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ABSTRACT

In a recent paper, Karbelkar and Nityananda rectified, in the wave limit (high flux), an earlier overestimate
of signal-to-noise ratio (SNR) for the bispectrum of a speckle image. The relevance of this work to the
opposite case of low photon levels is pointed out. For the specific case of binary stars, we present SNR calcu-
lations for the detection of the parity (the side of the brighter component) of the binary. Parity, defined as a
special case of the focal plane triple correlation, is shown to have significantly poorer limiting faintness than
that found in the autocorrelation case. The simplified nature of the object and speckle model allow a rather
complete study of the noise properties of triple correlation analysis, which should be useful in more complex

situations.
Subject headings: instruments — interferometry

I. INTRODUCTION

It is well known that atmospheric “seeing” limits the
resolution (smallest detectable angular feature) in long expo-
sure images formed by large telescopes. The incoming plane
wave due to a point source encounters random refractive index
inhomogeneities associated with the temperature-induced
density fluctuations in Earth’s turbulent atmosphere. By the
time starlight reaches the entrance pupil of a telescope, it shows
random variations of both phase and amplitude. Typically, the
field decorrelation length is about 10 cm in the optical region.
An immediate consequence is that the instantaneous image of
a point source has a spread of about 1” (corresponding to the
10 cm decorrelation length) and contains many bright spots,
the so-called speckles, with nearly diffraction-limited size.
These atmospheric corrugations of wave front change with
time (typically 10 ms), resulting in a time-dependent speckle
pattern. Although at any instant the finest features (speckles) in
the image have diffraction-limited size, on long exposures one
records only the envelope “seeing disk,” which is typically 1”
wide. The goal of speckle interferometry, pioneered by
Labeyrie (1970), is to recover diffraction-limited stellar images
from (perhaps a large number of) short-exposure images.
Although the system response (the focal plane image of a point
source) is quite random, both spatially and temporally, two
nearby point sources will produce almost the same image (in
the high flux limit). This so-called isoplanatic patch, within
which two point sources produce almost the same image, is
typically 10” in size. Wave fronts emanating from two stars not
within an isoplanatic patch encounter significantly different
turbulent regions of the atmosphere.

The stochastic nature of the system response requires the use
of statistical methods of image reconstruction. Labeyrie (1970)
proposed and demonstrated successfully (Gezari, Labeyrie,
and Stachnik 1972) the use of the second-order correlation (the
power spectrum),

LI_)=<R,R_)S,S_,, )

where I,, R,, and S, are Fourier components of the observed
focal plane intensity I(x), the system response
(telescope + atmosphere) R(x), and the source structure, S(x),
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respectively, and angle brackets denote the average over atmo-
spheric fluctuations. The power spectrum, however, does not
contain the phases of the Fourier components S,, which are
necessary for unambiguous reconstruction of the source struc-
ture S(x). In the phase recovery scheme proposed by Weigelt
(1977) and discussed in detail by Lohmann, Weigelt, and Wir-
nitzer (1983), the bispectrum

L A1y ) = <R,R,R_,_,>8,8,8 @

is obtained as an intermediate step. The signal-to-noise ratio
(SNR) for recovering the individual phases of the S,’s contains
two factors: (1) the SNR for the bispectrum and (2) a factor
representing improvement due to the redundantly stored phase
information in the bispectrum. Wirnitzer (1985) has calculated
the SNR for the bispectrum for general light levels. For one
frame of data, his results can be summarized as follows:

~1 high flux A# >1, 3)
~H3 Jowflux H <1, @

where A" is the average photon count per speckle in an expo-
sure. Recently, Karbelkar and Nityananda (1987; hereafter
KN 1987) showed that in the wave limit (high flux), this calcu-
lation overestimated the SNR for the bispectrum by a factor of
the order N}/? (with N the number of speckles):

SNRgicpectrum ~ N5 /2 high flux /" > 1. (5)

In § II, we present a brief summary of the KN paper and the
SNR estimates for the bispectrum that are valid at low photon
levels.

The signal-to-noise properties of the bispectrum analysis of
image reconstruction need to be understood, and the present
paper is a step in this direction. In § III, we present the SNR for
the parity of a binary. A binary is a simple situation where
parity (the side of the brighter component) is left undetermined
by autocorrelation methods. Parity is known to binary star
observers as “quadrant ambiguity.” These focal plane calcu-
lations for the specific case of a binary have the advantage that
the intermediate step of obtaining the bispectrum is bypassed:
there is no redundancy of parity information in the focal plane
triple correlation values. The detailed calculations that are
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SNRBispectrum{
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valid for general light levels are given in the Appendix. Our
calculations use an idealized approximation to the point
spread function. This model for the point spread function is
described in § III. The model is physically motivated and is
shown to reproduce well-known results for the autocorrelation
analysis. The simple nature of the source and a simple model
for speckle imaging tame (to some extent) the complexities of
the general bispectrum analysis and allow an analysis which
brings out the physical origin of various effects.

