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ABSTRACT

This article discusses errors on binary star separations that are estimated by model-fitting visibilities
obtained from a two element interferometer. It is shown that the rms error on any component of a
binary star’s separation in the sky is linearly proportional to the rms noise on the observed visibilities,
and linearly proportional to an effective beamwidth for the observation (given by the wavelength
divided by an effective length of baseline of the interferometer); it varies inversely with the peak-to-peak
variation of the visibility of the binary that depends upon the ratio of intensities of the two stars, and
inversely as the square root the total number of observed visibilities. The errors are independent of the
binary separation or its orientation in the plane of the sky; this result is not obvious as the model-fitting
procedure is essentially nonlinear in the binary star parameters. It is also shown that in principle any
visibility dataset can be consistent with more than one binary separation and orientation. This is a
consequence of insufficient sampling in the (U, V) plane of the two-dimensional visibility sinusoid. This
leads to alternate solutions for the binary separation vector (an effect noted by observers), which may
or may not be ruled out on the basis of a minimum y? of model fitting, depending upon the rms noise on
the observed visibilities. The alternate solution vectors differ from each other in the two-dimensional
binary separation space (i.e., the plane of the sky) by integral multiples of a constant vector that does
not depend upon the true vector solution, but only upon the orientation of the interferometer. In other
words, the alternate solutions are equally spaced on a straight line in the binary separation space. It is
shown that this straight line when projected onto the equatorial plane (i.e., the plane lying at zero
declination), is parallel to the projection of the physical baseline onto the same plane. It is possible to
think of the alternate solutions as observations of the binary through successive side lobes of an interfer-
ometer lying in the equatorial plane, that is actually the projection of the true interferometer (which
usually lies in the plane of the ground). The above claims are verified by numerical simulations, as well
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as by real data from the Mount Wilson optical interferometer.

L INTRODUCTION

Two element optical interferometers, such as the Mark I11
at Mount Wilson (Shao et al. 1988) and the I2T at CERGA
(Labeyrie 1975) have been in operation for some time, and
are routinely used to observe stars to estimate their diame-
ters and the separations of binaries in the sky. These instru-
ments typically use two “telescopes” whose separation on
the ground is variable. They measure the amplitude of the
complex visibility as a function of time, which can be fitted to
a three parameter model for binary stars: L, is the separation
between the two stars in right ascension; L, is the separation
in declination, and f is the intensity ratio of the two stars.
The best combination of parameters is obtained by minimiz-
ing the y* between observed and expected visibilities.

The visibility amplitude 7 is given by

1 4 feos[®(?)]
L+f
where tis the hour angle and ® is the visibility phase given by

I(t) = , (1

(1) = i”[U(z)Lu VL], )

where (U, V) are the components of the projected baseline
(i.e., the vector separation between the two telescopes pro-
jected onto the plane of the sky), and A is the wavelength of
observation. The visibility amplitude I(z) is the sum of a
constant term 1/(1 +f) and a sinusoid fcos[®(¢)]/
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(1 + f) in the two-dimensional (U,¥) space (it is assumed
that the binary parameters do not change on timescales of
the duration of observations). The visibility phase ®(¢) re-
fers to the geometric phase of the visibility sinusoid sampled
in the (U,¥) plane by the instantaneous projection of the
physical baseline. It is not the phase of the complex visibility,
which is not at all used in this analysis; for want of a better
appellation this phrase, although somewhat confusing, has
been used throughout this article.

The principle aim of this article is to understand the ran-
dom and systematic errors associated with L, and L, that
are estimated by model-fitting Eq. (1) to real data. Section
II discusses the rms errors o, (on L, ) and o, (on L,) that
are expected on account of random noise on the observed
visibilities. Section III discusses a systematic error in L, and
L, that has been noted by observers, that gives rise to alter-
nate solutions for the binary separation parameters L, and
L, that is caused by insufficient sampling of the two-dimen-
sional visibility sinusoid /().

The above problems have been tackled by the following
approach. Consider a visibility dataset /(¢,) observed at spe-
cific instants ¢, which implies at specific points
[U(2),V(¢,)] in the (U,¥) plane. One can estimate the
change in visibility AI(z;) at each instant #; expected by us-
ing binary separations that differ by /, and /, from the true
solution L, and L,, respectively. For “small” values of /,
and /, itis easy to show that AI(¢,) is also a two-dimensional
sinusoid in the (U, V) plane [Eq. (11)]. Given this analytic
form it is easy to estimate the mean value (Al ) of AI(¢;) asa
function of time ¢,, and its second moment (A7 *), which will
be called the systematic deviation of the visibility curve [i.e.,
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the square of the visibility deviation averaged over the dura-
tion of observation, elaborated in Eq. (12) ]. Under the rea-
sonable assumption made in Sec. II (A7 ) is a small quantity,
and (A7?) is a good estimate of the excess variance expected
between the data and Eq. (1), as a function of /, and [ ; the
observed variance will be the sum of {(A7?) and the nominal
variance on the visibility data due to random noise. Then one
can estimate o, and o, by the standard statistical criterion
that the y* of the model-fitting procedure increases by 1
whenl/, =0, and/, =o0,.

Since AI(¢) is a function of two error parameters /, and
1,, (AI*) depends not only upon the individual value of /,
and /,, but also upon their ratio, i.e., the errorson L, and L,
are correlated. Physically this implies that (AZ?) depends

both upon the magnitude / = /2 + [2 and direction of de-
parture from the true solution in the binary separation space.
Ideally (AZ?) should vary quadratically with /, and /,, and
one should derive the equation of the “‘error ellipse” in this
space. Unfortunately it is not easy to derive the equation of
the error ellipse analytically. So in this article the following
practical approach has been adopted: (AI?) isestimated as a
function of the departure / along two orthogonal directions
in the binary separation space. Along one (Al ?) varies least
with /, as compared to any other direction; this would obvi-
ously yield the largest / consistent with the data, and should
correspond to estimating the error along the major axis of
the error ellipse. Along the other (AI?) varies most with /,
and should correspond to estimating the error along the mi-
nor axis of the error ellipse. Thus two sets of formulas are
derived for ¢, and o,, for the two directions along which
(AT?) varies the most and the least, respectively, with the
departure / from the true solution. Both have to be used
judiciously to estimate the final errors on the binary param-
eters. Because of the above approximations these expres-
sions for ¢, and o, are expected to predict only ball-park
estimates of the true errors.

