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Reflection of light from a random amplifying medium with disorder
in the complex refractive index: Statistics of fluctuations
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The probability distribution of the reflection coefficient for light reflected from a one-dimensional random
amplifying medium with cross-correlated spatial disorder in the real and the imaginary parts of the refractive
index is derived using the method of invariant imbedding. The statistics of fluctuations have been obtained for
both the correlated telegraph noise and the Gaussian white-noise models for the disorder. In both cases, an
enhanced backscattering~with a reflection coefficient greater than unity! results because of coherent feedback
due to Anderson localization and coherent amplification in the medium. The results show that the effect of
randomness in the imaginary part of the refractive index on localization and reflection is qualitatively different.
te
a

In
o
th

tra

ed
a

e
d
te
-

g
ue
b

sid

a
th

o
m

n
is
r
e
e-
-

ts. In
ven
ngle
-

rers

the
n-

ab-

in
the
c-
en

the
nt
e-
ry

ium

d
iza-
,
r-
the
ude
ation
our

e-
Light propagation in disordered media and the associa
Anderson localization of a wave in both the active as well
the passive random media1–4 has been studied extensively.
recent years, there has been increased interest in light pr
gation and lasing in active random media supported by
several experiments carried out on these systems.5–9 How-
ever, the experimental findings of a narrowed spec
emission5,9 and a pulse narrowing of the emission6,8 above a
well defined threshold of pumping could be explain
merely as an effect of the long diffusive pathlengths in
random medium with gain and the consequent amplifi
spontaneous emission~ASE!.6,10 More recently, the observe
supernarrowing of the emitted spectra from strongly scat
ing semiconducting powder11 and from weak scatterers dis
persed in high gain organic media12 has been attributed to
coherent feedback caused by recurrent multiple scatterin13

It is, however, still debatable if the wave amplification is d
to the predicted synergy between wave confinement
Anderson localization and coherent amplification.2

In all these studies, the active random medium is con
ered to scatter the propagating wave~light! due to fluctua-
tions in the real part of the refractive index (h r) ~real poten-
tials! while the coherent amplification is modelled by
phenomenological spatially constant imaginary part of
refractive index (h i). However, it would be of interest to
examine the effect of a spatially fluctuating imaginary part
the refractive index as well. More so, as the scattering
croparticles~e.g., polystyrene microspheres TiO2 rutile par-
ticles! used in the experiments are not active, a correspo
ing mismatch in the imaginary part of the refractive index
found to exist. It has been pointed out by Rubio and Kuma14

that a mismatch in the imaginary part of the refractive ind
~imaginary potential! would always cause a concomitant r
flection ~scattering! in addition to the absorption or amplifi
cation. Mismatch inh i alone in an amplifying medium
PRB 620163-1829/2000/62~1!/256~6!/$15.00
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~negative imaginary potential! with no mismatch inh r can
cause resonant enhancement of the scattering coefficien
fact, the reflection and the transmission coefficients can e
diverge as can be seen from the simple example of a si
imaginaryd potential in one dimension. This would corre
spond to the experimental situation where the scatte
~polystyrene microspheres, say! are suspended in a fluid with
the sameh r ~index matching fluid! in which a laser dye is
dissolved and optically pumped. The scattering caused by
fluctuations inh i would, therefore be expected to have no
trivial effects on the wave propagation in the medium.

The transmittance across a randomly amplifying and
sorbing chain was recently considered by Sen15 numerically
and was shown to decay exponentially with the increase
length of the chain, presumably due to localization. But
effects of the fluctuation in the imaginary part of the refra
tive index on lasing in such random media has not be
studied so far. In this work, we consider the statistics of
non-self-averaging fluctuations of the reflection coefficie
for light incident on a one-dimensional active random m
dium with spatial correlated disorder in both the imagina
part as well as the real part of the refractive index.

