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ABSTRACT

The behavior of neutrinos is investigated in a collapsing object. The model considered consists of the
Friedmann dust interior matched onto the Schwarzschild exterior. The neutrino trajectories are taken
to be null geodesics, the geometric optics approximation being valid for the relevant energy range. The
matter is assumed to be transparent to the neutrinos.

We first compute the null geodesics in both the geometries appropriately matched at the boundary.
We then derive an expression for the spectral shifts of the neutrino. We study in detail the properties of
backward emission and the confinement of the neutrinos to the vicinity of the collapsing object at
various stages of collapse. The analysis leads to a rather interesting and complex pattern in the
evolution of the process of confinement as the collapse progresses.

Subject headings: dense matter — neutrinos — stars: collapsed

I. INTRODUCTION

Of late the role of neutrinos in compact objects and in supernova explosions has been recognized to be of prime
importance. It is believed that the neutrinos act as carriers of energy from the core to the envelope of the supernova. This
is possible because the interaction between the neutrinos and the matter through which they pass is negligible and to a
good approximation they can be treated as free particles. However, when one is interested in situations where the
gravitational field is sufficiently strong, the neutrinos would react appreciably to this field although they may be free from
other interactions. Under these circumstances the gravitational field is prescribed by the general theory of relativity. A
general relativistic description of neutrino transport in spherically symmetric, static, compact objects has been given by
Kembhavi and Vishveshwara (1981). Their treatment is semiclassical in that they have studied the perturbative solutions
of the massless Dirac equation in the Schwarzschild interior and exterior metrics. Their calculations show that neutrinos
may be trapped in sufficiently strong gravitational fields. Such a trapping could have astrophysical relevance—this could
reduce the available energy.

In this paper we investigate the behavior of neutrinos in another general relativistic situation of astrophysical
significance, namely gravitational collapse. We assume that a star undergoes geodesic gravitational collapse and emits
neutrinos at advanced stages of collapse. We expect neutrino trapping to be enhanced in the present case as compared to
that of the static star, since the collapse will tend to further inhibit the neutrinos from going to infinity. In the range of
relevant energies, the effect of gravitation on the neutrinos can very well be described in the geometric optics limit and
hence the latter can be assumed to move along null geodesics in the background geometry. We examine the neutrino
trajectories in detail, especially their escape and confinement relative to observers stationed at infinity. In general the
confined neutrinos circle around the collapsing star and fall into the eventually formed black hole. This analysis and the
techniques employed can be utilized in studying the neutrinos emitted in any specific astrophysical model of collapse.
Furthermore, these computations are needed in obtaining the flux profile of the energy carried away by the neutrinos.
Evidently, this issue is even more complex owing to the redshift, the time of flight, and other effects involved. Calculations
and results pertaining to those considerations will be published in a separate paper.

We remark at this stage that though the investigation involves null geodesics, the case of the neutrinos is quite different
from that of photons, where one must assume them to be emitted from the surface of the star. The star material is
transparent to the neutrinos; hence they could be emitted anywhere from the interior of the object and received outside.
We must therefore take into account both the interior and the exterior geometry of the star properly matched at the
boundary. This engenders radically new effects which would be absent in the treatment of photons.

II. THE INTERIOR AND THE EXTERIOR GEOMETRIES

We assume that the star collapses under its own gravitational pull and that the entire situation possesses spherical
symmetry. Further, the density p and pressure p are taken to be functions of time alone. It is well known then that the
geometry of the interior of the star is described by the Robertson-Walker line element with k = + 1. The exterior
geometry is Schwarszchild by Birkhoff’'s theorem. Our aim is to study the behavior of null geodesics in both these
geometries, which are appropriately matched at the stellar surface.
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The interior geometry of the collapsing star is described by the following line element:
dS? = dT? — S*(T)[(1 — «R?)” 'dR? + R?*(d6* + sin? 0d¢?)], (2.1)
where
o =2m/R,> .

We have chosen to work in geometrized units in which ¢ = 1 and G = 1. Here m is the mass of the star and R, the
R-coordinate of a particle on the boundary, while S(T) is the expansion factor.

If p < p, we canset p = Oidentically to a very good approximation. Every particle in the star then describes an infalling
radial geodesic, i.e., the collapse is geodetic. The resulting interior geometry is represented by the Friedmann dust metric
and the expansion factor satisfies the equation,

gs_)Z_ 1—-§
art] =% s

The maximum value of S(T)is unity. The spatial coordinates (R, 6, ¢) of a particle remain constant during the collapse,
and only the expansion factor S(T) varies.
The external geometry is Schwarzschild and is given in the usual form by

(2.2)

-1
ds? = (1 - sz)dtZ - (1 - 2_:n) dr? — r*(d6? + sin? 0de?) . (23)

Since our geodesics are going to emanate from some point in the Robertson-Walker geometry and then emerge in the
Schwarzschild domain at the surface of the star, we have to break up our discussion into three parts: (a) null geodesics in
the Robertson-Walker geometry; (b) the matching at the surface of the object; (c) null geodesics in the Schwarzschild
geometry.

The last topic and the matching of geometries at the interface have been extensively discussed in the literature by
Misner, Thorne, and Wheeler (1973) and Hoyle and Narlikar (1964). We will briefly discuss the relevant portions
applicable to our problem. However, the first topic deserves detailed analysis. We will treat these aspects with due detail
in the following section.

II. NEUTRINO TRAJECTORIES
a) Null Geodesics in the Interior Geometry

We can clearly see from relations (2.1) and (2.3) that spherical symmetry is present, therefore without loss of generality
we may choose the 8 = n/2 plane to study the behavior of the null geodesics. Either from symmetry considerations or
from the Euler-Lagrange equations we can immediately write down the first integrals:

. dT
1) Sﬁ—l",
.. do
2299 _ 4 .
ii) R*S i h;
i) ds=0. (3.1)

The last integral arises because the neutrino world line is null. The constants I' and h are the unscaled measures of the
energy and the angular momentum of the neutrino. Since the neutrino trajectory is null, the affine parameter 1 may be
rescaled, and therefore only the ratio h/T" = Bis sufficient to determine the null geodesic. The quantity Bmay be called the
impact parameter of the null geodesic in the interior geometry. Note that B is not the impact parameter as measured by an
observer at infinity stationed in the Schwarzschild geometry. A relation exists between B and the Schwarzschild impact
parameter b for the same null geodesic. We will discuss this point at a later stage.