In Sec. II analytic expressions are derived for ¢, and o,
that predict the observed errors to within a factor of 2, on the
average. They turn out to be independent of L, and L,—a
happy surprise. It is shown that o, and o, are directly pro-
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portional to an effective beamwidth for the observation giv-
enby A /d.q, where d.¢ is an effective length of baseline for
the duration of the observation, which in most cases is ap-
proximately equal to the length of the physical baseline pro-
Jected onto the equatorial plane [ Eq. (20); see also Egs. (19)
and (22) for special cases]. They scale directly with the rms
noise on the visibility measurements. They vary inversely
with the total variation of the expected visibility, which de-
pends upon f. Finally they vary inversely with the square
root of the number of observed visibilities. Table I shows the
agreement between the formulas of Sec. II and some observ-
ing situations that have been chosen at random.

Section III discusses the systematic errors on L, and L,
due to insufficient sampling of 1(¢) in the (U,¥) plane. As
mentioned earlier 7 varies sinusoidally over the two-dimen-
sional (U, V) plane. Let the two stars of a binary lie along the
direction a in the plane of the sky [also the (U, V) plane, see
Fig. 1]. They will “produce” visibility fringes in this plane
(solid lines in Fig. 1) that are sampled by the projected base-
line vector which moves along the arc of an ellipse as time
progresses [details of this ellipse can be found in Thompson
etal. (1986)]. Obtaining the true L, and L, implies obtain-
ing the period of these visibility fringes and their orientation
inthe (U, V) plane. In principle this can be done without bias
if one is allowed to sample I(z) arbitrarily in the (U,V)
plane. However, in a practical situation one is limited to a
finite duration of observation, during which the physical ba-
seline traces only a finite segment of an ellipse, and one sam-
ples I(#) along this curve. Now it is obvious that the locus of
the projected baseline must satisfy certain criterion if one is
to recover all information unambiguously. For example, if
the locus were a straight line instead of an ellipse, it is clear
that one would obtain an I(¢) that is perfectly sinusoidal in
time; this could imply an infinite number of two-dimensional
solutions, each with a slightly different orientation in the
(U, V) plane but with a correspondingly consistent period.
To obtain the complete information one would have to sam-
ple I(¢) along two orthogonal directions in the (U, V) plane.
The ellipse can effectively do that provided the duration of
the observation is sufficiently large. Unfortunately, this is
not often the case. A finite duration of observation can be

TABLE 1. Comparison of observed and expected o, and o, in four random examples. The first column contains the parameters of the simulated data: the
latitude of the interferometer A, the declination of the binary star 8, physical baseline components X, Y, and Z, components of the binary separation L, and
L,, intensity ratio f; the wavelength of the observation 4, and the total number of observed visibilities V. The next two columns contain the expected and the

observed o, and o, respectively, for a Gaussian random noise of rms value o,

= 0.05 on the simulated visibilities. The next pair of columns has the same in-

formation for o,,,, = 0.15, and the last pair of columns has information for g, = 0.30. The expected o, and o, are computed from Egs. (18) and (21), while
the observed ones are estimated from the simulated data by the criterion that the y” increase by 1 at these offsets. Even at declinations as low as 10° o, and o,

are predicted well by Egs. (18) and (21).

Parameters of simulation Opps = 0.05 Oy = 0.15 O = 0.30
A =35%8=45,1=04pu; N =56 exp exp obs exp obs
X=5m;Y=10m; Z=0m; o, =0.035 o, =0.035 o, =0.105 o, =0.113 o, =0.210 o, =0.195
L, = —20.479 mas; L, = 14.339 mas; /= 0.65 o, =0.044 o, =0.044 o, =0.132 o, =0.141 o, =0.264 0,=0243
A=45,6=751=08u; N=65; exp exp obs exp obs
X=-25mY=43m;Z=0m; o, =0.136 o, =0.122 o, = 0.408 o, =0373 o, =0.816 o, =0.788
L,= —31466mas; L, = —38.857mas; /=10 o, =0.111 o, =0.100 o, =0333 o, =0.304 o, =0.666 o, =0.647
A=75,6=205A=06u; N=69 exp exp obs exp obs
X=15mY=—-7Tm;Z=1m; o, =0.025 o, =0.023 o, =0.075 o, = 0.064 o, =0.150 o, =0.125
L, =12287mas; L, = — 8.604 mas; f= 0.8 o, = 0.082 o, = 0.085 o, = 0.246 o, =0.220 o, = 0.492 o, = 0.457
A= —3056=10%4=10u; N=68; p exp obs exp obs
X=—75m Y= —10m;, Z=2m; o, = 0.052 0,=0050 o, =0.156 o, =0.142 o, =0312 o, =0.299
L, = 64.952 mas; L, = 37.5 mas; f= 0.55 o, =0.131 o, =0.127 o, =0.393 o, = 0.359 o, =0.686 o, =0.756
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F1G. 1. Physical explanation of
multiple solutions. a is the direc-
tion of orientation of a binary
separation in the plane of the sky
or the (U, V) plane. Itis orthogo-
nal to the solid lines which repre-
sent the maxima of the resulting
visibility fringes. They are sam-
pled by the projected baseline,
which moves along an ellipse as
time progresses. If these visibility
fringes were observed only at the
maxima (shown by dots), then
the data would also be consistent
with the fringes represented by
the dashed lines, which would

U [million wavelengths]

partly compensated by a higher sampling rate of visibility in
the (U, V) plane; this is also not always feasible in a practical
situation. This is how a finite visibility dataset can be fit to
more than one solution for the binary separation.

Consider the extreme case in Fig. 1 where the visibility
was sampled only at the peaks of the two-dimensional
fringes (marked by dots in Fig. 1). Then one could fit the
solution b also to the same data, whose fringes are the dashed
lines in Fig. 1. If the data is well sampled, or if the noise on
the visibilities is low, then ¢ can be ruled out on the basis of y*
alone.

Thus Sec. III discusses the uniqueness of the solution to
Eq. (1), due to the finite duration of the observation and
finite sampling rate of the visibility. The question addressed
is, are there other binary separations and orientations, dis-
tinct from each other, at which (A7?) has a minimum com-
parable to that at the true solution, due to a combination of
large measurement or calibration errors on the visibilities,
finite duration of the observation, and insufficient sampling?
The answer is yes, and Sec. III develops the mathematical
basis of this phenomenon.