We consider a one-dimensional active disordered med
of length L with a random complex refractive indexh ,0
<x<L. For simplicity, polarization effects are neglecte
and light is assumed to be a scalar wave. A physical real
tion of interest here would be an Er31 doped and pumped
polarization maintaining optical fibre intentionally diso
dered along its length. Further, only the linear case of
gain or absorption being independent of the wave amplit
is considered and nonlinear features such as gain satur
are not considered. Here we would like to emphasize that
treatment is for the possibility of reflection (r .1), i.e., for
an amplifier and not an oscillator.16 The complex wave am-
plitude E(x) obeys the Helmhotz equation inside the m
dium
256 ©2000 The American Physical Society
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d2E~x!

dx2 1k2@11h~x!#E~x!50, ~1!

where k is the wave vector in the medium (k25v2/c2e0)
and h(x)5h r(x)1 i @h̄ i1h i(x)# is the complex refractive
index. Hereh r(x) andh i(x) are random andh̄ i is a constant
representing the average amplification or absorption in
medium according ash̄ i is negative or positive. It is wel
known that Eq.~1! can be transformed to give an equati
for the evolution of the emergent quantity, namely, t
complex amplitude reflection coefficient R(L)
5@r (L)#1/2exp@iu(L)# as a function of the sample lengthL,
via the method of invariant imbedding17,18 as

dR~L !

dL
52ikR~L !1

ik

2
h~L !@11R~L !#2. ~2!

Equation~2! is a stochastic differential equation and we a
interested in the corresponding Fokker-Planck equation
the probability distributionP(r ,u;L) which can be readily
obtained following the standard procedures. Thus,
P(r ,u;L) be the density of points in the~r, u! phase space
Now P(r ,u;L) must satisfy the Stochastic Liouvill
equation,21 and by the van Kampen lemma,21 the probability
distribution functionP(r ,u;L)5^P(r ,u;L)&hr ,h i

, where the
angular brackets denote averaging over all the realization
the random refractive indicesh r andh i .

The Gaussiand correlated (white-noise) disorder. First,
let us consider the simplest case namely that of a Gaussd
correlated~white-noise! model. In this model,h r andh i are
assumed to haved correlated Gaussian distributions wi
^h r(L)&50, ^h i(L)&50, ^h r(L)h r(L8)&5D r

2d(L2L8),
and ^h i(L)h i(L8)&5D i

2d(L2L8). This model would most
appropriately describe the case of a continuous rand
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medium such as a laser-dye doped gel or intrali
suspension,19,20 where the fluctuations inh r and h i are un-
correlated. Using the Novikov theorem22 to average over all
configurations ofh r andh i , we obtain in the random phas
approximation~RPA! @ i.e., P(r ,u)5P(r )/2p#,

]P

] l
5f rLRP1f iLIP12A

]~rP !

]r
, ~3!

where the linear operatorsLR andLI are given by

LR5
1

2 F r ~r 21!2
]2

]r 2 1~5r 226r 11!
]

]r
12~2r 21!G ,

~4!

LI5
1

2 F r ~r 2110r 11!
]2

]r 2 1~5r 2130r 11!
]

]r

12~2r 15!G , ~5!

and the nondimensional sample length l
51/2 max$Dr

2,Di
2%k2L[L/lc , f r5D r

2/max$Dr
2,Di

2%, f i5D i
2/

max$Dr
2,Di

2%, andA52h̄ i /max$Dr
2,Di

2%k[lc /lamp. Here l amp

5(h̄ ik)21 is the amplification length in the medium define
by the average of the imaginary part of the refractive ind
and max implies the superior value of the arguments. T
RPA is known to be valid in the the weak disorder lim
klc@1, wherel c is the localization length.18 We point out
that even ifh r andh i were cross-correlated, the final equ
tions do not differ in the RPA for the white-noise mod
@becausêL1L2P&u50 see Eqs.~9!,~10!#.

The asymptoticl→` limiting solution of Eq.~3! obtained
by setting]P/] l 50 is given by
P~r ;`!5P0

exp„22A/g tan21$@~f r1f i !r 15f i2f r #/g%…

@~f r1f i !~11r 2!12~5f i2f r !r #
, f r.2f i ,

5
P0

~f r1f i !~11r 2!12~5f i2f r !r
F ~f r1f i !r 15f i2f r2g

~f r1f i !r 15f i2f r1gG2A/g

, f r,2f i , ~6!
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whereg5A12f i uf r22f i u and P0 is a normalization con-
stant given by@*0

`P(r ,`)dr#21. The limit l→` implies
physically L@ l c . This expression goes over straightfo
wardly to the result of Pradhan and Kumar2 in the limiting
case of pure real disorder (f i50). Thus the statistics quali
tatively differ in the two regimes for an amplifying medium
~i! when the real part disorder dominates (f r.2f i) and~ii !
when the imaginary part disorder dominates (f r,2f i).