II. KN RESULTS AND THEIR RELEVANCE FOR LOW LIGHT LEVELS

Karbelkar and Nityananda (KN 1987) idealize the point
source response R(x) (telescope + atmosphere) by a sum of
delta functions: R(x) = R, Y5, 6(X — X,) representing Ng ~
100 D? (where D is the diameter in meters) constant intensity
speckles whose positions, represented by X’s, are statistically
independent of each other. In the frequency domain, the
response function R, = Ry Y18, exp (X)) (here i = (—1)'/?)
is then just a sum of N uncorrelated complex numbers whose
average is zero because of the assumption of sufficient random-
ness of speckle positions. In this picture, the triple
product R,R,R_,_, (which is the bispectrum transfer
function) can be shown to contain Ng constant real positive
terms of value R} and N3 — N uncorrelated complex terms
with zero mean. The N constant terms give the signal, while
N2 — Ng ~ N3(Ng > 1) complex terms contribute to the noise.
This simple calculation (more rigorous calculations, taking
into account variations in speckle size and intensity, do not
change these scalings) gives

SNRgispectrum ~ N5 /2 high flux 4" > 1. (5)

Typically, N1/ ~ 50. This is to be compared with the SNR of
the order unity obtained by Wirnitzer (1985) in the wave limit.

At low light levels (faintness more than about 13 m when a
speckle receives less than single photon per 10 ms exposure
with a 100 A bandwidth), one must also consider noise
resulting from the Poisson fluctuations in the number of
photons detected. This involves two steps. (1) Since photon
statistics introduces bias terms that are dominant at low light
levels, one starts with an unbiased estimator for the bispectrum
which, when averaged over the photon statistics alone (at a
fixed intensity distribution determined by wave theory), gives
the classical bispectrum for that realization of the atmosphere.
Note that given this construction, the average, even for low
light levels, is going to be the same as in the wave limit. (2)
Calculation of the variance of such an unbiased estimator con-
sidering both the photon and atmospheric noise. Wirnitzer
(1985), starting with the correct unbiased estimator, gets the
right leading term N3 (Wirnitzer 1985, eq. [A8]) for the
variance at low light levels, where N, = Ng./" is the total
photon count per exposure. However, as seen above, the atmo-
spheric fluctuations have not been propertly taken into
account while evaluating the average of the bispectrum. The
previous overestimate in step (1) continues to exist, even in the
low-flux limit. The correct result for the SNR of the bispec-
trum, including the effect of the atmospheric noise, is:

~Ng 12 high flux A4 >1, (5)
~Ng"2 432 lowflux & <1, (6
where A" is the average number of photons detected in one

speckle per exposure. Since the system response R, contains Ng
statistically independent correlation areas in the u-plane, the

SN RBispectrum{
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bispectrumR, R, R_,_, contains N3/4 statistically indepen-
dent region. If N phase values are reconstructed from N2/4
bispectrumvalues, then the phase error is reduced by a factor
of N1/2 (Winitzer 1985). Taking this improvement factor with
our estimat, equation (7), for the bispectrum, we obtain

NR ~1 high flux 4 >1, (7
) Phase ~m3/2 ]0W ﬂux N < 1 R (8)

Note that a long as the photon count per speckle is less than 1,
the SNR fc the phase reconstruction is lower than the SNR
for the power spectrum (Dainty and Greenaway 1979). At the
recent NO/O-ESO conference on high-resolution imaging by
interferomery, it became clear that several groups have
reached ths conclusion independently: Ayers, Dainty and
Northcott 1988), Hofmann (1988), Karbelkar (1988), and
Nakajima (988).

III. SNR FOR THE PARITY DETECTION

a) Model of the Point Spread Function

The tripl correlation is a statistics of third order in inten-
sity. The ncse on the triple correlation contains terms of third,
fourth, fifth and sixth order in the intensities. The intensities
themselves ire second-order quantities, considering the fields
as the basicquantities. A rigorous calculation should therefore
involve sixt-, eighth-, tenth-, and twelfth-order integrals in the
fields. A sinpler model is welcome. Results based on field
correlation:will be presented elsewhere. In the following calcu-
lations, we nake reasonable approximations about the point
spread funtion. First of all, we take the seeing disk to be
uniform. Seond, we divide the focal plane into pixels with the
diffraction-imited size. Since the telescope aperture acts as a
filter for sptial frequencies, we expect the intensities over a
pixel to be orrelated. We therefore approximate the intensity
correlation: in the focal plane as follows. Intensity over any
pixel is regrded as uniform, and intensities over different
pixels are wuicorrelated. Thus, in our model, the point source
response iscompletely specified by intensities, represented by
u;, at the it pixel. The u; values are statistically independent
and have tlz same distribution for all i within the seeing disk.
This appro:imation neglects effects arising from the edge of the
seeing disk where the intensity gradually falls to zero. We
assume furter that the distribution of intensity at any pixel is
the Rayleig: (exponential) distribution. We also consider other
distributior in § IIle, but as the following argument shows, the
Rayleigh dstribution for the y; values is the natural choice.
Any pointin the focal plane receives complex fields from
roughly Nlifferent correlation patches in the pupil plane. The
result of thiaddition of a large number of complex fields is a
complex nmber whose real and imaginary parts have a
Gaussian dstribution because of the central limit theorem. The
intensity, wich is the modulus of the resultant field, is there-
fore distribited according to the Rayleigh statistics (Rayleigh
1899):