The equations (i), (i), and (iii) can be used to obtain the relation

52 Z—I;)Z —(1- och)(l - -ﬁ—z) . (32)

We see that the null geodesics with B # 0 cannot reach the center of the object R = 0, but rather experience a bounce at
R = B. The qualitative behavior of the geodesics could be studied with the help of the effective potential V.., = 1/R%. We
do not do so here. We write equation (3.2) in terms of the expansion factor S using (2.2):

a'/2dR as

[(1=aR?)(1 — BYRYZ ~ + [S(L= S

(3.3)
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It is convenient to describe the collapse in terms of a parameter y given by S = cos? x. Integrating (2.2) with this
substitution yields a relation connecting T and y,

1 .
T= Tz (x + sin y cos x) . (34)
Also if we let the neutrino start at y = y, and from R = R, then (3.3) may be integrated:
1 1 + aB? — 20R,? 1 + aB? — 2aR?
= ot y(sint EEE PR oo 1EAB SO, 35
L= Xo Zg|Sn 1— aB? - 1—aB® (3:5)

where the sign outside the bracket is the same as the sign of dR/dy. For an outward moving neutrino dR/dy > 0.

We now express B in terms of the angle the neutrino makes with the radially outward direction as measured by a
comoving observer instantaneously coinciding with the neutrino trajectory at R,. Let /, be the required angle ; then from
local differential geometry we have the following relation:

SRodo
S(1 — «Ro%)" 2R

=tan ¥, . (3-6)

Then using (3.1) we have
B = RO Sin ll/o . (3.7)

From (3.7) we observe that as B is a constant, the expression R sin y is constant along the null geodesic. The epoch angle
¥ then may be expressed in terms of xo, Ry, and . From (3.5) and (3.7) we have

1= %o + &[x1(Ro) — x1(R)] , (338)
where
_; 14+ aRy?sin? y, — 2aR?

1 —aRy%sin? y,

Let y, be the epoch when the neutrino emitted with initial parameters y,, Ry, and ¥, reaches the surface R = R,; then

from (3.8) we have the following relations:
For Yo < m/2, (dR/dy |g=r, = 0),

%1(R) = sin

% = Yo + 2lx1(Ro) — x1(Ry)] - (3.9)
For Yo > /2, (dR/dY|g=r, <0),

Bo=10+ 5~ 3 [6(Ro) + 1Ry (.10)

It may be easily verified that y, is continuous at y, = n/2. We now state the properties of the function x (xo, Ro, ¥o)-
i) For Ry = 0, the expression reduces to the usual one for the radial null geodesics:

X=7Zo+3sinto«'?R. (3.11)

ii) For a fixed value of R, and %, x is an increasing function of y/,. Therefore if neutrinos were emitted from a point in
all directions at the same time, the neutrino emitted in the radially outward direction (¢, = 0) will emerge first while the
last to reach the surface will be the one emitted radially inward (Y, = ).

iii) The dependence of z, on y, is purely additive in nature. y, — ¥, is independent of x,. This property is fully exploited
in the section dealing with the confinement of the neutrinos from infinity. This completes the discussion of the parameter
x along the null geodesic.

Similar analysis can be followed to evaluate ¢ along the null geodesic. From equations (3.1) we obtain

dR\? R?
— ] =R*(1 —aR?)|— —1]. 3.12
[ ol o
If we assume that the neutrino starts from ¢, then the integration leads to the following expression for the coordinate ¢:
¢ = 0o + 31(R) — ¢1(Ro)] (3.13)

where
_y 14+ aRy? sin® Yo — 2R,%/R? sin? ¢,
1 —aR,? sin? y,, ’

©1(R) = sin

the upper sign to be chosen if Y, < m/2.
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FIG. 1.—The trajectories of neutrinos emitted from an interior point O of the collapsing object and in various directions in the (R, ¢)-plane of the
Friedmann geometry.

At the boundary R = R, we have the followings relations:
For Yy, < m/2,

@ = @ — 3[01(Rs) — 91(Ro)] - (3.14a)
For Yo > m/2,

@5 = @0 + /2 + 3[01(Ry) + 01(Ro)] , (3.14b)

where ¢, denotes the ¢ coordinate of the neutrino when it reaches the surface R = R,. The trajectories are plotted in the
(R, @)-plane in Figure 1. One observes that the neutrinos appear to experience a bounce.
This ends the discussion of the neutrino trajectories in the Robertson-Walker spacetime.

b) The Matching Conditions

We give only a brief account as to how the matching of the metric s to be carried out at the boundary R = R,,. Spherical
symmetry of both the geometries enables us to choose the spherical coordinates 8 and ¢ to be common to both of them.
We need only match the radial and the time coordinates. The comparison of the spherical portion of the line-elements
immediately furnishes one relation:

r=RS(T). (3.15)

Since our aim is to continue the null geodesic to the Schwarzschild domain, we require evaluation of the four partial
derivatives or/0R, 0r/0T, 8t/0R, and dt/0T at the boundary, in order to convert the components of the tangent vector k*in
the Robertson-Walker geometry to the ones in the Schwarzschild geometry. The first two partial derivatives mentioned
can be directly obtained from equation (3.15). The derivatives 0t/0R and 0t/0T can be obtained by setting

dR? 2m\~ 1!
2 __ Q2 _ 2 = 2
dT?* - § (T)1 R (1 )dt (1 " ) dr

in the neighborhood of the boundary and using (3.15). The resulting three equations (consistent) for the two unknowns
0t/OR and 0t/0T may be solved to yield

(1 ——) (1 — aR,?)Y?,
R=Rp

aT

ot (1 — 2m/r)R,S dS

ot - et 3.16
0R R=Rp (1 - asz)l/z dT ( )
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We have naturally chosen the positive sign for 0t/0T (¢ should normally increase with T). The derivative dt/0R is negative
as dS/dT < 0 after the collapse has begun.