We have also solved Eq.~3! numerically for finite length
to investigate the approach to the asymptotic forms given
Eq. ~6!. In Fig. 1, the plots ofP(r ,l ) for the case of rea
disorder dominating (f r.2f i) for different lengths of the
medium are shown. The probability distribution for the ca
of a pure imaginary mismatch (f r50), with the real parth r

being index-matched is shown in Fig. 2. The line joining t
y

e

dots in both the figures corresponds to the asympt
P(r ;`) solution. In the case of amplifying medium, th
value of reflectivity (r max) at which P(r ; l ) peaks increases
with the average value of the amplification factoruAu. For the
case of imaginary part disorder dominating,P(r ; l ) has a
peak at small values of the reflectivity even for moder
values of the amplification. In the case of an absorbing m
dium with the imaginary disorder dominating, the probabil
distribution has a monotonic decreasing behavior and
maximum atr 50. A finite probability of reflection atr .1
in the absorbing case and atr ,1 in the amplifying case
(A,0) is recognized to be a consequence of the two sid
ness of the white-noise process for the complex refrac
index, which allows the imaginary part of the refractive i
dex (h̄ i1h i) to take on locally both positive and negativ
values for any given value of the average. It should be no
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258 PRB 62S. ANANTHA RAMAKRISHNA et al.
that this limiting form ofP(r ,`) gives a weak logarithmic
divergence for̂ r& ~for f iÞ0!, regardless of the sign ofA for
both absorption and amplification. Thus amplification ha
much more drastic effect on the reflectivity than attenuati
The white-noise process allows the local fluctuations inh i to
be very large and the effect of a finite mean valueh̄ i is small.
It is thus a case of the fluctuations dominating over the me
We also find that the numerical solutions saturate to the l
iting forms for l *1. So most of the reflection occurs from
within a localization length. This enhanced backscatterin
quite different from that caused by light diffusion.6,10 In the
latter case, the distribution of optical path length, becaus
exponential growth of wave amplitude due to coherent a
plification in one-dimension, givesPD(r ;`); ln(r)1/2/r for
r @1. This decays much slower than theP(r ;`) for r→`,
as given by Eq.~6!.

Correlated telegraph disorder. In the case of the white
noise disorder, the imaginary part of the refractive index w

FIG. 1. The probability distribution of reflectivityP(r ; l ) in the
case of the white noise disorder given by Eq.~3! and the real dis-
order dominating (f r51.0,f i50.1), for the different sample
lengths indicated. The line joining the dots is the analtic result
P(r ;`). The amplification parameter isA520.25.

FIG. 2. The probability distributionP(r ; l ) in the case of the
white noise disorder given by Eq.~3! and a pure imaginary mis
match (f r50) for different lengths of the sample. The line joinin
the dots is the analtic result forP(r ;`). The amplification param-
eter isA521.
a
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allowed to take on both positive and negative values, i.e.,
medium could be locally both amplifying or absorbing. Wi
a view to studying purely amplifying or absorbing rando
media, we use the telegraph disorder model to describe
fluctuations in the refractive index. Moreover, since the ga
absorption coefficient is physically always bounded fro
above, the fluctuations in the imaginary part of the refract
index are better described by this dichotomic Markov p
cess~i.e., spatial telegraph noise!. Further, we recognize tha
in discrete random media such as microparticles suspen
in a laser dye solution used in experiments, the real and
imaginary parts of the refractive index fluctuate spatially
the same manner and can, therefore, be described by
same stochastic process. A telegraph noise with a finite
relation length is most appropriate to describe such a si
tion. Accordingly, we will chooseh r(L)5ax(L) and
h i(L)5bx(L) with an average value for the imaginary pa
h̄ i . Herex(L) is taken to be a dichotomic Markov proce
which can take on the values6x such that̂ x(L)&50 and
^x(L)x(L8)&5x2 exp(2GuL2L8u), whereG21 is the corre-
lation length in the medium.