The analytic approach is an extension of that described
above. As before one considers changes in L, and L, by /,
and /,, respectively, and looks for minima in {(AZ?) that are
comparable to the true minima. However, now /, and /, are
much larger than the corresponding rms errors o, and o,
that were discussed above. Let the corresponding change in
visibility phase be represented by ¢(¢). It is shown in Sec. ITI
that the binary separations can be changed from the true
values by /, and /,, that are much larger than ¢, and o,, in
such a manner that the change in visibility phase ¢(¢) [Eq.
(9)] at each hour angle ¢is ““small,” and it remains small for
the largest possible duration of time. Then the two visibility
curves will look “similar,” on the whole. These conditions
are more easily satisfied if the duration of observation is not
greater than =~ 6-9 hr, which is often the practical situation.
Then, depending upon the rms noise on the observed visibili-
ties, it may not be possible to choose between the two solu-
tions based on y? alone.

In principle the change in visibility phase ¢(¢) is propor-
tional to / = //2 + sin® §/2 (where § is the declination of
the binary); i.e., #(z) increases approximately linearly with
departure from the true solution. The trick is to let /, and /,

imply the binary orientation c.

increase sufficiently so that ¢(¢) is of the order of 27, which
amount drops out of Eq. (1)! Then only the residual phase
[i.e., #(¢) modulo 27] is effective in Eq. (1), which canbe a
small quantity. However, this condition by itself is not suffi-
cient to mimic the true solution, since ¢(#) may be different
from 27 at other hour angles. Therefore one has to change
L, and L, along the right direction in the binary separation
space (say ©, ), so that ¢(¢) will remain “small” over a sig-
nificant fraction of the duration of observation, satisfying
both the conditions above.

In Sec. III analytic expressions are derived for the direc-
tion ©,, in the binary separation space along which the alter-
nate solutions lie, as well as for the separation between the
alternate solutions. It is shown that alternate solutions also
lie along the direction ©, + 180°. This direction, when pro-
jected onto the equatorial plane, is parallel to the projection
of the physical baseline onto the same plane. This is like
observing the binary through sidelobes of an interferometer
that is the projection of the actual interferometer onto the
equatorial plane. The alternate solutions are equally spaced
in the plane of the sky, just as the sidelobes are equally spaced
in angle in the sky. Figure 4 illustrates the alternate solutions
of the first example in Table I, and Table II compares the
observed and expected parameters of the alternate solutions
of all four examples of Table 1.

Section IV discusses the assumptions underlying the
above results, and their implications and limitations. It con-
cludes with a comparison of the above theory with real data
from Mount Wilson optical interferometer. Table III com-
pares the o, and o, expected from Sec. II with the observed
errors on the separation of the spectroscopic binary @ An-
dromeda. The expected values are systematically lower by a
factor of =2 (on the average) than the observed values. This
is partly due to an approximation made in Secs. IIa and I
which enabled one to obtain analytically simple expressions
for o, and o,, as well as systematic effects in the data, as
discussed in Sec. IV. Figure § illustrates the alternate solu-
tions found in one night’s observation of « Andromeda.

II. rms ERRORS ON L, AND L,

Equation (2) can be rewritten as
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o (1) =-2/1—7T[U(t)Lu + VDL, ]

:%[Xcost— (Ysin A — Zcos A)sint L, +2/1—7T[X8iﬂ55int+ (Ysin A —Zcos A)

Xsindcost+ (Ycos A+ Zsin A)cos 5L,
=Dcos(t—9O6) +C

where

D= Qu/A)JX>+ (Ysin A — Zcos A)?

XL 2 + sin’SL 2
cos © = (27/AD)[XL, + (Ysin A — Z cos A)sin 8L, ]
sin © = (27/AD)[X sin L, — (Y sin A — Z cos AL, ]
C= (27/A)(Ycos A + Zsin A)cos 5L, 4)

X, Y, and Z are the components of the physical baseline [X
points east, ¥ points north, and Z points along the local
meridian; see Thompson et al. (1986)], and A is the geo-
graphical latitude of the interferometer. The visibility phase
@ varies sinusoidally with the hour angle ¢. Its amplitude D
and its phase ©* have a simple physical interpretation. Con-
sider the projection of the physical baseline and the binary
separation onto the equatorial plane [Fig. 2(b) ]. The plane
of the ground is inclined to it at 90° — A and the plane of the
sky is inclined at 90° — § [Fig. (2a)]. Let the unit vectors x
and y define an orthogonal coordinate system in Fig. 2(b);
let y lie along the projection of the local meridian, pointing
towards “north,” and let x point towards “east.” Then

R=Xx+ (Ysin A—ZcosA)y (5)
is the projection of the physical baseline onto the equatorial
plane, while the projection of the binary separation is

r=L,x+sindéL,y (6)

Let R=\X?>+ (YsinA —Zcos A)? and
r= /L2 + sin’SL 2 be the lengths of the corresponding vec-

tors (note that R has units of length while » has units of
radians). Then

27 2
D = — R r| = —Rr 7)
IR Jr| =2 (
is proportional to the product of the two lengths, while
0= arccos(—L) (8)
IR |r|

is the angle between the two vectors in the equatorial plane
[Fig. 2(b)]. Cis the constant part of ® that arises due to the
projections of the binary separation (cos 6L, ) and the phys-
ical baseline (Y cos A + Z sin A) along the rotation axis of
Earth, which have no time dependence due to Earth rota-
tion. Thus the seven parameters of the problem (8, A, X, Y,Z,
L,,L,) have been reduced to three (D,0, and C) by consid-
ering the problem in terms of projections in the equatorial
plane and along the rotation axis of Earth.

Since @ is linear in the parameters L, and L, a change in
them by /, and /, causes ®(¢) to change by ¢(¢)

*© is the phase of the sinusoid that represents the variation of the visibility
phase ®(¢) as a function of hour angle z.