Though not necessary for the computations of this paper, we require to know the relation between t and T for a particle
on the boundary, when we intend to compute the energy flux as a function of time. We attempt to find ¢t as a function of y.
Without loss of generality we may assume ¢ = 0 when T = 0 which implies y = 0. This means we fix t = 0 as the time
when the collapse starts. Then it may be obtained by integrating the first of the equations (3.16) or from the fact that the
particle on the boundary describes a radial geodesic starting at r = R,, t = 0, and with the initial tangent vector given by
(dr/dt)|,=o = 0. We simply state the relation #(y):

Rb 1/2 Rb 1/2
t= (—— - 1) (Ry + 4m)y, +R,,(—— - 1) sin x cos x + 2m log
2m 2m

(Ry/2m — 1)'/2 + tan x
(Ry/2m — 1)/ —tan y

(3.17)

¢) Null Geodesics in the Schwarzschild Geometry

This portion of the discussion has been amply dealt with in the past, but here for the sake of completeness we will
mention the relevant results.

We have already seen from the earlier discussion that it is sufficient to consider the geodesics confined to the 8 = n/2
plane. This hypersurface has the intrinsic geometry described by the expression

dS? = e'dt* — e vdr? — rido? (3.18)
where
e'=1-2mjr.
The symmetries of the spacetime furnish the following first integrals of the geodesics:
ot _ ,do
e’ ﬁ = F r F f (3.19)

Since the geodesic is null, we have another first integral in ds = 0. Equations (3.19) may be used to give the followmg
relation which excludes the affine parameter 4,

. d(p
2, =
rle i b, (320)

where b is the ratio /T". Here b is the impact parameter in the Schwarzschild geometry. At infinity b reduces to the usual
expression r’dep/dt. Equation (3.20) together with ds = 0 gives the following expression for dr/dt:

Z: (1——)[1——(1——”1/2. (3.21)

dr
- 4] TR =TT

Although the integral in (3.22) cannot be evaluated analytically, its value can be estimated from numerical computations
and hence it is possible to plot the function #(r) in the (r, t)-plane.

Qualitatively the geodesics can be discussed from the properties of the effective potential; one may write equation
(3.21) in the following way:

Integrating formally, we have:

t—

(3.22)

(fi:) —bz(l _3:,_1)2 31‘2 - VZ(’)]’ (3.23)
where
03

In Figure 2, V2 is plotted as a function of r. It is seen that V2 has a maximum of 1 /(27m2) atr = 3m, tends to zero as r — oo,
and vanishes at r = 2m. This behavior immediately has the following as its important consequence. Particles with
b > 3*?mare confined to the side in which they are initially present, namely either the inside or the outside of the sphere
r = 3m. For b < 3%?m the sphere r = 3m does not present any barrier. This property of the Schwarzschild geometry and
the null geodesics will play a crucial role in the escape or the confinement of the neutrinos from the observer at infinity.
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0 2m 4m * 6m 8m r

F1G. 2.—Theeffective potential curve for zero mass particles (null geodesics). The effective potential V2 possesses a maximum of 1/(27m?) at r = 3m
and decays as r tends to infinity.

IV. RELATION BETWEEN THE IMPACT PARAMETERS B AND b

The relation between b and B can be obtained on considering the following situation. Let a neutrino be emitted from R,
at y, and making an angle y, with the outward radial direction. Then we immediately have the relation between B and the
initial parameters, namely, B = R, sin {,. In this section our object lies in finding b as a function of R, y,, and y,. Since b
corresponds to the Schwarzschild domain and Ry, y,, and ¥/, to the Robertson-Walker, we try to connect these quantities
by examining the situation at the boundary where both these domains meet. Let k* be the tangent vector to the null
geodesic. We have k*k, = 0; that is, k* is a null vector. The components of k* can be evaluated at the boundary from
recalling the geodesic first integrals (3.1):

w 4T _ T
T dh T cos?y’
dR r B? \]V2
1 _ 2 _ 2 —
k T da coszx,,[(1 “Ry )(1 sz)] ’
do
2——=
k T da o,
pode TP (4.1)

"~ dh Ry2cos* y

The component k° is the energy of the neutrino. As y, is a function of Ry, ¥,, and ¥, the components k* are expressed in
terms of these parameters.

If k* denotes the components of the tangent vector to the null geodesic in the Schwarzschild geometry, then k* may be
obtained from k* by the usual vector transformation law. This is possible at the boundary where we have already
evaluated the required partial derivatives. For finding the relation between b and B itis only necessary to compute k°. At
the boundary R = R, we denote the components of k* in the Schwarzschild coordinates by k,*. We then have

_ ot ot
o_ |2 o Y 42
kb (6Tk * aR k )boundary ( )
Using the relations (4.1) and (3.16), we have
.
g0 =14 " [(1 = aR,2)' — a¥ tan 1y(R,? — BY)'7]. 43)
cos? y,
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From e'dt/di =T and k,° = dt/dA|, we have a relation between I" and T

_ r

T= oy (1= R = 2 tan 5(R,? ~ B?)!2]. (44)

In view of the first integrals of the geodesic for dp/dA in both the geometries, we have at the boundary

do do _
= 2 2—- = 2— =
h = R,*S, 7 I 1 h. 4.5)

Equations (4.4) and (4.5) immediately give the required relation:

Ry, sin Yq cos? x,
(1 — aRy?)Y? — /2 tan x,(Ry* — Ro? sin? yo)'/?"

It might at first sight seem that b could have negative values due to the negative sign in the denominator of the expression
for b. However, a closer look at the expression shows that for r, = R, cos® y, > 2m, b remains positive. R, cos? y, > 2m
implies tan y, < [(1 — 2m/R,)/(2m/R;)]'/?, which in terms of o becomes a'/?R, tan x, < (1 — aR,*)"%. This im-
mediately gives (1 — aR,%)? — a'/? tan yx,(R,2 — Ro? sin’ yo)/% > 0. Also b attains higher values for larger R, when
the neutrinos are emitted from a point closer to the surface of the object. However, the dependence of b on y, is more
complicated. Clearly if y, =0 or =, then b = 0, and the neutrino travels radially. Therefore b possesses at least one
maximum in the range 0 < ¥, < 7. On the basis of numerous computations we state here that in the early stages of the
collapse b has only one maximum. If the collapse is advanced and the neutrinos emerge from the star when its radius is
roughly the Schwarzschild radius, then b has two maxima and a minimum in between. The second maximum (with a
larger value for ) plays an important role in the confinement of the neutrinos from the distant observer.

b=

(4.6)

V. SPECTRAL SHIFT

The spectral shift computation plays a pivotal role in the energy considerations of the neutrino flux seen at infinity. In
fact, if a large portion of the neutrinos are redshifted, then only a fraction of the energy emitted will be detected at infinity.
We analyze this aspect of the problem in this section.