Now, defining as before,P(r ,u;L)5^P(r ,u;L)&x and
W(r ,u;L)5^x(L)P(r ,u;L)&x , and using the ‘‘formulas of
differentiation’’ of Shapiro and Loginov23 to average over
the dichotomous configurations ofx(L), we obtain

]P

]L
522k

]P

]u
1h̄ iL2P1~aL11bL2!W, ~7!

]W

]L
5x2~aL11bL2!P22k

]W

]u
1h̄ iL2W2GW, ~8!

where the linear operatorsL1 andL2 are

L152kFsinu
]

]r
Ar ~12r !1

]

]u
1

1

2 S Ar 1
1

Ar
D ]

]u
cosuG ,

~9!

L25kFcosu
]

]r
Ar ~11r !12

]

]r
r 1

1

2 S Ar 2
1

Ar
D ]

]u
sinuG .

~10!

We thus get a closed system of equations forP(r ,u,L) and
W(r ,u,L). These equations go over correctly to the cor
sponding Eq.~3! in the white-noise limit obtained by taking
the limit x2→`, G→` while keepingx2/G5D2 constant.
In this limit, the equation forP(r ,u;L) becomes autono
mous, i.e., it gets decoupled fromW(r ,u;L).

In the RPA and in the asymptotic limitL→`, these equa-
tions simplify to

bh̄ iLIP1a2LRW1b2LIW50, ~11!

a2LRP1b2LIP12A
]~rP !

]r
2

h̄ ib

x2 LRW50, ~12!

where LR and LI are given by Eqs.~4! and ~5! and A
52Gh̄ i /x2. Interestingly in the case of the pure real pa
disorder (b50), the form of the telegraph noise equation f
P(r ;`) is identical to that for the white-noise case, but wi
the coefficientA52Gh̄ i /kx2. Similarly, in the case of the

r
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PRB 62 259REFLECTION OF LIGHT FROM A RANDOM . . .
pure imaginary part disorder (a50), the form of the tele-
graph noise equation forP(r ;`) is again identical to that for
the white-noise case, but with the coefficientA
52Gh̄ i /k(x22h̄ i

2). However, forbx,uh̄ i u, the imaginary
part of the refractive index is always positive~absorbing! or
negative~amplifying!. Hence the solution for these two cas
is also given by Eq.~6!, the solutions being valid in the
interval 0,r ,1 for the absorbing medium, and 1,r ,` for
the amplifying medium. Outside the intervals, the probabi
densityP(r ;L) vanishes.

A complete solution for Eqs.~11! and~12! is obtained as

P~r ;`!5P0F 1

j1~11z1r 1r 2!
1

1

j2~11z2r 1r 2!G
3exp$22A@ I 1~r !1I 2~r !#%,

~13!

I 6~r !5
1

j6Az6
2 24

lnUr 2r 6
~2!

r 2r 6
~1!U, uz6u.2,

5
1

j6Az6
2 24

tan21S z612r

Az6
2 24

D , uz6u,2,

where j65a21b26bh̄ i /x, z65@10(b26bh̄ i /x)
22a2#/@16Ab1a2#, r 6

(1)521/2@z61(z6
2 24)1/2#, r 6

(2)5

21/2@z62(z6
2 24)1/2# and P0 is a normalization coeffi-

cient. These expressions become the same as given by
~6! in the white noise limit~x2→`, G→` andx2/G being
constant!.

The solutions for one-sided disorder in the imaginary p
exhibit three qualitatively different behaviors correspond
to choices of the parametersa, b, and h̄ i ~x is an arbitrary
constant and can be set to unity without loss of generali!.
First, we note that the case ofa21b22buh̄ i u/x50, corre-
sponds to a singular perturbation of the differential equat
for P(r ;`). This condition can be interpreted as a thresh
condition by noting that the localization length is given
l c

21;(a21b2) and the effective amplification length i
given by l amp

21 ;bh̄ i . This condition then corresponds to
matching of length scales in the problem,l c5 l amp. In the
regime where the amplification dominates the localizat
~a21b22buh̄ i u,0 or l c. l amp!, the solutions exhibit a
monotonic decreasing behavior in the region of interest
<r ,`). Here the disorder in the real part~a! is small and
does not affect the statistics appreciably, as can be seen
Fig. 3~a!. For ~a21b22buh̄ i u.0 or l c, l amp!, a natural
boundary arises for the solutions of the equation atr 2