2050
3
l .
¢(2) =%4[U(t)l,, + V(0]
=dcos(t—0) +c, 9)
where

d =%Z—T—\/X2+ (Ysin A — Z cos A)*\[12 + sin’512
=2—7TR1,
A
cos ¢9=%[Xlu + (Ysin A — Z cos A)sin 61, ],
sinez_R}T[Xsin&l,, — (Ysin A — Zcos AL, ],

c=%{r-(YcosA+Zsin A)cos b1, (10)

which is also a sinusoid (Fig. 3). d, 6, and c are the same as
D, O, and Cof Eq. (4), with L, and L, replaced by /, and /

v

TABLE II. Properties of the alternate solutions of the examples in Table I,
arranged sequentially in the same order as in Table I. For each example the
first two pairs of alternate solutions are considered. The expected coordi-
nate offsets /, and /, of the alternate solutions, with respect to the true
solution L, and L, are shown in columns 2 and 3; they are estimated using
Egs. (23) and (25). Column 4 contains the expected rms systematic devi-
ation /A7), estimated from Eq. (27), while the last column shows the
observed rms deviation of the visibility curves from the simulated data. In
principle this also contains the rms noise o,,,, on the simulated data, added
in quadrature to/ (AI%),; however o,,, = 0.05 has been used in this table,

which is much smaller than any of these \/(AI?),, so that its effect in
column 5 can be ignored, except in example 4. At larger o,,, the alternate
solutions are expected to become more prominent. Except in example 3, the
alternate solutions occur almost exactly at the predicted offsets in columns
2 and 3. In example 3 the first alternate solution occurs ~0.5 mas away
from the predicted value. The expected (A7?),, in the last example is very
small because the duration of observation At is very small, due to the very
low declination of the binary; the 0.05 in the third column is actually o,
which is the minimum observable rms deviation.

{, mas sin 61, mas \[(AT%), (exp) \[(AI?), (obs)
1 + 3.965 + 4.501 0.13 0.21
— 3.965 — 4.501 0.13 0.22
+ 7.930 + 9.002 0.27 0.33
— 7.930 — 9.002 0.27 0.36
2 —22.320 + 28.320 0.48 0.39
+ 22.320 —28.320 0.48 0.37
— 44.640 + 56.640 0.96 0.48
+ 44.640 — 56.640 0.96 0.45
3 + 5.998 —3.211 0.51 0.40
— 5.998 + 3.211 0.51 0.41
+ 11.996 — 6.442 1.02 0.42
— 11.996 + 6.442 1.02 0.46
4 — 13.268 — 5.998 0.05 0.16
+ 13.268 + 5.998 0.05 0.16
—27.256 —11.976 0.11 0.31
+27.256 + 11.976 0.11 0.29
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TABLE I11. Comparison of observed and expected o, and o, for four different observations of the binary star  Andromeda. The dates of the observations are
shown in column 1; the X, Y, and Z components of the physical baseline in columns 2, 3, and 4; the central hour angle ¢, and the total duration of observation
At in columns 5 and 6. Columns 7 and 8 contain the effective beamwidths 4 /d,, and 4 /d,, along the two axis. Column 9 contains the total number of
visibilities observed that night, and column 10 contains the observed rms noise o, on the visibility squared data. Columns 11 and 12 show the expected and
observed o, respectively, while columns 13 and 14 contain the expected and observed o,. Table I1I (a) shows data obtained at a wavelength of 0.8 m and
Table III (b) has data obtained at 0.55 um. @ Andromeda has f = 0.18 and §=29.04°. Note that the expression (1 + f)/fin Eq. (18) and (21) is replaced by

(1 + /)?/2f since one is working with the visibility squared data.

X Y z Iy At A/d, A/d, aulexp Ty lobs ”ulexp Tyl obs

DATE (m) (m) (m) (hr) (hr) (mas) (mas) N s (mas) (mas) (mas) (mas)
8-31-1989 0.2 315 0 —05 7.0 10.709 1.865 34 0.016 0.04 0.10 0.01 0.03
9-02-1989 0.2 315 0 —-0.3 7.0 11980  1.865 19 0.019 0.06 0.08 0.01 0.03
9-09-1989 0.2 23.6 0 —0.05 7.5 16.831 2.508 22 0.023 0.10 0.14 0.02 0.05
9-14-1989 0.1 8.2 0 —0.45 7.1 45.725  7.196 16 0.030 0.42 0.83 0.06 0.24
X Y z I Ar A/d, A/d, o, |cxp O lobs g, |exp Ty obs

DATE (m) (m) (m) (hr) (hr) (mas) (mas) N s (mas) (mas) (mas) (mas)
8-31-1989 0.2 315 0 —0.5 7.0 7.363 1.282 34 0.025 0.04 0.06 0.01 0.02
9-02-1989 0.2 315 0 —-03 7.0 8.263 1.282 19 0.025 0.06 0.06 0.01 0.02
9-09-1989 0.2 23.6 0 —0.05 7.5 11.572 1.724 22 0.049 0.15 0.17 0.02 0.05
9-14-1989 0.1 8.2 0 — 045 7.1 31436  4.946 16 0.046 0.44 0.63 0.07 0.21

respectively, since ¢ (#) is the same as ®(z) of Eq. (3) with
exactly the same substitutions. / is the length of the vector
Ar =[,x + sin 6],y which is the difference between two so-
lutions of the binary separation, projected onto the equator-
ial plane; € is the angle between the vectors R and Ar. For
small values of /, and /,, and therefore for small values of
#(1), the change in visibility at any hour angle can be ap-
proximated by

AI(t)z—( f )sin[fl>(t)]¢(t). (11)
1+f

Let the binary be observed from hour angles ¢, to ,. Then
the mean value of Af and its second moment can be defined
as

(AT) = ~l—f NG
L, —tJy

1
L —1

(AI?) = JlAlz(t)dt. (12)

L
«O
)

0
<L
P%

rotation axis of Earth

/7e

?Ione of Tl -
he sky § <\ - A

Under the reasonable assumption that the visibility 7(z) goes
through at least one cycle of variation from ¢, to¢,, (Al ) isa
negligible quantity, since ®(¢) varies much faster than ¢(z),
and the second moment is given by

(A12>=( L )2 L_["0y, (13)
1+f L —=4LJy 2

which we will call the systematic variance of the visibility
curveinthe houranglerange?, — ¢, dueto change in binary
separation of /, and /,.