P(dp = (dp/<pp) exp (—pu/<m))
or, equivaletly,
™y = mipp™, ©)

where m isa nonnegative integer. As we move away from a
point in thefocal plane, the intensity will begin to decorrelate
with that a the first point. Therefore, the intensity within a
speckle-sizel pixel will show variations, and the statistics may
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deviate from the Rayleigh statistics which holds for intensity at
one point. Since the focal plane intensity correlation length is
of the order of the pixel size, we expect the statistics to be close
to that of Rayleigh. Deviations from this statistic can be
checked by more detailed calculations dealing with field correl-
ations. This statistical model allows us to deal with the inten-
sities themselves, thus reducing the order of correlations we
have to deal with. We assume also that the fluctuation in the
number of photons detected in a pixel is a Poisson distribution
with the instantaneous intensity as the mean. There are correl-
ations of the Hanbury-Brown Twiss type, but it is easy to see
that these are negligible for speckle interferometric observa-
tions. Our averaging procedure therefore involves two steps. In
the first step, we compute the Poisson average for a given focal
plane intensity distribution. In the second step, we perform the
classical averaging (over the atmospheric realizations.) We
denote the Poisson average by an overbar, and we denote the
classical average by angle brackets. Later, in § IIIg we show
that the above model for the system response correctly repro-
duces the known results for the autocorrelation of a binary.
Our calculations (Karbelkar 1989) based on field correlations
show that for binaries close to the diffraction limit, the present
approximations are justified. In particular, the edge-effects
arising from the finite size of the seeing disk are negligible.
b) Parity

In this section, we present SNR estimates for the parity of a
binary system. These focal plane calculations have the advan-
tage that the intermediate step of obtaining the bispectrum is
bypassed. It should be noted that the information about the
parity (the side of the brighter component) is stored in N
Fourier components, and therefore parity should have a higher

SNR than that for the phase of the individual Fourier com-
ponents. We expect

SNRParity ~ N.;/z SNRPhase . (10)

The situation is quite similar to the second-order statistics in
the case of a binary. The focal plane correlation has a nonzero
value only at the binary spacing. This has a higher SNR
(Dainty 1974) than the frequency domain correlation (Dainty
and Greenaway 1979) at a single u value. Of course, the full
SNR can be recovered by combining the power at different u
values:

SNRAutocorrelation ~ N§/ZSNRPower spectrum * (1 1)

In our model for the focal plane image of a point source,
intensities over different pixels are uncorrelated. However,
another point source within the isoplanatic patch will give an
exactly similar but shifted intensity pattern. In the high-flux
limit, the speckle patterns resulting from the two stars have the
same relative intensity as the true binary. In this paper, we use
the word “speckle” for contribution to pixel intensity from a
single star. Therefore all pixels, except those near the edge of
the seeing disk, receive two speckles: one from each of the two
stars. We are mainly concerned with cases where binary
separation is smaller than the seeing disk, and therefore we
neglect any edge effects. More specifically, we denote the
speckle intensity from star 1 (on the left) at the pixel i by y;.
This pixel also receives a speckle from star 2. The intensity of
this speckle is the same (appropriately scaled) as the intensity
of speckle from star 1 at the (i — b)th pixel, where b is the
binary separation. The speckle at the ith pixel from star 2 has
the intensity v;_, = (A /A )iy, Where A,/ A", is the true
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ratio of the intensity of star 2 to that of star 1. If we denote the
total intensity at the ith pixel by n; then

N2

N Hi—p -

Since the y; values are statistically independent, two #; values,
say #; and n;, are also statistically independent unless either
i=jorj=1i+ b. The correlation between n; and n; , , is caused
by a pair of speckles common to these pixels. This pair of
speckles has the same relative intensity as the binary. It can be
easily checked that in our model (which neglects edge or gra-
dient effects), the general focal plane triple correlation,

<77cj> = Z <'_1i'_1i+kﬁi+j> 5

=g+ Vi, =W + (12)

(13)

is symmetric in the average source strengths 4", and A4,
except for the following six cases for which T;; is asymmetric in
N yand Ay

)k=b,j=0 i) k=0,j=b ii)k=—b,j=—b,
(14)

iVk=b,j=b v)k=—b,j=0 vik=0,j=—b.
(15)

It can be seen from the definition that the three triple corre-
lations in equation (14) are identical; the same is true of the
three triple correlations in equation (15). Note that this is true
without the average denoted by angle brackets and an overbar
(¢)); therefore, these three values are identical in all realiza-
tions. There is no gain in SNR by a factor of 3'/2 when combin-
ing these three values. Out of the two sets of triplets, we choose
only two statistically independent terms:

_ N\ 525 . N\ 5 52
TLb—Zni Rivp s TL,b—Zni"Hb-
7 7

It is possible to combine these two terms in order to get a
single parity statistic that is antisymmetric in A", and A4",.
Thus, the only third-order correlation that contains the parity
information is

Py =Y A gy — 1iilsy)) (16)
1

where n; is the number of photons in the ith pixel, b is binary
separation, the overbar denotes average over the assumed
Poisson statistics obeyed by the photons for a given intensity
n;, and angle brackets denote average over the atmospheric
noise. '

Note that the expression in equation (16) is unbiased under
Poisson fluctuations; i.e., the unbiased estimator of the parity
statistics is

P= Z ("iz Niyp — nini2+b) . 17
We can write this as
P=Zpi; pi=ni2ni+b—nini2+bs (18)

where p; is the contribution from the ith pair of pixels consist-
ing of the ith and (i + b)th pixel.