(2)

which falls in the domain of physical interest (1<r ,`).
Now the solutions given by expression~13! are valid in the
ranger 2

(2)<r ,` with P(r ;`)50 outside. In this regime the
localization dominates (l c, l amp), if 2A/@j2(z2

2 24)21/2#
.1 and we have a broad distribution with peak atr max

.r2
(2) and P(r 2

(2) ;`)50 @Fig. 3~b!#. The value ofr max is
large for small disorder in the real part (a21b22buh̄ i
u*0), and decreases asa increases. The behavior in th
region is dominated by the disorder in the real part of
refractive index. A third qualitatively different behavior oc
curs for l c, l amp and 2A/@j2(z2

2 24)21/2#,1. Then the ex-
pression given by Eq.~13! diverges atr 2

(2) . This divergence
Eq.

rt

n
d

n

1

om

e

is, however, normalizable implying thatP(r ;`) is peaked
~in fact, sharply! at that point. This behavior can be readi
understood by noting that the second condition which can
rewritten ash̄ i

2(G/k)2,3b(uh̄ i u2b)@a212b(uh̄ i u2b)#, is
basically a condition on the correlation length (l corr5G21).
This condition is satisfied for smallG ~large l corr!. Then the
reflection is essentially from a single potential barrier a
thus has a sharply defined value. It should be noted tha
a→`, P(r ;`)→d(r 21), as expected.

The solutions for the case of a two-sided disorder for
imaginary part (b.uh̄ i u) are similar to the solutions for the
white noise case. It should be noted that there does not e
real r 2

(2) which falls into the physical region of interest (
<r ,`). In this case the large disorder in the imaginary p
~b! causes the effects of localization to dominate. Howev
in all cases of amplification, for a finiteA and a21b2

2buh̄ i uÞ0, there is a universal 1/r 2 tail for the P(r ;`). For
the case of pure imaginary disorder (a50), we similarly see
a monotonically decreasing behavior ofP(r ;`) with r for
one-sided disorder~b,uh̄ i u or l c. l amp! @Fig. 3~c!#, and a
P(r ;`) with a peak for two-sided disorder~b.uh̄ i u or l c
, l amp! @Fig. 3~d!#. With increase inb for two-sided disorder,
the peak shifts to smaller values of reflectivity as the effe
of absorption show up, until for large enoughb, the peaks
occurs atr 50 and we again have a monotonically decre
ing P(r ;`). It should be mentioned that all these effects a
seen for the case of absorption also, with the roles ofr 2

(1) and
r 2

(2) interchanged.
Finally, it is to be noted that the domain of validity of ou

treatment and the results therefrom, for the super reflec
from a random amplifying medium is restricted to operati
conditions corresponding to below the threshold of lasi
i.e., to the parameter regimel c, l amp. Indeed the random
amplifying medium operating in the reflection mode acts a
one-sided cavity of sizel c essentially open~hence leaking! in
the direction of the incident beam.~Of course, deep inside
the medium, a photon injected, for example, through spon

FIG. 3. The probability distributionP(r ; l ) in the case of the
correlated telegraph noise.~a! l c. l amp and~b! l c, l amp are for one-
sided disorder (b,uh̄ i u) with disorder in both the real and th
imaginary parts.~c! l c. l amp and~d! l c, l amp are for two-sided dis-
order (b.uh̄ i u) and pure imaginary mismatch (a50).
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neous emission will undergo indefinite amplification in
effectively closed cavity of sizel c . Such an amplified spon
taneous emission will lead to large storage of photons wh
will eventually be limited by nonlinear effects in real sy
tems.! As l c approachesl amp from below (l c,→l amp), the
statistical weight for the reflection coefficient moves
higher values of reflectivity as indeed can be seen in F
3~b! and 3~d!, and finally atl c. l amp, we would expect the
random amplifier to become a random oscillator with se
sustaining oscillations at the eigenmodes of the system. T
one may suspect the results forl c. l amp @Figs. 3~a! and Fig.
3~c!# to lie outside the validity of our treatment. Indeed,
has been pointed out16 that the time-independent wave equ
tion ~TIWE! and the associated stationary state scatte
does not describe the situation above the threshold of la
~oscillations! when the gain-length product exceeds critic
ity. In fact, their numerical results based on the tim
dependent wave equation give a transmission which gr
exponentially in time. Below, we shall clarify and interpr
our results in this above-the-threshold parameter reg
when l c. l amp. To illustrate our point, we will consider a
Fabry-Pe´rot setup treated in Ref. 16 for ease of comparis
Thus we have a gain medium of lengthL between the facets
with reflection coefficientsr and transmission coefficientst
respectively placed between two distant absorbers. The
flection and transmission coefficients at the facets are rel
to the complex wave vectork5k81 ik9 ~k9,0 for the case
of amplification! in the medium asr 5(k2k0)/(k1k0)
5Reif andT52k/(k1k0), wherek0 is the wave vector in
free space outside. It can be readily shown that for a w
(e2 ivt) incident at the first facet at timet50, the wave am-
plitude outside the second face at timet is given by