Ideally the contour of constant {AI?) is an ellipse in the
L,,L, space, and one should be able to derive analytic for-
mulas for the correlated errors o, and o,. However, the
mathematics is not simple, so we will derive expressions for
o, and o, along that direction in the L,,L, space along
which (AI?) varies slowest with the departure / from the
true solution. This would yield the largest values of o, and

>

F1G. 2. Geometry of the problem. (a)
The local zenith Z is inclined at angle
A to the equatorial plane, while the
line of sight to the binary is inclined at
angle 8. Xand Y are the components of
the physical baseline in the plane of the
ground. L, and L, are the components
of the binary separation the plane of
the sky (X and L, point down the fig-

equatorial plane

ure). (b) Projection onto the equator-
ial plane of the physical baseline R and
the binary separation r. X and L, are
projected unmodified as they are par-
allel to this plane to begin with. It is
obvious how Y, Z, and L, are project-
ed. O isthe angle between R and r mea-
sured counter-clockwise.

x>

(b)
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#(t)

L1 1

t=Bt/2  ty| to+at/2

F1G. 3. Schematic of the sinusoidal phase error ¢(¢) as a function of the
hour angle ¢, for change in binary separation of /, and /. Its amplitude d,
phase 6, and average value c are defined in terms of /, and /, in Eq. (10).
For an observing session of duration Az centered at ¢,, the allowed /, and
1, consistent with the data are such that ¢(¢, ) =~0. Then the duration At
encompasses the smallest possible absolute values of ¢, which would
yield the minimum (A7 ?2). Conversely, for an allowed {A7?) consistent
with the data, one would obtain the largest possible errors. When ¢, ~ 6,
the duration of observation encompasses the largest possible absolute
values of . Moreover the total range of change of ¢ in this time is least.

o, consistent with the data, which would also correspond to
the errors estimated using the major axis of the error ellipse.
In some cases 0, and o, are also determined by the rate of
change of (AI?) along the orthogonal direction in the L,
and L, space; This is obviously that direction along with
(AI?) varies fastest, and is equivalent to estimating errors
using the minor axis of the error ellipse.

For a given departure of / = /I2 + sin’5/2 in the binary
separation space, along the direction specified by 8, the com-
ponents /, and /, can be obtained from Eq. (10)

2052

;{[Xcosa— (YsinA —ZcosA)sinf1],
I[Xsin@+ (Ysin A — Zcos A)cos 6]
VX2 4 (Ysin A — Zcos A)?

sin 81, =

=%[Xsin O+ (Ysin A — Zcos A)cos 81].
(14)

Equation (14) is not useful for declinations around 0° as
sin § =0. In this limit the plane of the sky is vertical to the
equatorial plane [see Fig. 2(a) ], and L, has no component
in the equatorial plane, and projects only along the rotation
axis of Earth. Section II ¢ discusses this special case.

Let the total duration of observation be =~ 6-9 hr, which is
a typical situation practically. This would imply that the
duration of observation includes about a quarter cycle of ¢ in
Fig. 3. Let At = ¢, — ¢, be the range of observed hour angle,
and let ¢, be the center of this range.

a) Largest Errors, t,— 0=~ + 90, + 27(F,...

From Fig. 3 it is clear that (AZ?) will be least when
#(2,) =0, i.e., when the observed hour angle range is cen-
tered at ¢, — @~arccos( — c¢/d). Then the observed range
of hour angle includes the smallest possible values of ¢(z).
At the true solution both /, and /,, and therefore c and d, are
zero. As /, and /, increase, so do ¢ and d. From Eq. (10) itis
reasonable to expect d toincrease faster than c except for the
cases where 6 and A are small; this requires that the physical
baseline and the binary separation have much larger projec-
tions in the equatorial plane, than along the rotation axis of
Earth. In this subsection it will be assumed that d> c, since it
is then possible to derive analytically simple expressions for
o, and o,. Later it will be argued that the same applies for
the case d €c. Only in the intermediate case d =c is it diffi-
cult to obtain simple analytically expressions for the effec-
tive baseline length d.4; this, however, does not change the
qualitative nature of the errors.

So to obtain the largest errors one has to change /, and
sind/, such that @ satisfies the constraint
t,— 0=+ (2n+ 1)7/2,n=0,1,2, etc. Let t' =1t — ¢, be
the hour angle measured with respect to the central hour
angle ¢,. By using this and Eqgs. (10) and (14) in Eq. (9) one
obtains ’

L I[Xcos6— (Ysin A— Zcos A)sin ] é(t') =+ (— 1)"Q2a/A)RI(sint’ + k), (15)
VX + (Ysin A — Zcos A)? where
J
. (Ycos A+ Zsin A) [ X cost, — (Y'sin A — Z cos A)sin £, | (16)
L .

tan 6R 2

The change in visibility phase ¢ is directly proportional to
the departure / from the solution:

e

At

3
xf L, (sint’+k )idt'

- - )

r

Let 0, and o, be defined such thatat L, + 0, and L, + o,
in the parameter space, the systematic variance (AIZ?)
equals 02, /N, where o7, is the variance between the ob-
served visibilities and expected visibilities at the true solution
L, and L, and N is the number of observations. This crite-
rion implies that the minimum y? of the fit increases by 1 at
L, +o0,and L, + o,. Then Eq. (17) will give the distance /
one has to move in the parameter space, in the direction
characterized by 6 = #, + (2n 4+ 1)7/2, so that the y? in-
creases by 1. Substituting this in Eq. (14), one obtains
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14 L(M)
"“‘vdu.\/; 5
1 4 1(1+f)
=—2 [—(—=L)o,., (18)
% delJ; f Tob

where
1 [Xsint0+(YsinA~ZcosA)cost0]
d, R?
X ! y
1 +2k2 — sinAt
1 [Xcosty — (Ysin A — Zcos A)sin L]
= +
d, R?
x ! (19)

[ n A7
14242 _Sinal
: At

d,, and d,, have units of length and can be considered to be
the effective lengths of baselines along the L, and L, axis. o,
and o, are signed quantities because they specify a direction
inthe L,,L, space; it is understood that their absolute values
are to be taken for the rms errors on the binary separation.

o, and g, are directly proportional to the effective beam
widths A /d,, and A /d, along the respective axis. They
scale inversely as the total range of visibility variation
2f/(1 4 /), whichis reasonable since it represents the opera-
tive part of the visibility curve; the mean visibility of the data
is not relevant to the model-fitting procedure. They scale
linearly with the rms noise on the visibilities o, and in-
versely with the square root of the total number of observa-
tions which is intuitively obvious. They decrease with in-
creasing duration of observation, which is also reasonable.
Finally they are independent of the parameters L, and L, a
result that is not intuitively obvious.

d,, and d,; can be better understood by forming the quan-

2053

sin At

142k —

1 1

"R 1+2/tan’6

where At is assumed to be sufficiently large, and k, is ap-
proximated to 1/tan 8§, which is reasonable for most A. Thus
for most declinations d_g is of the order of the length R of the
projection of the physical baseline onto the equatorial plane.
d,, and d,, are the components of d. along the L, and L,
axis.

Equation (18) is only partly useful when the direction of
motion in the L,,L, space is close to either the L, or the L,
axis. Then one of the errors o, and o, is computed to be =0,
which does not mean that the error along that axis is negligi-
ble. This occurs because o, and o, together also represent a
direction along which (AI?) changes at a certain rate with
the departure /; that direction can very well be along one of
the axis L, or L,. In that case one has to evaluate o, and o,
along a direction perpendicular to the previous direction in
the L, and L, space.