Let the neutrino be emitted with parameters (R, xo, ¥/o) and received at r by a static observer, whose world line is (r, 6,
@) = constant, in the Schwarzschild geometry. Let v, be the frequency of the neutrino emitted as seen by the comoving
observer in the Robertson-Walker geometry, and v, be the frequency observed at r. Then the spectral shift formula is
given by

L+z=v./ve (5.1)
with v, = k*v, where v, = (1, 0, 0, 0) in the Robertson-Walker geometry and
r
=0 =
v.=k cos? 1o (5.2)

If u* denotes the 4-velocity of the static observer, then
Voo = K*u, ,  where u, = (¢”%0, 0, 0, 0),
so that
Vop = €12K° (53)

where k* is the tangent to the neutrino trajectory at . From equation (4.3) and the fact that e'k° is a constant along the null
geodesic we get the required expression for the spectral shift,

2
Ve _ COS
l+z="=—; %
Voo  €OSZ Xo

[(1 — aR,?)M% — («)'/2 tan x,(Ry* — Ro? sin? Yo)'/2] " 1e¥2 (54)
The spectral shift 1 + z easily falls into three separate constituent portions each of which possesses some physical
significance,

l+z=01+z)1 +z)(1+z), (5.5)
where

2
cos? y,

l+z,=—
cos? o

1+2z,=[(1 — aR,?)"? — (x)"/? tan x,(R,% — Ro? sin? o)/ 1,
1+z,=e?=(1-2mr)"/%.
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The quantity 1 + z, may be referred to as the cosmological blueshift. It is known that in the expanding universe particles
lose energy in proportion to the expansion; the reverse is to be expected for the collapsing situation. The quantity 1 + z,
is the Doppler shift due to the retreating surface of the collapsing star. An observer instantaneously coinciding with the
surface of the star and who is at rest in the Schwarzschild geometry would record a Doppler shift if a neutrino were
emitted from the surface at the same time. The quantity 1 + z, is the familiar Schwarzschild gravitational redshift where
the neutrino loses energy in climbing out of the gravitational potential well.

VI. BACKWARD EMISSION

The notion of backward emission is not new to the subject of collapsing objects. This process was first discussed by Jaffe
(1969) in connection with the optical appearance of a spherically symmetric collapsing star. The optical appearance of a
collapsing star was dealt with earlier by several authors. Ames and Thorne (1968) have extended the analysis of Podurets
(1964). Jaffe (1969) first pointed out that one must also take into account photons emitted tangentially to the surface as
seen by an observer at rest in the frame of the collapsing surface of the star. This point was further analyzed by Lake and
Roeder (1979). All these papers deal with photons being emitted from the surface of the star. The entire analysis of null
geodesics emanating from the surface of the star is carried out in the Schwarzschild geometry. However, our picture
extends to the interior of the star in which the neutrinos are emitted and also propagate. Therefore our study deals with
the behavior of null geodesics which start in the Robertson-Walker geometry and emerge and continue into the
Schwarzschild geometry. The problem therefore consists in the computation of null geodesics in both these geometries. If
we restrict ourselves to the surface and consider null geodesics with i, < m/2, then our results would tally with the earlier
mentioned work on photons.

We now explain the process of backward emission. Let us for the time being restrict ourselves to the surface of the
collapsing star. The notion can be extended to the interior of the star in an obvious way. A particle emitted radially and
traveling with the velocity of light (a zero-mass particle) will continue its outward radial motion in the Schwarzschild
domain, as is apparent from the earlier discussion. But let us consider the fate of the particle emitted tangentially
(Yo = m/2) to the surface. The particle would have dR/dA = 0 initially; but as the surface is collapsing, the particle
possesses a negative radial component of velocity as seen by the static observer in the Schwarzschild geometry. Therefore
such a particle would have dr/dA < 0 at the boundary on emission. The particle is said to be backward emitted. All
particles emitted from the interior of the star which have a negative radial component to their velocities in the
Schwarzschild geometry on reaching the boundary are said to be backward-emitted. The others with (dr/dA) |poungary > 0
will be said to be forward-emitted.

Consider a neutrino being emitted with y, = 0 (emitted radially outward) from the surface. This particle will have
(dr/dA)|, > 0, where the subscript b denotes the value of the quantity at the boundary. Also, as we have argued earlier, for
a neutrino emitted from the surface with Y, = n/2, (dr/dA)|, < 0. But as (dr/dA)], is a continuous function of v,
(dr/dA)|, = Ofor somey, = y,, where 0 < ,, < /2. [The subscript m denotes that b has a maximum value compared to
other values of b at the same Schwarzschild coordinate, b = r(1 — 2m/r)~*/2]. Therefore when y < y,, the neutrinos are
forward-emitted. For y > y,,, at least for values of ¥, up to = n/2, the neutrinos are backward-emitted. Also it is
apparent that a neutrino emitted with y, = n directed radially inward will come out from the other side and will be
forward emitted (if the black hole has not already formed). Such a neutrino will have dr/dA > 0. Applying continuity
arguments once again, for a value of Y, = ¢,,/, the neutrinos emitted with Y, >, will be forward-emitted. For
U < Yo < V¥, backward emission occurs. The situation has been shown in Figure 3. In the three dimensional picture
the angles y,, and y,,’ are the half angles of the cones which decide the forward and backward emission. The vertex of the
cones is the point of emission of the neutrinos.