¢) SNR for the Parity Detection at Low Light Levels

SNR values for this parity statistic for general light levels are
presented in § IIIf. The algebraic complexity makes the general
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TABLE 1 TABLE 3
TRUNCATED PoissoN PROBABILITY DISTRIBUTION
DISTRIBUTION OF PARITY
n P(n) Parity Probability
Oueerennnnnn 1 -7+ 4n? 20, inn,
) UTURTUIN n—n? =2 Lnn?
2o, in? (| U Remainder

case less physically transparent. Here we treat the case of low
light levels for which the algebra is simpler and the physical
origin of various contributions to the SNR is clearer. At low
flux, the number of pairs of pixels giving nonzero values of
parity is small compared to the total number of possible pairs.
It will be shown later that their overlap contributes to the
fourth and higher order terms in the variance, and not to the
lowest third-order terms. Since we approximate the seeing disk
by a uniform disk, and since the overlap in the different pairs of
pixels does not contribute in the third order, it is sufficient to
consider a representative pair of pixels with the binary separa-
tion. The second simplification is that such a representative
pair of pixels must not receive all three photons in one pixel. As
Table 2 shows, one of these pixels must receive one photon and
the other must receive two. It is enough, therefore, to use the
truncated Poisson distribution shown in Table 1, which gives
the probability P(n) of detecting n photons when the mean is n.
The SNR resulting from one such pair must then be multiplied
by N/ to find the SNR for parity statistics.

Consider, then, a pair of pixels with binary separation, with
intensity 7 and 71, for one atmospheric realization. We suppress
the subscript “i” and denote #, (which is actually #;.,) by 71, .
In all meaningful correlations, b is the basic displacement.
Later, we shall denote #; ., by n, for simplicity. The parity
statistics for this representative pair of pixels becomes p = n’n,

— nn?, which takes values with the probabilities shown in
Tables 2 and 3, respectively. It is clear from Table 3 that the
Poisson average and variance (up to third order) of the parity
statistics for one pair is

- p=n2n, —nR?, (19a)
P2 (19b)

One should have subtracted p?, but this is of sixth order in the
flux per speckle and neglected here. However, the atmospheric
average remains to be calculated. The pixel on the left contains
a speckle from star 1 with intensity u, and the pixel on the right
contains a corresponding speckle from star 2 with intensity
v = (AN ,/ A u. In addition to this correlated pair, the pixel on
the left will contain a speckle from star 2 with intensity of, say,
v_, and the pixel on the right will contain a speckle from star 1
with intensity u,. The quantities with different subscripts are

TABLE 2
PARITY VALUES As A FUNCTION

OF n AND n,

ny
n 0 1 2

Oceevnnnnnn 0 0 0
1.. 0 0 -2
2, 0 2 0

uncorrelated with each other. After calculating, the atmo-
spheric average we obtain for the per pair parity average

NNy — N 5)
Note that equation (20) does not make any assumptions about
the distribution of u and allows us to discuss other statistics as
well. We assume (see § I11a) the intensities of the speckles to be
distributed according to the Rayleigh statistics. We discuss
other interesting cases in § IIle). The average and the variance
of the per pair parity are:

) =2N 4 Ny (N1 = H3), 2y
P2 — PY2=4RN I+ TN 2N+ TN NE+24Y). (22)
This gives our estimate for the low-flux SNR for the parity,
M@ RPN NG N AN | — N 3)
QA+ TINEIN , + TN ( NE 424D
N HN,<1, (23)

where M frames of data are used and g is the detector efficiency
(optics + quantum). Note that for one realization, this is con-
sistent with our calculation in the frequency domain (egs. [7]
and [8]) and expectation (eq. [10]) relating the SNR for parity
to the SNR for phase (take A"y, A, /| — A, ~ A). Pre-
liminary results of the low-flux SNR estimates were presented
at the NOAO-ESO conference on high-resolution imaging by
interferometry (Karbelkar 1988).

