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The probability distribution of the reflection coefficient for light reflected from a one-dimensional random
amplifying medium with cross-correlated spatial disorder in the real and the imaginary parts of the refractive
index is derived using the method of invariant imbedding. The statistics of fluctuations have been obtained for
both the correlated telegraph noise and the Gaussian white-noise models for the disorder. In both cases, an
enhanced backscatterifgith a reflection coefficient greater than unitgsults because of coherent feedback
due to Anderson localization and coherent amplification in the medium. The results show that the effect of
randomness in the imaginary part of the refractive index on localization and reflection is qualitatively different.

Light propagation in disordered media and the associatethegative imaginary potentjalvith no mismatch inz, can
Anderson localization of a wave in both the active as well aause resonant enhancement of the scattering coefficients. In
the passive random medi4 has been studied extensively. In fact, the reflection and the transmission coefficients can even
recent years, there has been increased interest in light propdiverge as can be seen from the simple example of a single
gation and lasing in active random media supported by thémaginary é potential in one dimension. This would corre-
several experiments carried out on these sysfefhslow-  spond to the experimental situation where the scatterers
ever, the experimental findings of a narrowed spectrafPolystyrene microspheres, gare suspended in a fluid with
emissiof® and a pulse narrowing of the emissidrabove a  the samey; (index matching fluiglin which a laser dye is

well defined threshold of pumping could be explaineddissowed and optically pumped. The scattering caused by the

merely as an effect of the long diffusive pathlengths in afluctuations inn; would, therefore be expected to have non-

random medium with gain and the consequent amplifie&rIVIaI effects on the wave propagation in the medium.

spontaneous emissidASE).®1° More recently, the observed The transmittance across a randomly amplifying and ab-

supernarrowing of the emitted spectra from strongly scatter§orblng chain was recently considered by Seumerically

N miconductin wdbrand from weak tterers di and was shown to decay exponentially with the increase in
g semiconducting powdera 0 eak scatlerers dis- length of the chain, presumably due to localization. But the
persed in high gain organic medfizhas been attributed to

. .~ effects of the fluctuation in the imaginary part of the refrac-
coherent feedback caused by recurrent multiple scatté?mg.tive index on lasing in such random media has not been

Itis, however, still debatable if the wave amplification is due gy, gied so far. In this work, we consider the statistics of the
to the predicted synergy between wave confinement byon.self-averaging fluctuations of the reflection coefficient
Anderson localization and coherent amplificatfon. for light incident on a one-dimensional active random me-
In all these studies, the active random medium is considdjum with spatial correlated disorder in both the imaginary
ered to scatter the propagating waight) due to fluctua-  part as well as the real part of the refractive index.
tions in the real part of the refractive index,( (real poten- We consider a one-dimensional active disordered medium
tials) while the coherent amplification is modelled by a of length L with a random complex refractive index ,0
phenomenological spatially constant imaginary part of thesx<L. For simplicity, polarization effects are neglected
refractive index ;). However, it would be of interest to and light is assumed to be a scalar wave. A physical realiza-
examine the effect of a spatially fluctuating imaginary part oftion of interest here would be an ¥rdoped and pumped,
the refractive index as well. More so, as the scattering mipolarization maintaining optical fibre intentionally disor-
croparticles(e.g., polystyrene microspheres Bi@utile par-  dered along its length. Further, only the linear case of the
ticles) used in the experiments are not active, a correspondyain or absorption being independent of the wave amplitude
ing mismatch in the imaginary part of the refractive index isis considered and nonlinear features such as gain saturation
found to exist. It has been pointed out by Rubio and Kufhar are not considered. Here we would like to emphasize that our
that a mismatch in the imaginary part of the refractive indextreatment is for the possibility of reflectiom*$ 1), i.e., for
(imaginary potentialwould always cause a concomitant re- an amplifier and not an oscillatét.The complex wave am-
flection (scattering in addition to the absorption or amplifi- plitude E(x) obeys the Helmhotz equation inside the me-
cation. Mismatch in»; alone in an amplifying medium dium
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d?E(x) 5 medium such as a laser-dye doped gel or intralipid
a2 TKI1+2()]E(X)=0, (1) suspension®?° where the fluctuations im, and #, are un-