%=T4

- BACKWARD " . EMISSION " 7

FORWARD EMISSION .-~ ot.../ FORWARD EMISSION

UK -
Yo:Tf \E=0

F1G. 3.—The figure depicts the phenomenon of backward emission from a given point R = R, and at a fixed epoch y = y,. The dotted region

Vm < Yo <Y, corresponds to neutrinos which are backward-emitted. The rest of the directions, 0 < o <, and ¥,,' < Yo < =, correspond to
neutrinos being forward-emitted.
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The arguments given above can be extended to the interior without any variation, but care must be taken to see
whether backward emission occurs at all from a given interior point. Backward emission is guaranteed to occur for a
point on the surface. The situation is roughly similar for a point close enough to the surface. In general ,, and y,,,’ are
functions of Ry, xo, and R,. One can determine y,, and y,,’ by noting that (dr/dA) |,(¥,,) and (dr/dA) |,(¥,,') vanish. This
implies that the Schwarzschild impact parameter b has the value

b =ry(1 = 2m/r,)" V2, (6.1)

where r, = R, cos? y,, the Schwarzschild radial coordinate of the surface of the star. Let i, be the value of y when a
neutrino emitted with parameters (xo, Ry, V) reaches the boundary. The quantity y, is given by the relation
R, sin y, = R, sin ¥y, b attains a maximum as a function of , if the neutrino were emitted at either of the angles ,, and
V.., and hence they are the solutions of the equation

db
—=0. 6.2
. (62)
Equation (6.2) immediately furnishes the following relation:
2m 1/2 om 1/2
(E) tan y, — ('1 — E) cos iy, =0. (63)
Removing square roots by multiplying by a positive factor, we define the function F by
2m Ry? . 2m
F=(1—R—b)( —R—zzsm2 wo)—R—btan2 X (6.4)

The solutions for Y, in the equation F = 0 determines ,, and ¥,,". All the properties of the process of backward emission
can be obtained by examining F as a function of y,, ¥,, and R,. We list some of its useful properties:

i) For y, = 0 and = we have F > 0 if r, > 2m for y, = 0, n. Radially directed neutrinos are forward-emitted.

i1) For Ry =0, F > 0 if r, > 2m. All the neutrinos emitted from the center of the star must be forward-emitted if the
black hole has not already formed when they arrive at the surface.

iii) where R = R,, the expression for F reduces to

2m 2m
F=|1-—— 2o ——tan? y, .
( Rb)cos Vo R, tan® y,

For y, < m/2 we have y, = x,. The solution for ¥, can be explicitly obtained in this case:

2m  \Y?
cos ¥, = (Rb — 2m) tan y, , (6.5)
where y,, < n/2 for y, > 0.
When ¥, = n/2, we have
2m
F - - —R: tan XO < 0 .

However, an explicit formula cannot be obtained for y,,’ even in this case, for Y, > n/2 and consequently y, is a
complicated function of , and this reflects on F.

The above properties of F show that backward emission must occur from the surface. It was also shown that thereisno
backward emission from the center. Therefore for a given value of y > 0 there is a value of R = R, at which there is a
transition from the backward emission zone to the purely forward emission zone. For R, > R; there are values of y,, for
which the neutrinos are backward-emitted while for R, < R, all neutrinos irrespective of the value of ¥, are
forward-emitted. The points R < R, form a forward emission sphere. We observe that R, is a function of y and R;. Itis
easily seen that R; = R, when y = 0 and R, = O whenr, = R, cos? y, = 2m. R, is a monotonic decreasing function of y
for a given value of R,. R, may be obtained from the function F in the following way. As R, decreases from the value of R,,
the two roots of F = 0, y,,, and y,,," start coming close together [the curve F = 0 moves up in the (i, F)-plane]untilat the
limiting value of Ry = R, they coincide: ¥, = ,,' = ¥, [the curve F = 0 is tangential to the y-axis in the (, F)-plane].
Clearly , is also a function of y and R,. For a fixed value of R, = 100m we have plotted R, as a function of y in
Figure 4. From the expression for F we can easily show that iy; > n/2. We have y/, as a solution of F =0 and
dFjdy, =0:

dxy

dF _ 2R,? ( L 2m dys
o’

. 4m
wo- TR\ E) sin Y, cos Yo — R, tan y, sec? x, (6.6)
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FiG. 4—The quantity R, /R, plotted as a function of the epoch x, for R, = 100m. Atafixed epoch y, for R < R, all the neutrinosare emitted in the
forward direction, while for R > R, there exists a range of directions for which the neutrinos are backward emitted.

Since dy, /dyr, > 0, the second term is always negative and so dF/dys, can equal zero only when the first term is positive,
which is possible only if y, > 7/2.

There is one simple point which must be mentioned. Can the backward-emitted neutrino enter the star ? One computes
the trajectory of the neutrino emitted with i/, = /2 from the surface, for this has the most likelihood of reentering the
star. However, on calculating the t-coordinates of both the surface and the neutrino one can check that the surface falls
faster.

VII. THE ESCAPE AND THE CONFINEMENT OF NEUTRINOS FROM INFINITY

In the static case as shown by Kembhavi and Vishveshwara, trapping of the neutrinos can occur only if the radius of the
star lies between 2m and 3m. This can be easily seen from the effective potential profile depicted in Figure 2. The peak of
the effective potential occurs at » = 3m at which the impact parameter b has the value (3)**m. Particles withb > (3)**m
and in the region 2m < r < 3m cannot escape to infinity. However, in the case of a collapsing star the situation is different
since the phenomenon of backward emission is present. Particles may fall into the black hole even though they may be
emitted from a point whose radial coordinate is greater than 3m. This happens when both the conditions mentioned
below are satisfied:

i) There is backward emission (F < 0).
ii) b < (3)**m.

For the second condition to be satisfied it is necessary that the collapse of the star should be sufficiently progressed that
the radius of the star is small. If the star has already collapsed within 3m when the neutrino emerges from the star, it is
comparatively easily swallowed up in the resulting black hole. The neutrino cannot escape to infinity if either or both of
the conditions are satisfied:

i) The neutrino is backward-emitted (F < 0).
ii) b > 3*m.