B> = (1> = 3wy + 2¢u)?) (20)

SNRParity =

d) Parity Detection in the Presence of Sky Background

In this section, we consider the effect of a uniform sky back-
ground of K photons on the average per pixel per exposure. In
the previous section, it was seen that only events registering
one photon in one pixel and two in the other contribute to the
parity information. In the absence of sky background noise,
these photons come from the binary and therefore contain
information about the parity of the binary. Sky background
can mimic parity events: as an extreme example, all three
photons may come from the background. Assuming uniform
background, such spurious events will have their negatives, so
on an average there is no signal resulting from the background.
Of course, there will be additional noise caused by such spu-
rious events. To calculate the fluctuations in parity caused by
photon noise, we convolve the Poisson fluctuations in the
photons from the binary (as before) with the fluctuations in the
photons from the background. Since the sum of the Poisson
fluctuations is again a Poisson fluctuation with the sum of the
means, the calculation of probabilities in Table 3 continues to

hold with
n=pg+v; ,+K, (24)

instead of equation (12), which is true for no background.
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Assuming that the speckles have a Rayleigh distribution as
before, we obtain for one pair of pixels:
Py =2 NN —N>),
62 =(p*) — (P =8N 1+ 14N I N, + 14N | N3
+8A43 + 8K(N2 + 3N Ny + ND)
+12K3 (AN + A,) + 4K . (26)

Stationarity for the statistics of the y; values was used in the
derivation of equation (26). We must subtract the square of the
averaged parity, but this is of sixth order and will be taken care
of in § IIIf, where all orders are considered. Combining equa-
tions (25) and (26), we find the SNR for the parity in the pre-
sence of sky background.

(25)

e) Effects of Various Intensity Distributions for Pixels

We check now to ensure that the general formula (eq. [20])
gives correct results in other limiting cases of the statistics for
the pixel intensities. Consider a long exposure image. The
intensities on the pixels are positive. However, as a result of a
large number of speckles, one may find, to the zeroth order, a
constant intensity, as in the case of long exposure images. To
higher order, we could approximate the intensities as a Gauss-
ian distribution around the mean because of the central limit
theorem. The variance of this Gaussian component has to be
much smaller than the mean, so that the unphysical negative
intensities predicted by the approximation have negligible
probability. Such a distribution is represented by p =1 + x,
where x is a zero mean Gaussian with (x2) < 1. For this
distribution,

wy=1; =1+ Wy =1+3(x,

and there is no parity signal. The Gaussian distribution may
arise in another way. Consider a source more complex than a
binary, in which every pixel gets a speckle from every com-
ponent. The result of such a large number of independent Ray-
leigh distributions is a Gaussian distribution. As is well known
for Gaussian distributions, the bispectrum is identically zero.
Note that the expression in parentheses in equation (20) is just
the third moment about the mean. Whatever the statistics of
the pixel intensities are, the third cumulant must be non-
vanishing for parity detection.

f) SNR for General Light Levels

The variance for the parity statistics contains terms in the
fourth, fifth, and the sixth order, in addition to those in the
third order considered already. We summarize the results here,
while the details are left to the Appendix. Starting with the
unbiased parity statistic

P= Z (m?np — nini2+b) s
13

where n; is the number of photons recorded in the ith pixel in a
realization of the atmospheric noise. We calculate the Poisson
average for the square of the parity first:

= [Z (R} gy — 131074 4)]°
1
+3 07 iy + 20,07,y + 4R iy + 40, 1), — 40T AT,

S ooy —4 - — _2-2 o
— A R By gy + B By + A0y + BT T Ty g

= -2 -3 —2- -3 = -3 -
A0 7y 1y g — 205 Mgy 17y g — 811745 T4 0p) - (27)
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Note that the sixth-order term is just the classical variance, and
the Poisson contribution exists only in the lower orders.

Here we give an interpretation of the Poisson contribution
to the variance. We note that the square of parity statistics (in
the form of eq. [18]) is

2 DiD; -
LJ

Since n; is an independent Poisson variable for a realization of
intensity distribution 7;, in the first stage of (Poisson) averaging
p; and p; are independent unless i = j or i = j + b. The Poisson
average of the above expression is

Y0P =X B> + X (07 — D) + 2% Bibivs — Bibiss) -

The first term is the square of the classical parity statistics. The
second term is a variance term of the type discussed before
while considering the low flux noise. The third term includes
the effects of overlapping pairs. For example, consider events
where three pixels with interpixel separation equal to the
binary register one, two, and one photons, respectively. The
first pair of pixels contributes —2, while the middle and the
extreme right pixels contribute + 2 to the parity. Such an event
has a net parity of zero. However, in the previous calculations,
the two pairs were taken to contribute independently to the
parity, so their contributions to the variance are summed up.
The event under consideration has zero parity and should not
have contributed to the variance. Such excess counting must be
corrected for. The probability of such an event is in the fourth
order and contributes —4#; 2, , 7i; . ,; in the fourth order. Just
as the third-order Poisson events were tabulated in Tables 2
and 3, the higher order Poisson contributions can be worked
out, and we can convince ourselves that the result is the same
as given above (eq. [27]). The atmospheric noise needs to be
averaged, and when this is done (see Appendix), we get for the
variance the explicitly positive definite form:

PPy — (DY = ANS2N3 + TN N + TN\ N3+ 24°3)
+ANJ6(NF — D)2
+ 204"y N f( N2+ N2) + 24 3N2]
+ 8N [3N 5+ SN N 3+ 24342
+2N2N 3+ SN N 5+343]
+ Ns[8(AN 'y — N ) + 128N 2N YN | — N ,)?
+ RN N AN = NP+ 8NINT] . (28)

g) SNR for Autocorrelation (Low Flux)