correlated. Using the Novikov theoréfrto average over all
wherek is the wave vector in the mediunki= w?/c?¢;)  configurations ofy, and »;, we obtain in the random phase
and n(x)=n,(x)+i[ 7+ ni(x)] is the complex refractive approximation(RPA) [ i.e., P(r,0)=P(r)/2mx],
index. Herez,(x) and »;(x) are random and; is a constant
representing the average amplification or absorption in the P a(rP)
medium according ag;; is negative or positive. It is well E:¢fLRP+¢iL'P+2A ar )
known that Eq.(1) can be transformed to give an equation
for the evolution of the emergent quantity, namely, thewhere the linear operatots; andL, are given by
complex  amplitude reflection coefficient R(L)

2
=[r(L)]*2exdif(L)] as a function of the sample length LoeSlrire 122 L sr2mgre1) S 4 2(2r — 1
via the method of invariant imbeddihg'® as R |M(T= DT+ (5ri-bra1)or+2(2r=1)),
4
dR(L) . ik
T=2|kR(L)+En(L)[lJrR(L)]Z. 2) 1 P J
L,=E[r(r2+10r+1)F+(5r2+30r+1)a—
Equation(2) is a stochastic differential equation and we are r r
interested in the corresponding Fokker-Planck equation for
the probability distributionP(r,8;L) which can be readily +2(2r+5)]|, (5)

obtained following the standard procedures. Thus, let
II(r,6;L) be the density of points in th@, 0) phase space. and the  nondimensional  sample  length |
Now II(r,f;L) must satisfy the Stochastic Liouville =1/2maXA?AZUCL=L/l,, ¢,=A%maxAZAZ, ¢=A?/
equatior’," and by the van Kampen lemnfiathe probability maxA2A%, and A= 27 /max{aZ AZk=lc/lamy.  Herelamp
distribution functionP(r, ;L) =(II(r, ;L)) , ,, where the — _ 7,)~1is the amplification length in the medium defined
angular brackets denote averaging over all the realizations @y the average of the imaginary part of the refractive index
the random refractive indices, and 7, . and max implies the superior value of the arguments. The

The Gaussiary correlated (white-noise) disordefFirst, RPA is known to be valid in the the weak disorder limit,
let us consider the simplest case namely that of a Gaussiank| > 1, wherel, is the localization lengtf® We point out

correlated(white-noisg model. In this modely, and »; are  that even ify, and 7 were cross-correlated, the final equa-
assumed to haveé correlated Gaussian distributions with tions do not differ in the RPA for the white-noise model

(m(L)=0, (7(L))=0, (n(L)m(L'))=AZ5(L—L"), [becausdL;L,P),=0 see Eqs(9)(10)].
and(m(L)ni(L’))=Ai25(L—L’). This model would most The asymptoti¢ — oo limiting solution of Eq.(3) obtained
appropriately describe the case of a continuous randorhy settingdP/dl =0 is given by

exp(—2A/ ytan H[( ¢+ ¢)r +5¢i— ¢, 1/ v})
[(frt i) (1+1%)+2(5¢— ¢ )r] ’

B Po (¢t )T +5p— b —y| 7

(Pt ) (L+19)+2(5¢i— )T [(bi+ h)r +5h— bty

P(r;»)="Pq b >240;,

v <24, (6)

where y=\12¢;| ¢, —2¢;| and P, is a normalization con- dots in both the figures corresponds to the asymptotic
stant given by[ [3P(r,)dr]~. The limit | —o implies P(r;») solutlon._ In the case _of amplifying mgdlum, the
physically L>I,.. This expression goes over straightfor- Value of reflectivity €y, at which P(r;l) peaks increases
wardly to the result of Pradhan and Kurham the limiting with thi average value ofdt_he gmpltljflca_non_:%(éh;éT)Fﬁr the

. _ - . case of imaginary part disorder dominatirfg(r; as a
f;j\/ee;; fcpl)i?freer :E?Lgltsvsgdfefg(img;. fgrhzi ?rspslitf?/?:gcrig duiﬁlrln' peak at small values of the reflectivity even for moderate

. . . " values of the amplification. In the case of an absorbing me-
(i) when the real part disorder dominatefs &2¢i) and(ii)  gjym with the imaginary disorder dominating, the probability
when the imaginary part disorder dominates €2¢;).