In the first case there isno way to reverse the infall of the neutrino; hence it is gobbled up by the eventual black hole. In the
second case the neutrino, even if it is emitted with dr/dA |, > 0, will bounce at the effective potential barrier and then fall
into the black hole.

a) The Truth Table

The confinement of the neutrinos can be conveniently and lucidly expressed with the aid of a  truth table ” which states
whether the neutrino is confined or not according to the truth or the falsity of the following three statements:

A. r, < 3m, where r, is the Schwarzschild coordinate of the surface of the star when the neutrino reaches the surface
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TABLE 1

TRUTH TABLE FOR NEUTRINO CONFINEMENT

rp,<3m F<0 b<3(3m)"?>  Confinement
(4) (B) (©) (D)

OO O =
OO R OO
Ot O O s O e
COOR = O M=

Let D be the condition that the neutrino is confined from infinity (see Table 1), where 1 under a given column indicates
that the statement is true while 0 denotes the falsity. If we actually assign these numerical values to the conditions 4, B, C,
and D, then D can be expressed as a arithmetic expression in A4, B, and C:

D=A(1-C)+BC. (7.1)

Brevity is another advantage in using the truth table. For example, if a null trajectory satisfies condition 4 but not Band
C, then from the truth table we will assign to it the truth value 100. This type of terminology saves space. The scheme is
very useful in studying the escape or the confinement of the neutrino from infinity. Each of the quantities r,, F, and b
appearing in the three conditions are functions of the initial parameters Ry, o, and i ; therefore the conditions 4, B, and
C impose nonholonomic constraints on these parameters. The conditions A, B, and C will divide the (R, xo, Vo )-space
into regions in which D is either true or false. We will study these constraints by fixing the values of either one or two of the
parameters and varying the remaining, It is convenient and fruitful to fix R, = R, in the beginning and then relate the
already obtained results to an interior point R, < R,. Clearly R, xo, and y/, determine a unique null geodesic. But
the values of Ry, o, and ¥/, at other points on the null geodesic may also be used as initial parameters which would
determine the same null geodesic. The null geodesics furnish an equivalence relation on the space of the initial parameters
(Ro, X0»> Wo)- In particular one may choose the initial parameters when the null geodesic reaches the boundary R = R,.
Since the confinement properties for the surface case would have already been discussed, the results for the interior point
can be deduced.

b) The Surface Case R, = R,

The entire analysis of the confinement mechanism of the neutrinos. is dependent on the conditions 4, B, and C
mentioned above, which involve constraints on the functions r,, F, and b. Therefore it seems useful to adopt a scheme
which displays all these functions simultaneously and which compares their relative behavior. We already have fixed
R, = R,, and now we fix x, for the time being so that the only variableis /. We restrict ourselves to neutrinos being emit-
ted simultaneouslyat y = y,froma point on the surface. The parametersr,, F, and b are functions of iy, only. We make use
of the fact that y, as a function of ,, is strictly increasing in the range #/2 < Y, < =, that is, the neutrinos emitted with a
greater value of y, emerge out of the star at a later stage. Hence r, = R, cos? y, as a function of i, is monotonic decreasing
on [n/2, n]. Therefore, b and F may be regarded as functions of r, instead of . In the discussion which follows we
consider the (r,, b)-plane. The function b(r,) defines a curve in the plane, in future referred to as a b-curve. F =0
determines a value of r,. One can display F = 0 by a vertical line drawn at that particular value of r, which demarcates the
forward-emitted (F > 0) neutrinos from the backward-emitted (F < 0) neutrinos. If all the neutrinos emerge from the
star before r, reaches 2m, then the F = 0 line lies in the region r, > 2m. This may be seen by observing that F > 0 for
VYo =mand F <0 for , = n/2. In this picture all the three functions which decide the confinement are displayed.

The effect of change in y, is to vary the b curves and alter the position of the F = 0 line on the r, axis. The b curves
should be compared with the line b = (3)**m.

We possess now all the machinery necessary to describe the process of confinement of the neutrinos emitted from the
surface at various stages of the collapse. At the beginning of the collapse there is no confinement. If R, is quite large—as it
may be in realistic situations—at the beginning of the collapse the radius of the star is also quite large, and this results in
boax ~ 1, > mwhich means that the conditions for confinement are not satisfied. In fact, if the neutrino which emerges last
from the star comes out when the radius of the star is greater than 3m, then there can be no confinement. This fact may be
used to obtain a rough upper bound on the radius of the star when the neutrino was emitted, for confinement to be
possible. The upper bound is obtained as follows. The last emerging neutrino must be emitted with , = 7. We now
impose the condition that r, = 3m for this neutrino, that is, the neutrino should emerge when the radius of the star is 3m.
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This many data are sufficient to compute the epoch of emission and hence the radius of the star when the neutrino was
emitted. We have, for y, = 7,

Xo = Yo+ m/4—%sin™! (1 — 2aR,?). (7.2)
We now set R, cos® y, = 3m. These equations can be solved for y,. We merely state the result,
3m 2m\ |2 12m
rb=R,, COS2 X0=m{2X61/2—[(1—R—b)(1—R—b)J +5—R_b: (73)

For R, > m,
ry =R, cos? xo [(2x 6)"2 +5Im>~99m.

Equation (7.3) shows that R, cos® y, is an increasing function of R, and hence we can make the general statement (for all
R,) that confinement from infinity of a neutrino emitted from the surface cannot occur if the radius of the star is greater
than [(2 x 6)Y/2 + 5]m.

This suggests that the interesting situation arises only when the b-curves cross over into the r, < 3m region. One such
curveis shown in Figure 5 for yo = 73°15and R, = 100m. The curve does not go above the line b = (3)**m in the region
ry < 3m. The neutrino has been emitted slightly after the critical epoch y, defined by equation (7.3). The F = 0 line lies in
the region r, > 3m so that F >0 in the region 2m < r, < r,, Where r, is the solution of F = 0. Clearly none of the
confinement conditions is satisfied. This shows that the radius determined by (7.3) is only a rough upper bound. Another
property of the b-curve is that at r,, the value of b is greater than or equal to (3)**m. The condition F = 0 implies that the
neutrino on emerging from the surface in the Schwarzschild geometry has zero radial component and hence
b = ry(1 — 2m/r,)"/%. 1t is then easy to check that the function r,(1 — 2m/r,)~¥/? attains a minimum of 3*?m at r, = 3m
and remains greater than the minimum value for r, # 3m. This property is useful as a guideline in tracing the b-curves.