The SNR for autocorrelation of a binary is well known in
the literature. Here we show that the SNR estimate for the
autocorrelation, based on our assumptions and simplifications,
agrees with the known result. As before, assuming a uniform
seeing disk, we treat the N terms in the general autocorrela-
tion,

I (29)

equivalent at low flux levels, and we consider only one repre-
sentative pair:
(30)

The pair of pixels registers n; and n;,, photons, respectively,
with average intensity 7 and 7, in one realization of atmo-

Ay =NiNiyx .
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TABLE 4
AUTOCORRELATION
VALUES
ny
n 0 1
(| T 0 0
1o 0 1

spheric noise. Note that for x # 0, the statistics is unbiased
under Poisson statistics. The autocorrelation gets its leading
contribution (low flux) in the second order in the flux per pixel,
and this enables us to truncate the Poisson distribution after
first order: the values of the autocorrelation and their prob-
abilities are given in Tables 4 and 5, respectively. It is then clear
that the Poisson average and variance are

a,=nn,,

€2y

Consider the case where x equals the binary separation. Then,
from equation (24), which gives intensities in the presence of
sky background,

(A = N2 43N N 5+ N2 2K(N  + N )+ K2 (32)

However, one should actually be able to measure the slight
bump in {a,) at x = b relative to its neighbors, where <{a,)
takes the value, say <{apc). For x # 0, x # +b, we have

(apey = N3+ 2H N 3+ N3+ 2KN 1+ 4 )+ K>, (33)
SNRAutocorrelation

a? = nn, .

3 Mg u N, NY?
T INEHBN N+ NE42K(N |+ N )+ KR

We should calculate the variance in a, — ajpc; however, we can
determine <a) . from many separations x which give indepen-
dent ap¢ values, and we therefore consider it aimost noise free
when compared to a,. The scaling with M, g, and 4" agrees
with previous results from Dainty (1974), who considers a
binary with A/, = A,.

(34

IV. CONCLUSION

For concreteness, we consider the specific case of a 4 m
telescope with optical bandwidth 100 A and an exposure time
of 10 ms. In this case, Ng = 1600, and the per speckle photon
count of unity corresponds to a 12.25 mag star. In the high-flux
limit, the sixth-order terms dominate, and the SNR is a func-
tion of the relative strength r of the two components:

F=NyN =10704mm) 4 s s 1, (35)
SNRp,iy = MY2g*2NL2(1 — 1)/(2 — 4r + 611 — 11613
+61r* — 4r° + 21512 (36)

where m; and m, are the magnitudes of the two stars, and we

TABLE 5

PROBABILITY DISTRIBUTION FOR
AUTOCORRELATION

Autocorrelation Probability

© American Astronomical Society

BINARY STAR PARITY DETECTION

339

TABLE 6

HiGH-FLUX SNR As A FUNCTION OF
MAGNITUDE DIFFERENCE

Am SNR Am SNR
00...... 0 35...... 31
02...... 112 40...... 20
05...... 130 45...... 13
1.0...... 130 50...... 8
1.5...... 118 55...... S
20...... 96 60...... 3
25...... 70 6.5...... 2
30...... 48 72...... 1

have taken detector efficiency (optics + quantum) g = 0.2. This
high-flux SNR is given in Table 6 as a function of the magni-
tude difference Am = m, — m,. Calculations based on all
orders (exact in our model) show that this gives an SNR accu-
rate to a few percent if the brighter component is brighter than
7 and the fainter component is brighter than about 13. We note
from the table that for bright binaries, parity cannot be
detected with SNR > 3 if the magnitude difference is greater
than 6, although it may be possible to see the binary nature in
the autocorrelation. Table 7 gives the limiting magnitude of the
fainter component, for a given magnitude of the brighter com-
ponent, for which parity and autocorrelation can be detected
with SNR > 3. For the chosen observation parameters, sky
background noise is unimportant and makes no difference in
the limiting magnitudes. The limiting magnitudes given in
Table 7 for the autocorrelation case are based on our calcu-
lations, which are outlined in § ITIg. In this case, keeping the 21
mag sky background in mind, the SNR calculations were ter-
minated at 20.5 mag. We conclude from Table 7 that parity
detection has a significantly lower SNR than the autocorrela-
tion. We then raise the following legitimate question. From
autocorrelation, which has a much higher SNR, we know 4",
and A", and therefore the magnitude | A2 4", — N /2] of
the parity quite well. It is the sign of parity which is unknown.
So the relevant statistical question is whether to assign prob-
ability distribution to the signs when the observed parity value
is given. This question can be answered only if we know how
the parity is distributed around its mean (which has to be
consistent with the modulus of parity obtained from
autocorrelation). Knowing a distribution means knowing all
the moments of the variable (the parity). The complexity
involved in evaluating the second moment of the parity sta-
tistics (despite a simple model) indicates the near-impossibility
of carrying out such a task by analytical methods. Two