(20)

b) Minimum Errors, t,— 0=, + 18C,...

To begin with, it is assumed that d>c, as in the previous
section. Then from Fig. 3 it is obvious that ¢ has a maximum
value at ¢, — 0= + nm,n =0,1,2, etc. Here ¢ is at the peak
of the sinusoid, and stays high for at least a quarter cycle of
the hour angle (= 6-9 hr). Using this relation and proceed-
ing as in the previous section, one obtains

aulmin ="1"L iIilif:la-obw
md,\| Nl f

Uulmin :—l'i' _I-[I—H‘]Uobs! (21)
Td,o\| Nl f

tity where

1
1 _+[Xcosto—(YsinA—ZcosA)sinto] 1
do R? sinAr/2 _ sinAz
14+2k2 + 4k, ——"=
+aks 2AL2 At
1 [Xsint, + (Ysin A — Z cos A)cos ¢, | 1
d, R> SinAz/2 _ sinAr
14+2k% +4k
BTV At

k,
tan SR ?

Only the final results have been written down here, since the
algebra closely follows that of the previous section. Equa-
tions (18) and (21) together specify the error estimates on
L, and L,; often only one of the two equations need be used.

Now let d <c. Then the d.c. value in Fig. 3 will be much
larger than the amplitude of the sine wave, and the smallest
possible values of ¢(#) occur in the duration of observation
centered at £, — 8~ + 180°, 4+ 540°, etc., for positive values

_ (Ycos A+ Zsin A)[Xsint, + (Ysin A — Zcos A)cos 4, |

(22)

r

of ¢ and at 1, — 6=0°, 4 360°, etc., for negative values of ¢;
this simply means that Eq. (21) should be used in place of
Eq. (18) for the error estimation. In the intermediate case
where d ~ ¢ it becomes difficult to estimate exactly the effec-
tive baseline length for the observation. Equations (18) and
(21) then offer only an approximate estimate of the errors.
Table III shows that in such situations the expected o, and
o, can be off by a factor of 2, on the average, from the true
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values. However the qualitative form of ¢, and ¢, remains
the same.

c¢)o, and o, at Very Low Declinations

The above formulation is not valid at very small declina-
tions, where the tan § in Eq. (20) blows up; Eq. (14) can no
longer be used, since sin § 0. In this case L, projects only
along the rotation axis of Earth [see Fig. 2(a)], and in Eq.
(10) d depends only on/,,, c depends only on/, as before, and
6 is independent of both of them. Proceeding as in Sec. Ila it
can be shown that the errors o, and o, are of the same form
asin Eq. (18), withd,; =R andd,, =(Ycos A + Zsin A).
This particular case is not discussed in detail here as it is not
likely to be encountered often in practice.

It should be emphasized here that the limits §~0°ord =~¢
only affect the exact estimation of the effective baseline
length d. ; they will not change the qualitative form of o, or
o, as given in Egs. (18) and (21).

d) Results of Simulations

Table I shows the result of model fitting four simulated
datasets. The binary parameters L,,L,, and f, the physical
baseline components X, Y, and Z, and the other parameters
S, A, A, and N have been chosen at random. In each case
Gaussian random noise was added to the visibilities, of rms
values 0.05, 0.15, and 0.30. Comparing this with the highest
possible visibility value of 1.00, the three datasets can be
qualitatively classified as “good,” “average,” and ‘“poor,”
respectively. Observations are centered at transit of the bina-
ry (i.e., , =0°), and the duration of observation is ~6-9 hr.

Each box in Table I shows, for that situation, the o, and
o, expected on the basis of Eq. (18) and Eq. (21), as well as
those actually obtained from the simulated data (by search-
ing for the L, and L, at which the y*increases by 1). There is
good agreement between the observed and expected rms, er-
rors on L, and L,. In most cases the discrepancy is within
~10%; in the last case of example 3 it is =~20%. In this
example Eq. (18) was used to estimate o, and Eq. (21) was
used to estimate o, . It is concluded that the rms errors on the
binary separations L, and L, are reasonably represented by
the model of Sec. II.

III. ALTERNATE SOLUTIONS FOR L, AND L,

Consider two binary separations differing by /, and /,,
that are much larger than the formal errors o, and o, . If the
rms difference between the two expected visibility curves (as
a function of hour angle ¢) is comparable to the rms noise on
the observed visibility data, then both solutions will be statis-
tically consistent with the same data. At first glance this
might appear unlikely in a real situation, since the change in
the visibility phase ¢ (¢) is directly proportional to the depar-

ture//2 + sin5/2, and the systematic variance of the visibi-
lity is quadratically proportional to ¢ (). However, the visi-
bility varies as the cosine of ®(¢) [Eq. (1) ], and changes in
® of + n27, n=1,2,3, etc. drop out, and only ¢(¢) modulo
+ n2m is effective in Eq. (1). Thus ¢(z) can be made
“small” by the proper choice of /, and /, (Sec. IV discusses
what one implies by “small” changes in ¢). Moreover, it can
be maintained small over a duration of =~ 6-9 hr of observa-
tion if /, and /, are chosen such that f, — O~nmw, by the
argument of Sec. I14. Under these conditions (A7 ?) will be a
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“small” quantity, even though /, and /, are much larger than
their rms errors o, and o, respectively; and this is the math-
ematical basis of the alternate solutions.

Two quantities characterize the alternate solutions—rv,,
the separation in the L,,sin 6L, space between any two
neighboring multiple solutions, and ©,, the direction along
which they lie in this space. By substituting t — 8 = ¢’ + n
into Eq. (9) one obtains the direction that one has to follow
in the L,,,L, space to satisfy this criterion; this direction lies
at angle ©, measured with respect to the L, axis

Xsint, + (Ysin A — Z cos A)cos ¢, )
Xcost, — (Ysin A —Zcos A)sint, /
(23)

It is understood that the opposite direction 180° + 6, is also
valid for the alternate solutions. Along these directions a

departure of / = /12 + sin” 8§/ changes the visibility phase
by

#(t') = (—1)"(27/A)IR (cost' + k,). (24)

The alternate solutions occur when ¢(¢ ') =27 or multiples
of it, i.e.,

0, = arctan(

%IR(1+k2):i2mr,

A 1
VY = —
e R(1+k2)

