )]dt’D. (A6)
r n n 2
X - = - . -
Jl,g_.gn exp{ 21 (JZK U‘) This statistical average can be evaluated by a cumulant
o=*1 expansion[15], and since we have an expression for mo-
ments of all orders, we can in principle evaluate the cumu-
X(t—=Tk_1) (- (A4) lant expansion to any desired order.
[1] S. ChandrasekhaRadiative Transfer TheoryDover, New Processesedited by Nelson WaxDover, New York, 1954
York, 1960. [13] V. Gopal, S. Anantha Ramakrishna, A.K. Sood, and N. Kumar
[2] I. Ishimaru,Wave Propagation in Random MedjAcademic, (unpublished
New York, 1978, Vols. 1 and 2. [14] A.Ya. Polishchuk, M. Zevallos, F. Liu, and R.R. Alfano, Phys.
[3] R.H.J. Kop, P. de Vries, R. Sprik, and A. Lagendijk, Phys. Rev. E53, 5523(1996.
Rev. Lett.79, 4369(1997. [15] R. Kubo, J. Phys. Soc. Jph7, 1100(1962.

[4] S.B. Colak, D.G. Papanicoannou, G.W. 't Hooft, M.B. van der [16] 5 D. Miller, J. Math. Phys39, 5307(1998.

Mark, H. Schomberg, J.C.J. Paaschens, J.B.M. Melissen, anﬁﬂ N.G. van Kampen, Phys. Rep., Phys. L&4C, 172 (1976.

N.A.A.J. van Asten, Appl. Op36, 180(1997. . [18] A. Novikov, Zh. Eksp. Teor. Fiz47, 1919(1964 [Sov. Phys.
[5] L. Wang, P. Ho, C. Liu, G. Zhang, and R.R. Alfano, Science JETP20, 1290(1965]

253 769(1991).

[6] K.M. Yoo, F. Liu, and R.R. Alfano, Phys. Rev. Lei, 2647 [19] W.F. Ames,Numerical Methods for Partial Differential Equa-

tions 2nd ed.(Academic Press, New York, 19Y7

(1990. .
[7] D.J. Durian and J. Rudnick, J. Opt. Soc. Am. 1, 235 [20] B.B. Das, Feng Liu, and R.R. Alfano, Rep. Prog. P§@.227
J. . , J. . . . 1M, 1097,
(1997, ( | |
[8] J.M. Porfa J. Masoliver, and G. Weiss, Phys. Revs& 7771 [21] P. M. Morse and H. FeshbadMethods of Theoretical Physics
(1997. ’ ’ (McGraw-Hill, New York, 1953, Vol. I.

[9] Sh. Feng, F. Zang, and B. Chance, Proc. SE88S 78 (1993. [22] S.N. Majumdar and A.J. Bray, Phys. Rev. Le8tl, 2626
[10] L.T. Perelman, J. Wu, I. ltzkan, and M.S. Feld, Phys. Rev. (1998.

Lett. 72, 1341(1994). [23] N.M. Lawandy, R.M. Balachandran, A.S.L. Gomes, and E.
[11] L.T. Perelman, J. Wu, Y. Wang, I. Itzkan, R.R. Dasari, and Sauvain, Naturg¢London 368 436 (1994.
M.S. Feld, Phys. Rev. B1, 6134(1995. [24] B. Raghavendra Prasad, Hema Ramachandran, A.K. Sood,

[12] S. Chandrasekhar, iBelected Papers on Noise and Stochastic C.K. Subramanian, and N. Kumar, Appl. OBg, 7718(1997.