T~ t !5T2e2~k9L2 ivt!e2 ivtF 1

12r 2e22~k9L2 ivt!

2
~r 2e22~k9L2 ivt!!n11

12r 2e22~k9L2 ivt! G , ~14!

wheren5Int@1/2(t/t21)#, Int denotes the integer value,t
5L/v andv is the speed of propagation in the medium. It
seen that the first part on the right hand side is what
would get from a scattering treatment based on the TIW
~We have considered here the case of transmission for
ease of comparision with Ref. 16, but the case of reflec
can be treated similiarly!, i.e., as far as this term is concerne
the expression obtained below threshold continues ana
cally in the expression obtained above the threshold.
second term on the right-hand side, however, is what is
contained in this analytic continuation. It, indeed, gives
exponential growth of the transmitted amplitude~intensity!
e-
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as in Ref. 16. This growing oscillatory term~which may
eventually get limited only by nonlinearities not consider
here! essentially is a noise imposed on the relatively we
transmission noted above. Further, rewriting the sec
part as $T2 exp@22(k9L2ivt#exp(if)R(t/t11) exp@2k9L/
t t#exp@if/t t#%/$12R2 exp@22(k9L2ivt)#exp(2if)%, we note
that this exponentially growing part is at an effective fr
quencyf/t. Note that this frequency is nothing but the ra
of change of accumulated phase shift arising from multi
reflections at the interfaces, due to the mismatch in
imaginary part of the refractive index. The growing amp
tude is extremely sensitive to the change in the parame
~e.g.,R, T! of the system in the limitt→`. Indeed, in prin-
ciple, it is possible to pickup the small finite part referred
above as it is synchronous with the incident wave. Thus,
results in the regime above the threshold based on the TI
@e.g., Figs. 3~a! and 3~c!# represent just this synchronou
part. This in our view gives an operational meaning to t
results given by Eq.~13! in the above-the-threshold regim
and shown in Figs. 3~a! and 3~c!. Of course, the above is
deterministic treatment that we have chosen for the purp
of illustration. For the random case, the interpretation has
be probabilistic.

In conclusion, we have studied the statistics of sup
reflection from a one-dimensional disordered system w
spatial randomness both in the real and the imaginary p
of the complex refractive index. We have discussed the m
els of disorder qualitatively applicable to experimental s
tems such as intentionally disordered optical fibers with g
~En31-doped! and obtained the probability distribution func
tion of the reflectivity for the cases of a white-noise disord
and a correlated telegraph disorder. In both cases, an
hanced reflection results because of coherent feedback d
Anderson localization and coherent amplification. In the c
of white-noise disorder, the statistics are qualitatively diffe
ent in the two regimes of the real part disorder dominat
(D r

2.2D i
2) and the imaginary part disorder dominatin

(D r
2,2D i

2). In the case of telegraph disorder, we obta
three qualitatively different behaviors forP(r ;`) depending
on threshold conditions involving the localization length, t
amplification length and the correlation length. Thus t
fluctuation in the imaginary part of the refractive index
seen to have a nontrivial and qualitatively different effect
localization and lasing from such random media. Finally,
the phenomenon considered here is concerned with the i
of statistical fluctuations~noise! in a random amplifying me-
dium, we propose for it the acronym RAMAN~random am-
plifying medium and noise!.

One of us~N.K.! thanks Douglas Stone for suggesting t
acronym RAMAN.
ou-
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