If we advance the epoch of emission y, the b-curve grows in height in the region r, < 3m until at a critical epoch the
curve develops a maximum and touches the line b = 3%2m. A further small increment to the value of y, leads to the
b-curve crossing the line b = 3*?m, so that the maximum value of b is greater than 3%2m. The F = 0 line still lies in
the region r, > 3m, but now we notice from the truth table that the condition 100 is satisfied for some small range of values
of iy and these neutrinos cannot escape to infinity. The confinement occurs for values of r, lying in the interval whose end
points are determined by the b-curve intersecting the line 3%2m in the region r, < 3m. This interval on the r,-axis
corresponds to values of i, lying in some subinterval of [z/2, n]. In the three dimensional picture, the confinement process
begins with the directions of confinement lying between two coincident cones with their half-angles lying between 7/2 and
n measured from the outward radial direction. As the collapse proceeds, the cones tend to enclose a larger solid angle,

6m
b

Ry = 100m

Bm

%= 73.15°

45m

b

FiG. 5.—The figure shows the b-curves in the initial stages of the confinement process. The Schwarzschild impact parameter b is plotted as a function
of r, for various values of the epoch y,. The neutrinos are emitted from the surface of the object. The value of the surface radius is R, = 100m. The least
value of r, shown in the figure is 2m. Those portions of the curves are shown (r, X 2m) which are relevant to the initial stages of the confinement process.
For the lowest value of yo shown (73215) there is no confinement. At a slightly later epoch (73°2) the b-curve goes over the line b = (3)*?m. Therefore in
a small range of directions confinement occurs. The third case of y, = 73%4 shows even a later stage of the confinement process. The b-curve has a

maximum for r, < 3m and a minimum at r, = 3m. This is the critical epoch at which the confinement conditions listed in the truth table undergo
various changes.
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¥, 180° Yo=0° Yo= 180° Yo:0°
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FI1G. 6.—The darkened regions in the figure show the range of directions in the angle ¥ , for which confinement occurs. The four figures (i), (ii), (iii),
and (iv) correspond to epochs in the progressive stages of the collapse. In cases (i) and (ii) the confinement directions are bounded by two cones. In (iii)
and (iv) there is only one cone which decides the directions of confinement.

with the outer cone moving outward and the inner cone closing in. A typical such half angle of the coincident cones for
R, = 100m is about 159°. The entire confinement process is shown in the various stages of collapse in Figures 5 and 6.
Figure 5 shows the b-curves for various values of the epochs when the confinement process Just begins, while Figure 6
depicts the actual directions in which the confinement occurs. The first diagram in Figure 6 is relevant to the above
discussion. The exact analytical expression for the epoch and the half-angle when the cones are coincident seems difficult,
though desirable, to obtain.

The next change in the confinement conditions occurs when the F = 0 line coincides with the r, = 3mline. The b-curve
has a minimum at r, = 3mand touches the line b = 3*?m at this point. For r, < 3m the b-curve has a maximum and then
falls to zero for a value of r, which is greater than 2m. The directions of confinement correspond to an interval on the
r,-axis whose lower end point is the intersection of the b-curve with the line b = 3%2m and the upper limit is 3m. The twin
cones now encompass a larger solid angle of confinement directions. We give the exact analytical expression for the
epoch,

cos? yo =

Goaglm 22+ (@), (74)

where
Q =72x% — 174x* + 142x — 39, Q, =36x3 —99x2 4+ 90x — 27 , 2 =36x3 —75x2 + 52x — 12,

and x = 2m/R,,. For R, ~ 100m, r, = R, cos? 3, ~ 8m. The next stage in the collapse is when the F = 0 line lies between
r, = 2m and r, = 3m. The b-curve now has characteristics somewhat similar to the one when the confinement has just
begun; but now, as the F =0 line lies in the region r, < 3m, F < 0 to the right of this line, which leads to greater
confinement. For F > 0 the condition 100 and for F < 0 the conditions 110, 111, and 011 are responsible in preventing the
neutrinos from escaping to infinity. The region of the confinement on the r,-axis is further extended to r, > 3m, and the
lower limit of the interval decreases further. The two cones still exist—that is, the larger half-angle has not still attained
the value ¥, = © though the solid angle between the cones is considerably larger.

The stage which we consider next occurs when the F = 0 line coincides with the line r, = 2m. At this stage only one cone
survives, the other cone reaches the half-angle y, = n. Therefore the confinement directions lie in a single cone pointing
inward. This epoch may be characterized by observing that a neutrino emitted at this epoch with ¥, = 7 reaches the
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Fi1G. 7.—The confinement process is depicted in the figure for a wide range of the initial parameters (R, X, ¥ o) and R, = 100m. The unbroken curve
§ determines the confinement process for the neutrinos emitted from the surface R, = R,. For the choice of the parameters y,, ¥/, and R, = R, the
neutrino is confined if and only if the point (¥4, x,) lies above the curve S. The dashed curves describe the confinement process for the interior points of
the collapsing star. The curves are drawn for the fixed value of x, = x, = 81°87 obtained from the relation R, cos® y, = 2m. The curves for other values
of x, are obtained by merely translating the given curves in the vertical direction along the yo-axis by the amount y, — x . A neutrino emitted from R, at
Xo is confined if the dashed curve corresponding to R, and g, lies in the region above the curve S. The range of angles y , corresponding to the curve lying
within this region determine the directions of confinement.

opposite surface when the star collapses to the radius 2m. This epoch may be readily computed by a procedure similar to
the one employed in obtaining (7.4); we have

ry, = Rb (.‘«OS2 XO = 8m(1 - 2m/R,,) . (75)

The situation is shown in Figure 6(iii).

After this epoch the half-angle of the cone of confinement (r — ) steadily increases with continued collapse until all
directions are exhausted when the star reaches the Schwarzschild radius 2m. The situation is shown in Figure 6(iv) at an
intermediate stage before the star reaches the radius 2m. At r, = 2m, the cone degenerates into the line i, = 0. This we
refer to as total confinement. The half-angle of the cone becomes n/2 when the radius of the star is (3)**m(1 — 2m/R,).