A1
“R1+tans

Thus the first pair of alternate solutions lie at separation #,
along the azimuths ©, and 180° + ©, in the L,,sin 6L,
space; the second pair lie at separation 27, along the same
directions, and so on. ©, is simply the direction along which
the physical baseline is projected in the equatorial plane at
the instant ¢, i.e., at the mean hour angle for the observa-
tions. It is intuitively clear that binary separations along this
direction give visibility phases that vary least with hour an-
gle, during a finite hour angle range centered at #,, since ¢
varies approximately cosinusoidally with ¢ in this configura-
tion. r, is simply the binary separation that will increase the
visibility phase by 27 for the baseline projected onto the
equatorial plane. By increasing the binary separation by 7, in
the direction ©,, one jumps a fringe in the sky, or sidelobe, of
the “projected” interferometer. Thus the alternate solutions
can be looked upon as observations of the binary with the
sidelobes of the interferometer projected onto the equatorial
plane. This is only an approximate picture, since the compo-
nents of the binary separation and physical baseline along
the rotation axis of Earth also contribute to the phase differ-
ence @.

Figure 4 illustrates the alternate solutions of example 1in
Table I, for o, = 0.05. Figure 4(a) shows the best fit to the
data at L, = — 20.433 mas and L, = + 14.282 mas; the
rms errors on these are 0, = 0.035 mas and o, = 0.044 mas,
respectively (Table I). From Egs. (23) and (25) 7, is com-
puted to be 5.998 mas and O, to be 48.6242°. Thus the first
alternate solution is expected at L, = — 20.433 + 3.965

= — 16468 mas and L,= + 14282+ 4.501/siné$
= 4 20.647 mas, which are quite different from the true
values. This fit is shown in Fig. 4(b); it is excellent between
hour angles — 1and + 1 hr, not bad between — 2and + 2
hr, and deteriorates rapidly outside this range. Figure 4(c)

(25)
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VISIBILITY (dimensionless units)

(a)

VISIBILITY (dimensionless units)

(b} HOUR ANGLE (hours)

2055

FIG. 4. Illustration of the true solution and
first two pairs of alternate solutions of exam-
ple 1in Table I. The dots mark the simulated
visibility data with an rms Gaussian noise
Oone = 0.05, while the curve is the theoreti-
cal fit. (a) True solution a L, = — 20.433
mas and L, = + 14.282 mas; (b) and (c¢).
The first pair of alternate solutions at
L,= — 16468 mas and L, = + 20.647
mas, and L,= —24398 mas and
L, = + 7917 mas, respectively. (d), (e)
The second pair of alternate solutions at
L, = —12.503 mas and L, = 27.013 mas,
and L, = —28.363 mas and L, = 1.551
mas, respectively. With more noisy data so-
lutions (b) and (c) could be indistinguish-
able from solution (a) if the duration of ob-
servation Az was a couple of hours around
t, =0.
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VISIBILITY (dimensionless units)
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F1G. 4. (continued)
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shows the first alternate solution on the other side of the true
solution, i.e., at L, = — 20.433 — 3.965 = — 24.398 mas
and L, = + 14.282 —4.501/sin § = + 7.917 mas; it shows
the same qualitative features as Fig. 4(b). It is obvious that
at o, = 0.05 these alternate solutions can be ruled out
based on y* alone; however, they become serious candidates
if, for example, the binary was observed only between hour
angles — 1and + 1; or if it was observed between — 2 and
+ 2 hr and the visibility data was more noisy.

Figure 4(d) shows the second alternate solution at
L, = —20433 47.930= — 12.503 mas and
L, = + 14.282 4+ 9.002/sin § = 27.013 mas; and Fig. 4(e)
shows the corresponding solution on the other side of the
true solution. For these solutions the fit is still plausible
between — 1and + 1 hr, though it is entirely unacceptable
outside this range. Thus even the second alternate solutions
have to be considered seriously if the duration of observation
is very small and is centered at transit, and the data is more
noisy.

The same qualitative behavior is found in the rest of the
examples of Table I. It is thus concluded that alternate solu-
tions are indeed found at separations =, in the directions
O, and 6, + 180°.

The systematic variance (AI?), at any of the alternate
solutions is difficult to estimate accurately; however, an or-
der of magnitude estimate is certainly possible. At the alter-
nate solution the change in visibility phase ¢ is obtained by
dropping the constant part in Eq. (24), sinceitis ~ + n2,
and retaining the first few terms in the Taylor expansion of
cos t'. Then

2 4

¢(t'):(—1)"—21711R(——t—+t——...>. (26)
Even this residual phase of Eq. (26) could have a d.c. value,
since it is difficult to estimate exactly at what /is ¢ (¢#) modu-
lo 27 a minimum, on the average, in the duration of observa-
tion. So the systematic variance at the alternate solutions can
be defined as

(AI%), = (AI?) — (AI)?,
[ O

_l__ﬁ)“_ ]
* 180(2

Equation (27) is expected to provide only a ball-park esti-
mate due to the approximate derivation. The analysis of this
section closely follows that of Sec. I15.

Table IT compares the expected (A7 *),, with the observed
residuals for the alternate solutions in Table I. o, is fixed at
0.05 since at higher values the alternate solutions can only be
expected to become more acceptable. The observed and ex-
pected rms deviations of the data from the model agree to
within a factor of 3, the discrepancy being larger for the more
distant alternate solutions. We conclude that Eqgs. (23) and
(25) represent, to a good order of accuracy, the parameters
of alternate solutions.

(27)

IV. DISCUSSION

A number of approximations have gone into the deriva-
tions above. First, it was assumed that ¢ is a small quantity,
from which Eq. (11) followed. From Eq. (9) it is clear that
the maximum value ¢ can attainis |d | + |c|, which is always

less than (27/A)L,L,, where L, =X*+ Y*> + Z*is the

length of the physical baseline, and L, =+/L2 + L is the
binary separation in the plane of the sky. This can be put as

Slmax =Ly (maS)(M)(’l—(&) - Iradians,

28
18 0.55 (28)

where L, is measured in milliarcseconds, L, in meters and 4
in microns. Ideally ¢|,... should be a small quantity (<1
radian) for the validity of the above analysis. For large dura-
tions of observation this condition is violated, first at the
edges of the observed range of hour angle, and later progres-
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sively towards the center of the hour angle range. For exam-
ple, this condition is violated in example 3 of Table I, which
explains the relatively higher discrepancy between simulat-
ed and observed o, and o,.