TABLE 7

COMPARISON OF LIMITING MAGNITUDES FOR THE PARITY
AND THE AUTOCORRELATION OF A BINARY

MAGNITUDE OF THE LIMITING
FAINTER COMPONENT

MAGNITUDE OF THE

BRIGHTER COMPONENT Parity Autocorrelation
130 i 172 20.5
140. ..o, 17.0 20.5
150 . i, 16.0 20.5
160....cccciviiiinniiiiia. .. 20.5
170 0, e 20.5
180 i, e 20.5
190 .o, . 20.5
200, e 20.0
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extreme cases are, however, trivial. For large values of SNR, reality, there could be other sources of noise, and present-day
21 the sign of parity is well defined. On the other hand, for poor speckle work does not attain these theoretical limits. The limits
X! SNR, the observed value might just as well have come from themselves are still of interest.
E: any one of the two signs. We take SNR = 3 as the case where
< one sign has significantly greater probability than the other. The author is grateful to Rajaram Nityananda for many
We note also that we have considered an ideal situation; in useful discussions and illuminating comments.
APPENDIX

SNR FOR PARITY DETECTION AT GENERAL LIGHT LEVELS

Here we give the details of the SNR calculations for the parity statistics

P=Z(ni2ni+b_nini2+b)’ b#0, (A1)
introduced before. The average of this is given by equation (25). The square of the parity statistics is
P2 = Z n,-zni+bn;nj+b + Z nini2+bnjn"?+b - 2 Z nizni.,,bnjnfﬂ, . (A2)
ij i,j ij

I. POISSON FLUCTUATIONS

Since the Poisson fluctuations in different pixels are uncorrelated for a given intensity distribution, correlations come only when
any two of the subscripts are equal. Since we restrict ourselves to b # 0, no three subscripts in any of the three terms in equation (A2)
can be equal. So while taking the Poisson average of terms in equation (A2), we can partition the summation ), ; into four sums: (1)
j distinct from i,i + b,and i — b; (2)j = i;(3)j = i + b; (4)j = i — b. These partitions are mutually exclusive (b # 0) and cover all the
terms implied by the original summation without any restriction over i and j. When i is distinct from j, j + b, the Poisson average of
a term takes simpler form. For example,

ning, nf Nj+p = nE Ry iy -
We can relax the restriction on j and pretend that the Poisson average can always be split like this, although this is not true for

partitions other than (1). For other partitions, we must first write the correct result implied by the partition and then subtract from it
the above (pretend) uncorrelated average. For example,

2. 2. 2. 2= 3,2 22:-2 2 - 3 2 =
Z Ny Niyp NNy p = Z Ny Ny Rjyp + Z (n nivy — ni Ry + 2 Z N Ay 2y — NivpMisp) - (A3)
ij i T 7
Using the well-known results
mo=n;, nf=nl+n, m=nd+307+n, nf=n+6n + T+, (A%)

for the Poisson distribution for n; with given mean 7;, we can write the averages in terms of the given intensities. A compact notation
is useful. Since except for the first method of partitioning, other partitions involve only one summation over i, we drop the explicit
Y'; in such terms. We also suppress the subscript “i” and denote 7; by #, #t; ., by 71y, 7,4 55 Y 71, etc. Also, since i is a dummy index,
we have

nnn, =n_n*n, .
With this compact notation, we have

2. 2. =2 4 2Va (72 7\ ~4- ~3-2 ~2-2-
Yoninpning,, = Z (A + Y7 + Rpi;., + 100y + 4007 + dn’inin,

i,j i,j
+2n%n, i, + 613h, + 6n%h2 + dnnin, + Th’h, + nni + 2nn, 0, + ARy, (AS)
Z ”ina?'+b ”jn,gu; = Z ;ll{;liz+b + ﬁi+b)ﬁj(ﬁ?+b + ’—’j+b) + '-';1‘1t + 4’727’? + 4;"—'%'_1%
LJ LJ
g + 20, i3 + 6nnd + 6n2ni + 4nni ny + Tani + A*n, + 2nngn, + ARy, (A6)
=2y nEnnni,, = —2Y (A} + n),, Afil, + Rj,,) — 40°07 — 4n’n3 — 207, 73
ij ij

—8nns i, — 16n%72 — 2nn; — 2r°h, — 2n%A,h, — 2nn,n3
—12nn? i, — 6i%n, — 6An? — dnn,n, — 2nn, . (A7)
This gives us the Poisson average of the square of the parity statistics
R 2
P? = |:Z (ﬁiz iy — '_’iﬁizﬂ)]
i
+n*h, + nnt 4 4n2ncn, + 4nnlni — 2n2n, 03 — 8nn} i,

+4n’h, + 4and — 4n?n? — 4ninin, + 20%n, + 2an? . (A8)
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II. RAYLEIGH AVERAGE UP TO THE FIFTH ORDER

Note that the third-, forth-, and fifth-order terms in equation (A8) involve only one summation and are easier to average over the
assumed Rayleigh distribution for individual speckles. We assume, as before, that the seeing disk has a uniform profile. The average
of these sums can then be replaced by N times the average for one term. The sixth-order terms involve double summations and
need different handling, similar to the Poisson double summation. We therefore consider three pixels within the seeing disk
separated by the binary separation with contributing speckles 7, i;, and 7, (compact notation) given by equation (12). The
quantities with different subscripts are uncorrelated. The results of Rayleigh averages of correlated variables can be summarized as
follows:

vy = (my + my) /TN (A9)

where angle brackets denote the Rayleigh average. The following Rayleigh averages are needed:

(P =2AN 3+ AN TN, + 3N (NE+ N, 3y = 64 + 303N 5 + 28N INE + 18N | N3+ 645,
Aty = 4N+ 16N 3N, + 362N 2 + 164\ N3 +4NF,

i,y =24 + 23N, + 242 N2 + 124 N3 + 2475,
(n*iy) = 28N + 144N E N, + 1203 N3 + 96N 2 N3 + T2N | NS + 24475,

(i) = 4N + 8NN, + T2 3N + 68N 2 N3 + 280\ N5 + 443,

(P sy = 4N + 28NN, + AN I N + AN INS + 28N (N5 + 4N'3

(i3 i,y = 6NF + R2NGN , + 84N INE + 84NN 3 + 2N\ N5 + 6473, (A10)

where (iin?), (ind), <ant), and (an?ni) are obtained from {(nn, ), (i’n,), {i*h,), and {A*n? n,), respectively, by interchanging
N and A,.
II. RAYLEIGH AVERAGE OF THE CLASSICAL SIXTH-ORDER TERMS

The sixth-order terms are the classical terms in the sense that even in the absence of photon noise, these terms would survive. This
is the reason why there are no terms in the sixth order with single summation: the photon noise merges into the wave noise. The
double summation in the sixth-order terms has similarities to the double summation ) ; ; in the Poisson case. In the Poisson case,
the Poisson fluctuations in different pixels were independent, so the subscripts on the n variables has to be equal in order for
correlations to arise. This meant that j = i or j = i + b. In the Rayleigh case under consideration, the correlations in the intensities
also arise if two pixels are separated by the binary separation. This is because such pixels have one pair of speckles with the true
intensity ratio for the binary. Thus, the subscripts on the 7 variables must either be equal or differ by b, the binary separation. This
means that j =i, j =i + b, or j = i + 2b give correlation. Barring these five possibilities, the Rayleigh average can be split. This, of
course, includes the above five cases for which such splitting is not possible. So when we write these five cases as they should be
written, we subtract from them the terms with split averages, much as we did before for the Poisson statistics. The sixth-order terms
can be expanded as (compact notation for single summation)

([ Zotin—rita] ) =| (SR -n)

+ (2> + Pk + 2{n2nd n,) + 2(nnd i) + 2{n%n, iins)
+2(nnd iy iy — 5<n%n, y? — 5<an3)? + 10<n%n, y{nn?
—2(%A3) — 2(n2n? k) —2(i%n, i, n2) — 2Nt i, ) — 2{nnknd g . (A11)

As before, we consider only a representative term whenever a single summation occurs. However, since pixel intensities are
correlated if the pixel separation equals the binary separation, we need to consider four consecutlve pixels (instead of three in the
Poisson case with the binary separations. The following averages are needed:

(A*R2Y = 48NS + 28BN S Ny + 960N N2 + 6T2N 3 N3 + 432N 2 N4 + 1924, N5 + 484°S
(A2 = 48NS + 192N 5 N5 + 43202 N2 + 6T2N 3 N3 + 960N 2 N4 + 2884, A5 + 48NS,
(PA3R,Y = 12078 + 96N 3N 5 + 264N N2 + 432N I N3 + 288N 2 N4 + 84N | N5 + 1248,
CRR3AZY = 12078 + 84N S N 5 + 288N N2 + 432N 3 N3 4+ 26402 NS + 96Ny N5 + 12476,
(RPAAETR) = ANC + 36N 5N, + 108N 2 N2+ 132N 3 N3+ 2N I NS + 2N\ N5 + 4N,
(2, n3) = 4N + 2NNy + RN TN 2 + 1243 N3 + 108N 2 NG + 364\ N5 + 4N,
(P Y = ANS + 32NN, + 84NN + 12003 N3 + 84N I NS + 320\ N5 + 4NS
(AdAE iy = ANS + 36N 3N 5 + 12844 N3 + 20043 N3 4+ 12842 N4 + 364, N5+ 4NC,
(ARtiyy = 28078 + 19203 N 5 + 408N 4 N2 + 432N 3N + Q08N 2 NS + 1924, N5 + 24478,
(A3i3y = 3647 + 180473 N5 + 504N N2 + 104443 A3 + 504N°2 N2 + 180N, N5 + 364,
(PR2AZY =8NS + S6N SN, + 192N 4 N2 4+ 25603 N3 + 19242 44 4+ 564, N5 + 8A°S . (A12)
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1 Using these averages and noting that the remaining double sum in equation (A11) is just the square of the averaged (both Poisson
and Rayleigh) parity we get the variance for the parity (which can be put in the explicitly positive form of eq. [28]):

g 2 2 2 2
g;: p?) =Y = ANSQNF + TN TN 3 + TN | N5+ 2473)
!
by FANGON 4 + 203 N 5 — 10N 2 NE + 204, N3+ 647%)
F8NGBN S + SHN 5 + 2N 3NE 4 2NN + SH NS+ 3473)
FANGQRNS — AN SN, + 61N N2 — 1IN 3N + 61N ZNE — AN | N5 + 2479 (A13)
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