The entire process of the confinement as a function of the collapse parameter y, is shown in the (, x)-plane in Figure 7.
A neutrino emitted from R = R, and y = y, and Y = i, will be confined from infinity if the point lies in the region above
the undotted curve S. The presence of the minimum of the curve shows that there is twin cone confinement. This may be
explained as follows. Any given epoch y = y, represents a horizontal line in the (i, x)-plane. Confinement in some
directions will occur at this epoch if and only if the line y = ¥, crosses the curve S. In the beginning of the collapse the line
X = Xois far below the curve in the (y, x)-plane; and as the collapse proceeds, this line moves upward. Ata critical epoch
the line touches the curve S at the minimum and the confinement process begins. A little later the line y = y, intersects S at
two points whose  coordinates are ¥/, and ,. This is possible because the curve S possesses a minimum. For
W1 <y <, the neutrinos are confined from infinity. At a later stage when y exceeds y; given by R, cos? y; =
8m(1 — 2m/R,), the line y = y, intersects the curve S at only one point, say ;. In this case neutrinos are confined for
values of > v, which shows that only a single cone of confinement exists for this advanced epoch. This concludes the
discussion of neutrinos emitted from the surface.

¢) Generalization to the Emission of Neutrinos from the Interior of the Object

Let a neutrino be emitted from a point R, < R,. As the interior metric harbors a repulsive potential, the neutrino must
arrive at the boundary. We now propose to relate the parameters R,, o, and ¥, to those on the boundary. Two
possibilities exist in the choice of the parameters at the boundary, as the null geodesic when produced into the past and
the future would intersect the surface at two points. More specifically, if we denote the values of y and i at the boundary
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by xr,and Y, then we could either choose y, < x Or Xz, > Xo- We make the following choice: We choose the point on
the boundary where the null geodesic intersects to lie to the past of y,, thatis, g, < xo. From the foregoing discussion we
have the following relations between the actual and the boundary parameters.

For y, < /2,

2 oin2 2 2 @in2 2
R L S
For Yo > /2,
. _y 1+ aRy%sin? Yo — 20R,*> . _, 1+ aRy?sin? o — 2aR,?
Xro = Xo ~ Z(Sm 1 —aR,? sin? ¥, - 1 —aR,? sin? ¥, )

and

Y, = sin~! (& sin ./,0),
R,
where we choose the inverse trignometric function to be greater than n/2, ie., Y, > n/2.

In the (, x)-plane the equations (7.6) give a parametric representation of a curve in the range 0 < Y, < = for each fixed
value of R,. These curves provide a complete picture of the confinement process within the collapsing object. Figure 7
shows the dashed curves for various values of R, with R, = 100m; since y, is only an additive constant, it has been chosen
arbitrarily by the relation R, cos? y, = 2m. In drawing the curves, the actual value of y, is not very important because
any variation in y, merely displaces the curve in the vertical direction. This can be easily seen from equations (7.6). As has
been mentioned, the dependence of y,on y,is purely additive in character, and also y does not depend on y, atall. The
examination of the situation is thus rendered simpler.

The dotted curve drawn for R, = R, may be thought of as a limiting case when R, tends to R,. However, the case
R, = R, may also be included in the general discussion carried out for all values of R,. We first discuss the properties of
the curves defined by (7.6) and their implications.

a) For each fixed value of R,, the curve is convex and it has zero slopes at both the points where y g, = n. This
immediately has the consequence that the nature of the confinement process for an interior point is broadly similar to the
one for a point on the surface. If any portion of the dotted curve drawn for a value of R, lies in the region above the curve
S, then the neutrinos emitted with parameters ¥, and y, corresponding to that portion of the curve experience
confinement. We also saw that any variation in y, only displaces the curve vertically. In case the neutrinos are emitted at
the beginning of the collapse, the curve is well below the curve S and hence none of the neutrinos is confined. If the value of
Xo is allowed to increase with the progress of collapse, at a critical epoch the dotted curve touches the curve S. At a slightly
later stage in the collapse the dotted curve intersects the curve S at two points leading to confinement between two cones.
With further increase in x, the dotted curve intersects S at only one point, and so the two cones are reduced to a single
cone. This is very similar to the situation of the surface. As y, increases, the cone of confinement encloses a steadily larger
solid angle until total confinement occurs. For R, < R, total confinement occurs before the object reaches its
Schwarzschild radius.

b) The dotted curves for various values of R, form a nested sequence. A dotted curve for a smaller value of R lies
completely inside a curve for a larger value of R, assuming that the epoch of emission y, is the same in both the cases. This
causes the entire confinement process for a smaller value of R, to start at later epoch and total confinement to occur
earlier as compared to the confinement process for neutrinos emitted from a larger R,. In fact, for the extreme case for
R, = 0, the dotted curve is a point on the line Y = 7 and the entire confinement process is instantaneous. The epoch at
which this occurs may be computed by observing that a neutrino starting from the center at this epoch should reach the
surface when the radius of the star is 2m. The value of this epoch can be easily determined and is given by

1 8m 2m\1/2
2, _2l1-{1- _
cos xO—zll (1 R,,)(l Rb) ] (7.7)

This is also the earliest epoch at which total confinement occurs. As the collapse proceeds, the radius of the sphere of total
confinement grows until it becomes equal to the radius of the star when the star crosses the Schwarzschild horizon.
Neutrinos emitted within this sphere cannot escape to infinity.

VIII. CONCLUSIONS

In the foregoing investigations of the behavior of neutrinos in a collapsing situation, we have carried out detailed and
extensive analysis. It is found that the study provides interesting processes such as the backward emission and the
confinement of the geodesics due to black hole formation. It is seen that the confinement process begins when the radius
of the star is about 9m, which is considerably larger than 3m obtained in the static situation. The confinement process and
the Doppler shift due to the collapse could, in addition to gravitational redshift, reduce the energy of the emitted neutrino
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by a large factor. If one s interested in the energy flux at infinity and its time development, backward emission would play
an important role in that it would delay the arrival of the neutrino at the distant observer. These aspects of the problem
will be considered in a second paper.

In our calculations we have not resorted to any approximation methods. For R, large, such approximations could be
made and further insight gained into the behavior of the null geodesics.
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