) - distribution has a monotonic decreasing behavior and is
We have also solved E¢) numerically for finite length  aximum atr=0. A finite probability of reflection at>1

to investigate the approach to the asymptotic forms given by, the absorbing case and at1 in the amplifying case
Eq. (6). In Fig. 1, the plots ofP(r,l) for the case of real (A<0) is recognized to be a consequence of the two sided-
disorder dominating ¢,>2¢;) for different lengths of the ness of the white-noise process for the complex refractive
medium are shown. The probability distribution for the caseindex, which allows the imaginary part of the refractive in-
of a pure imaginary mismatchf=0), with the real party, dex (7;+ ;) to take on locally both positive and negative
being index-matched is shown in Fig. 2. The line joining thevalues for any given value of the average. It should be noted
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allowed to take on both positive and negative values, i.e., the
medium could be locally both amplifying or absorbing. With
a view to studying purely amplifying or absorbing random
media, we use the telegraph disorder model to describe the
fluctuations in the refractive index. Moreover, since the gain-
absorption coefficient is physically always bounded from
above, the fluctuations in the imaginary part of the refractive
index are better described by this dichotomic Markov pro-
cess(i.e., spatial telegraph noiseFurther, we recognize that
in discrete random media such as microparticles suspended
in a laser dye solution used in experiments, the real and the
imaginary parts of the refractive index fluctuate spatially in
. . the same manner and can, therefore, be described by the
o L N el — — same stochastic process. A telegraph noise with a finite cor-
o 05 1 15 2 25 3 35 4 45 5 relation length is most appropriate to describe such a situa-
tion. Accordingly, we will choose,(L)=ayx(L) and
FIG. 1. The probability distribution of reflectivit?(r;l) in the 7;(L) = Bx(L) with an average value for the imaginary part
case of the white noise disorder given by E8). and the real dis- 7; . Herex(L) is taken to be a dichotomic Markov process

order dominating é,=1.0¢;=0.1), for the different sample \yhich can take on the valuesy such that{y(L))=0 and
lengths indicated. The line joining the dots is the analtic result for(X(L)X(L')>=X2 expT|L—L’)) whereT "L is the corre-

P(r;). The amplification parameter &= —0.25. lation length in the medium.

N . . Now, defining as beforeP(r,;L)=(II(r,0;L)), and
that this limiting form of P(r,«) gives a weak nganthmlc W(r,6;L) = (x(L)TI(r,6;L)),, and using the “form)l(JIas of
divergence fokr) (for ¢;#0), regardless of the sign & for differentiation” of Shapiro and LogindV to average over

both absorption and amplification. Thus amplification has he di : ; -
i o . e dichotomous configurations g{L), we obtain
much more drastic effect on the reflectivity than attenuation. ! ! 'gurat flL). w I

The white-noise process allows the local fluctuationg;ito IP

be very large and the effect of a finite mean valyés small.

It is thus a case of the fluctuations dominating over the mean.

We also find that the numerical solutions saturate to the lim- W

iting forms for|=1. So most of the reflection occurs from —=x?(aL,+BLy)P—2k—+7,L,W—TW, (8)

within a localization length. This enhanced backscattering is 9L J0

quite different from that caused by light diffusibr®In the 1 ore the linear operatots, andL , are

latter case, the distribution of optical path length, because of 2

exponential growth of wave amplitude due to coherent am- P 0 1 1)\ g 1

plification in one-dimension, giveB®(r;=)~In(r)*3r for  L,=—k|sind— Jr(1—r)+ —+ —( Jr+ —) —cosé

r>1. This decays much slower than tRér ;) for r—oo, or a6 2 \/F J0 |

as given by Eq(6). C)
Correlated telegraph disordenn the case of the white-

P _

ise di imagi ive | J g 1 1\ 9 ]
noise disorder, the imaginary part of the refractive index WaSL2= K coso-2 \/?(1+ D422 r 2| V= =|Zsingl.
ar a2 Jr) a0
25— T T T T T T T T -
i e 1= 0.1 (10
I'.'l :‘_‘_‘:::3"3 We thus get a closed system of equationsR¢r,6,L) and
2 ‘.‘, 1=10 1 W(r,0,L). These equations go over correctly to the corre-
hi o I=large sponding Eq(3) in the white-noise limit obtained by taking

the limit y?>—o, I'—o while keepingy?/I'=A? constant.
In this limit, the equation forP(r,8;L) becomes autono-
mous, i.e., it gets decoupled frow(r, 6;L).