Second, it was assumed that the visibility varies by at least
one cycle in the observed hour angle range, so that one could
neglect terms of the type sin[2®(#) ] and cos[2®(¢) ] in Eq.
(12). The accuracy of the formulas in this article is suspect
when this condition is no longer met. However, this condi-
tion is almost mandatory from an observational point of
view also, because of the problem of multiple solutions.
Therefore this assumption is very reasonable.

The third assumption was that the observed range of hour
angle be around 6-9 hr. This is strictly not necessary, and
mainly helps to understand the derivations in this article. If
this condition were met, then it is easy to see along which
direction the systematic variance (AI*) changes fastest, or
slowest, since the observed hour angle range would straddle
either the peak, or the null, of the phase error curve ¢ in Fig.
3. If the range of hour angle is very large, then the systematic
variance would increase at the same rate no matter along
which direction the parameters were changed, i.e., the error
ellipse would become a circle in the /,,sin 8/, space. But the
errors o, and o, obtained from Eqgs. (18) and (21) will still
be representative.

At very low declinations § and latitudes A the geometry of
the problem changes significantly, in the sense that there is
hardly any projection of either the ¥ component of the phys-
ical baseline, or the L, component of the binary separation,
onto the equatorial plane. However the X component of the
physical baseline, and the L, component of the binary sepa-
ration continue to project onto the equatorial plane; thus the
principles of derivation of this article continue to hold.

The most critical approximation in this article is the as-
sumption that #, — 8~ + 90°, + 270°,... in Sec. IIa and that
t, — 0=0°, + 180°,... in Sec. IIb. In principle one should use
the approximation dcos(¢, — ) +c=0 to obtain the
smallest values of ¢ in the observed range of hour angle, as
shown in Fig. 3, and then solve for (AI*). Then the analytic
derivation of o, and o, becomes difficult. Table I shows that
the above approximations are reasonably accurate, on the
average, in varied situations. In practice it is sufficient to
predict the random errors o, and o, approximately, since
any real data will also have systematic errors as shown in
Table III.

Table I1I presents the results of applying the theory of Sec.
II to real data from the Mark III Optical Interferometer at
Mount Wilson. The data was obtained in the year 1989. Ob-
served and expected o, and o, are shown for four different
nights of observations of the binary star @ Andromeda, using
three different baseline lengths. Columns 2, 3, and 4 contain
the X,Y, and Z components of the physical baseline in me-
ters. Columns 5 and 6 contain the central hour angle ¢, and
the total duration of observation Az in hours. Columns 7 and
8 contain the effective beamwidths 4 /d,, along the right
ascension and A /d,; along declination respectively in mil-
liarcseconds [Eq. (21) is used for o, and Eq. (18) for o, ].
Column 9 contains the total number of visibilities observed
each night, and column 10 contains the observed rms noise
O, On the visibility squared data. At the Mark III the
square of the visibility is used for data analysis, instead of the
visibility itself, as it is an unbiased observable (Colavita
1985). Equation (13) can still be used by replacing
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f/7(1+ 1) by 2f/(1 + H? [this follows directly from Eq.
(1)]. Thus only this change needs to be made in Egs. (18)
and (21). Columns 11 and 12 have the expected and ob-
served o, while columns 13 and 14 contain the expected and
observed o,, respectively, all in mas. Table III(a) refers to
data obtained at a wavelength of 0.8 yzm, while Table I1I(b)
refers to data at 0.55 um. The expected rms errors are ~2.5
times smaller, on the average, than the observed ones at
A = 0.8 um, while they are =~ 1.8 times smaller at A = 0.55
pm. In two cases the disagreement factors are 4 and 3, re-
spectively. Since the Mark III has essentially a north-south
baseline, the star sees mostly a ¥ component of the projected
baseline during the observations. This therefore is a case
where |d | = |c|, which could explain part of the above dis-
crepancy. Part of it is probably due to systematic errors that
appear to affect the data. For example, consider the data of
August 31 and September 2. The former has almost twice the
number of data points (34 against 19), and marginally lower
O, at 0.8 um (1.6% against 1.9%). So one expects the
observed errors on August 31 to be =50% lower than the
errors on September 2; but the observed o, is higher in the
former data, while the observed o, is the same in both data.
At 0.55 um the observed o, and o, are the same on both
days, whereas one expects the same =~ 50% difference. This
behavior cannot be explained solely by random errors. A
deeper analysis of these effects is beyond the scope of this
article.

Figure 5 illustrates the alternate solution found in the 0.8
pm data obtained on 7 October 1989, with the Mark IIIL.
Figure 5(a) shows the fit at the true solution of
L,= —11.84masand L, = — 6.79 mas. r, for this night’s
baseline configuration is computed from Eq. (25) to be
2.554 mas and O, is computed from Eq. (23) to be

— 91.077°. Figure 5(b) shows the fit at the first alternate

solution of L, = — 11.99 mas and L, = 12.21 mas, while
Fig. 5(c) shows the fit at the corresponding alternate solu-
tion of L, = — 11.66 mas and L, = — 1.34 mas, on the

other side of the true solution. The y° per degree of freedom
of the three fits are 0.65, 0.83, and 0.90, respectively. With
seven independent degrees of freedom in each figure, the
alternate solutions can be rejected on the basis of y* alone.
However, the y? of Fig. 5(b) is not too different from that of
the true solution, and the two might have been indistinguish-
able if the rms noise on'the observed visibilities had been a bit
higher. A lot of the difference in the three fits occurs in the
first one hour of the observation. Had the observation begun
an hour later, the three solutions might have been insepara-
ble.

The results of Sec. III suggest an observational method of
resolving the alternate solutions (apart from obtaining data
of very good quality!). If the binary star is observed on two
baselines with significantly different orientations, then the
alternate solutions for each baseline will lie along different
straight lines in the L, and sin L, space, spaced by different
intervals, as per Eqgs. (23) and (25). Only the true solution
will be common to the two baselines (this suggestion is due
to Michael Shao).

To obtain errors in L, and L, that are comparable, the
effective baseline length d,; must have comparable projec-
tions along the two axis. At optical wavelengths observa-
tions are generally restricted to high elevations of the star,
due to the atmospheric absorption. Thus Earth rotation will
not be efficient in rotating a given physical baseline in the U,
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¥V plane. It is therefore necessary to have both an east-west I wish to thank Michael Shao, Dave Mozurkewich, Mark
and a north-south component of the physical baseline to Colavita, and Ken Johnston for useful discussions, and
start with (this implication is intuitively obvious). Xiao-Pei Pan for the data of Table III.
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