In the RPA and in the asymptotic limit— o, these equa-
tions simplify to

Bl P+ a’LgW+ B2L,W=0, (11
a(rP)
azLRP+,82L,P+2A((9—r)— "X'—fLsz 0, (12

FIG. 2. The probability distributiorP(r:1) in the case of the WhereLg and L, are given by Egs(4) and (5) and A
white noise disorder given by E@3) and a pure imaginary mis- =20'77;/x”. Interestingly in the case of the pure real part
match (¢, =0) for different lengths of the sample. The line joining disorder (3=0), the form of the telegraph noise equation for
the dots is the analtic result fét(r;>). The amplification param- P(r;=) is identical to that for the white-noise case, but with
eter isA=—1. the coefficientA=2I"7;/kx?. Similarly, in the case of the
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pure imaginary part disordera(=0), the form of the tele- 0s— p=037=10;T=10 (b) p=050=10;T=30

graph noise equation fd?(r ;) is again identical to that for ' _ 4=00 02 '?.

the white-noise case, but with the coefficienA 06} —q=02 orsl 1 —a=

=2T"7; Ik(x*>—7%). However, forBx<|7;|, the imaginary -~~~ a=03 Sl ——o=25

part of the refractive index is always positi@bsorbingor ~ g*/\ =~ =04 g ot

negative(amplifying). Hence the solution for these two cases g, 0.05 |

is also given by Eq(6), the solutions being valid in the :

interval 0<r <1 for the absorbing medium, and<r <« for 9 3 5 7 0

the amplifying medium. Outside the intervals, the probability N ~

densityP(r;L) vanishes. : () 0=001n=10;T'=1.0 0.25 d) «=00;1=10;T=1.0
A complete solution for Eqg11) and(12) is obtained as 1 i_\ __B=01 0l _ B=115

: R e

P =P e T gre) T E I+ Lr+r))

xexp{—2A[1 (1) +1_(n)]1},

a3 , ,
1 r—r?
l.(r)= > n @l 14=1>2, FIG. 3. The probability distributiorP(r;l) in the case of the
£ \/§¢ 4 |r—rs | correlated telegraph noisg@) 1>l ;mpand(b) 1<l 4y, are for one-
sided disorder 8<|7;|) with disorder in both the real and the
1 1 {++2r imaginary parts(c) | > ympand(d) <l ,mpare for two-sided dis-

’ |§i|<21

:§+ \/gz _4tan \/gz -y order (3>|7;|) and pure imaginary mismatchv& 0).

where L =a?+ B2+ B I, L =[10(82+ 87/ is, however, normalizable implying th&(r;») is peaked
—2a2]/[1if\/ﬁoj— az,[]; r(’lg)Z' —X1/2[g %_(g[z _(A’fg)l/g]ﬁ:]h)x:) (in fact, sharply at that point. This behavior can be readily
Py —_(4“2 _4)1,2’] z;nd b e ai norr;alizatioﬁ cioeffi- understood by noting that the second condition which can be
cient. Tiheseiexpressions be(():ome the same as given by ewritten asy*(I/K)*<3(|7| — Bla*+2B( 71| - B)], is

. . > e > ) sically a condition on the correlation length (=T"1).
gn':t;?]f white noise limit(y“—e, I'—c andx“/I" being  rpis” o dition is satisfied for small (largel sy). Then the

. . . . . . reflection is essentially from a single potential barrier and
The solutions for one-sided disorder in the imaginary partthus has a sharply defined value. It should be noted that, as
exhibit three qualitatively different behaviors correspondingaHoc P(r:) — &(r—1), as ex écted ,
to choices of the parametets B, and%; (y is an arbitrary ' ’ ' P )

constant and can be set to unity without loss of genejality The solutions for the case of a two-sided disorder for the
: t I . . 5 L )
First, we note that the case af+ 82— B|7;|/x=0, corre- imaginary part 3>|7;|) are similar to the solutions for the

sponds to a singular perturbation of the differential e uatior¥vhite noise case. It should be noted that there does not exist
P gular p q eal r'? which falls into the physical region of interest (0

for P(r;). This condition can be interpreted as a threshol _ . . . X )
condition by noting that the localization length is given by <r<x). In this case the Iarge.d|s_order In the_ Imaginary part
I’l~(a2+,82) and the effective amplification length is _(,8) causes the effects_ _of Ic_)cahzatlon tp _domlnate. However,
¢ S : . in all cases of amplification, for a finitd and a?+ B2
given by [gmg~B7; . This condition then corresponds to a — B|7i|#0, there is a universal #7 tail for the P(r;>). For

matphmg of length scalg; n the problem;lamp. In the . the case of pure imaginary disorder=0), we similarly see
regime where the amplification dominates the Iocallzatlona monotonically decreasing behavior Bfr;) with r for
(a®+ B%=B|7|<0 or 1>y, the solutions exhibit a ;

-si i <|n; > ig.
monotonic decreasing behavior in the region of interest (lgr(]?.fol;j Ei/t/jitﬁ I?f:;f fclrn;l/vgfsliéeéag?scgggﬂi((f%| ac?rdl a
’ I C

<r<w). Here the disqrdgr in the rgal pae) is small and <l mp [Fig. 3(d)]. With increase irgB for two-sided disorder,
dpes not affect thze st%n_sucs_apprema:)ly, las can be seenl e ppe)ak shifts to smaller values of reflectivity as the effects
Fig. 3@). qu (a”+p '3|’7i|>_0 or le<lamp, @ _nattéra of absorption show up, until for large enough the peaks
boundary arises for the solutions of the equationr & occurs arr =0 and we again have a monotonically decreas-
which falls in the domain of physical interest€k<=).  jq p(r:0). It should be mentioned that all these effects are
Now the solutions given by expressiéf3) are valid in the g0, for the case of absorption also, with the roles'8fand
ranger ?)=<r < with P(r;>) =0 outside. In this regime the (2) interchanged ' -
localization dominates [{<lamp, if 2.A/[§,'(§2,—4) 2] Finally, it is to be noted that the domain of validity of our
>1(2)and we Pz?ve a broad distribution with peakralaex  treatment and the results therefrom, for the super reflection
>r and P(r:’;»)=0 [Fig. 3b)]. The value offmaiS  from a random amplifying medium is restricted to operating
large for small disorder in the real parti+B°—B|7  conditions corresponding to below the threshold of lasing,
|ZO), and decreases as increases. The behavior in this i.e., to the parameter rEgim%<|amp- Indeed the random
region is dominated by the disorder in the real part of thegmplifying medium operating in the reflection mode acts as a
refractive index. A third qualitatively different behavior oc- gne-sided cavity of sizk. essentially opethence leakingin

curs forl o<l mpand 2A/[£_(£% —4)M?]<1. Then the ex-  the direction of the incident beamiOf course, deep inside
pression given by Eq13) diverges at‘? . This divergence the medium, a photon injected, for example, through sponta-
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neous emission will undergo indefinite amplification in anas in Ref. 16. This growing oscillatory tertwhich may
effectively closed cavity of size.. Such an amplified spon- eventually get limited only by nonlinearities not considered
taneous emission will lead to large storage of photons whiclherg essentially is a noise imposed on the relatively weak
will eventually be limited by nonlinear effects in real sys- transmission noted above. Further, rewriting the second
tems) As | approachesd,m,, from below (< _.lam), the  part as {T?exg—2(K'L—iwrlexp(#)RY™exd —K'L/
statistical weight for the reflection coefficient moves to rtlexdip/rt]{1—Rexd —2(K'L—iw7)]exp(d4)!, we note
higher values of reflectivity as indeed can be seen in Figsiat this exponentially growing part is at an effective fre-
3(b) and 3d), and finally atl ;> We would expect the quencyq/r. Note that this frequency is nothing but the rate
random amplifier to become a random oscillator with self-gf change of accumulated phase shift arising from multiple
sustaining oscillations at the eigenmodes of the system. Thugflections at the interfaces, due to the mismatch in the
one may suspect the results 1g> 1,y [Figs. 3a) and Fig.  imaginary part of the refractive index. The growing ampli-
3(c)] to lie outside the validity of our treatment. Indeed, it tyde is extremely sensitive to the change in the parameters
has been pointed otitthat the time-independent wave equa- (e.g.,R, T) of the system in the limit—o. Indeed, in prin-
tion (TIWE) and the associated stationary state scatteringjpie, it is possible to pickup the small finite part referred to
does not describe the situation above the threshold of lasinghgve as it is synchronous with the incident wave. Thus, our
(oscillations when the gain-length product exceeds critical-results in the regime above the threshold based on the TIWE
ity. In fact, their numerical results based on the time-[e_g” Figs. 8) and 3c)] represent just this synchronous
dependent wave equation give a transmission which growgart. This in our view gives an operational meaning to the
exponentially in time. Below, we shall clarify and interpret (agyits given by Eq(13) in the above-the-threshold regime
our results in this above-the-threshold parameter regimgnd shown in Figs. @ and 3c). Of course, the above is a
when |l >1gy,. To illustrate our point, we will consider a deterministic treatment that we have chosen for the purpose

Fabry-Peot setup treated in Ref. 16 for ease of comparisonof jllustration. For the random case, the interpretation has to
Thus we have a gain medium of lendttbetween the facets pe probabilistic.

with reflection coefficients and transmission coefficients In conclusion, we have studied the statistics of super-
respectively placed between two distant absorbers. The reeflection from a one-dimensional disordered system with
flection and transmission coefficients at the facets are relategpatim randomness both in the real and the imaginary parts
to the complex wave vectdr=k’ +ik" (k"<0 for the case  of the complex refractive index. We have discussed the mod-
of amplification) in the medium asr=(k—ko)/(k+ko) els of disorder qualitatively applicable to experimental sys-
=Re? and T=2k/(k+ko), wherek, is the wave vector in  tems such as intentionally disordered optical fibers with gain
fre:ei space outside. It can be readily shown that for a waveer®*-doped and obtained the probability distribution func-
(e”'") incident at the first facet at timee=0, the wave am-  tjon of the reflectivity for the cases of a white-noise disorder

plitude outside the second face at titnis given by and a correlated telegraph disorder. In both cases, an en-
hanced reflection results because of coherent feedback due to
T(t)=T2e (K'L-longiat 1 Anderson localization and coherent amplification. In the case

1—r2e2K'L-iwr) of white-noise disorder, the statistics are qualitatively differ-
ent in the two regimes of the real part disorder dominating
(Af>2Ai2) and the imaginary part disorder dominating

(Ar2<2Ai2). In the case of telegraph disorder, we obtain

, three qualitatively different behaviors f&(r ;%) depending
wheren=Int[1/2(t/7—1)], Int denotes the integer value,  op threshold conditions involving the localization length, the
=L/v andv is the speed of propagation in the medium. Itis gmpjification length and the correlation length. Thus the
seen that the first part on the right hand side is what wey,ctyation in the imaginary part of the refractive index is
would get from a scattering treatment based on the TIWEgen to have a nontrivial and qualitatively different effect on
(We have considered here the case of transmission for thgcalization and lasing from such random media. Finally, as
ease of comparision with Ref. 16, but the case of reflectionhe phenomenon considered here is concerned with the issue
can be treated similiarlyi.e., as far as this term is concerned of statistical fluctuationgnoise in a random amplifying me-

the expression obtained below threshold continues analytigijym, we propose for it the acronym RAMAMandom am-
cally in the expression obtained above the threshold. Thgjifying medium and noise

second term on the right-hand side, however, is what is not
contained in this analytic continuation. It, indeed, gives the One of us(N.K.) thanks Douglas Stone for suggesting the
exponential growth of the transmitted amplitu@etensity) acronym RAMAN.

(r2e72(k"L7in))n+l

: 14

1— r2e—2(k”L—iw7')
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