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Luminosity limits for funnels in thick accretion discs
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Summary. A narrow, highly luminous funnel in a thick accretion disc is a
common feature of many models for active galactic nuclei. We examine the
constraints on the luminosity imposed by the effects of radiation forces on
the funnel. Qur treatment allows properly for the irradiation of any part of
the funnel by the rest, an important effect for this problem. We find that the
maximum luminosity of a funnel of small semi-angle ¢ is reduced below the
Eddington limit Lg by a factor ¢ if the funnel is to be in strict equilibrium.
Even with allowance for flow induced viscous stresses, the luminosity cannot
exceed ~ Lg¢. In contrast, current models have luminosities of the order of
Lg/¢. We show that the resulting large unbalanced forces at the funnel surface
cause a significant outflow of matter which should be incorporated in the
model for consistency. These results do not depend on the detailed angular
momentum distribution over the disc surface but only on the funnel
geometry.

1 Introduction

A promising model for active galactic nuclei and quasars is based on a thick accretion disc
around a massive black hole (Lynden-Bell 1977). The theory of thin accretion discs is well
developed (Shakura & Sunyaev 1973; Pringle 1981) and shows that the inner regions begin
to thicken when the total luminosity L approaches the Eddington (1926) luminosity Lg
given by

Lg=4nGMc/k. (1

Here M is the mass of the central object and k (cm?g™) the appropriate opacity (due to
Thomson scattering for fully ionized matter). In the pioneering work of Paczynski & Wiita
(1980, PW) a theory of thick discs was developed with the following features.

(i) The specific angular momentum distribution in the equatorial plane is not Keplerian
(because of radial pressure gradients) and is provided as an input in model building, subject
to the physical requirements of stability, accretion and matching on to thin discs at large
radii.
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(ii) The angular momentum is constant on cylinders and is thus knewn throughout the
disc (von Zeipel’s theorem for a barotropic fluid i.e., one in which the pressure is a function
of density alone).

(iii) The funnel surface is an equipotential of gravity and centrifugal force combined;
most of the models have a steep funnel.

(iv) The dominant force balancing gravity and centrifugal force is the gradient of
radiation pressure; this makes it possible to calculate the radiation flux at any point and thus
the luminosity of the disc which can be ~ 10 Lg or more.

The subsequent work of Jaroszynski, Abramowicz & Paczynski (1980, JAP) and
Abramowicz, Calvani, & Nobili (1980, ACN) incorporated general relativity and further
physical consistency checks into this picture without changing the essential features; in
particular, the super-Eddington luminosities remain. The large luminosity in these models
is required to balance the large centrifugal force at the funnel surface implied by (i) and (ii)
above. In the three papers cited, the details of how the luminosity escapes from the funnel
are not considered and the emphasis is on equilibrium of the disc interior.

In this paper we consider the implications of the super-Eddington luminosity for the
equilibrium of the funnel surface and, in particular, the effect of the radiation received
by one part of the funnel from the rest. Sikora (1981) has recently treated this problem
but his approach and aim are rather different from ours as discussed in Section 5. We first
note that the current theory of thick discs (PW, JAP, ACN) bypasses the difficult problems
of energy generation and radiative transfer within the disc. In spite of this, conditions (i)—
(iv) above uniquely define the flux of radiation at each point in the disc. Taking the
divergence of the flux, one easily shows that the radiation generated per unit volume is
constant on cylinders. This is clearly unphysical and shows that von Zeipel’s theorem will
be strongly violated in models with realistic energy dissipation and transfer. Lacking such
models at present, we take the pragmatic approach of considering funnel geometry as the
basic input rather than angular momentum. It turns out that our results depend basically on
the inclination ¢ of the funnel walls to the rotation axis and not on finer details.

Section 2 of this paper develops the connection between super-Eddington luminosities
and re-entrant shapes such as funnels. It is then shown that strict equilibrium of the funnel
surface restricts its maximum luminosity L,y to less than ¢2Lg. This estimate is far less
than the luminosity in the PW model, given by Lg/¢. The funnel surface is thus clearly not in
equilibrium in the PW and related models. Section 3 considers the effect of the excess
tangential radiation forces on the funnel walls. One possibility is that these forces are
balanced by viscous stresses induced by a surface flow pattern. This, however, leads to a
maximum luminosity less than ~ Lg¢. This limit, though model dependent, seems hard to
exceed. We thus conclude that funnels with L 2 Lg must continuously blow off matter.
Section 4 estimates the energy carried off by this outflow which is shown to be of the same
order as the energy carried by the escaping radiation for L > Lg. We discuss the conclusions
and implications of our work in Section 5.

2 Luminosity limits for equilibrium funnels

We first give a geometrical argument to show that super-Eddington luminosities need re-
entrant shapes like funnels. Fig. 1 shows a surface element of a figure of revolution which
radiates a maximum luminosity dL,,,. We compare this to the maximum luminosity
dLpax,s Which an element of a sphere subtending the same solid angle at the centre would
radiate.
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Figure 1. Surface element of a figure of revolution illustrating the radiation force acting on it. O is the
central mass.

(i) The area dA of the element is related to the corresponding area d4 of the sphere by
dA/dAg = 1/cos (Y —0). 2)

(ii) The vertical component (i.e. parallel to the rotation axis) of the unit normal n, is
related to that for the spherical element n, by

Nyfng, s =sinY/sinf. 3)

(iii) We consider the equilibrium of a surface element in the vertical direction since this
does not involve the centrifugal force. The vertical component of the radiation force per unit
mass is proportional to n, and the flux dL/dA, taking the net flux to be normal to the
surface. The vertical component of gravity is the same for the sphere and a general surface
element and this defines the maximum radiation force for both. Thus

n dLmax =n dLmax,s
a4 " a4,
which leads to
sin 6 cos (Y —0) sin Y —sin (Y —0) cos Y
dLmax/dLmax,s = . = . M (4)
S cos(y —0)siny cos (Y —0) siny

As is well known, the integral of dLp,x s over all solid angles gives the Eddington
luminosity Lg of (1). From (4), we see that one obtains an enhancement over Lg for
¥ > 90° which corresponds to a re-entrant surface like a funnel.

The other case, ¥ —6 < 0°, does not lead to super-Eddington luminosities as can be
checked by writing down the condition that centrifugal force acts outwards, which gives a
more stringent limit than (4) for ¢y —0 < 0°.

Motivated by the above result, we now consider the idealized funnel of Fig. 2 rising from
cylindrical coordinate r; to ¢ with a slope tan 6. We can apply the above arguments (vertical
equilibrium) to evaluate the maximum luminosity. The result is

Lmax _ f’f tan @ (r —r;)r dr
Lg r; cos?0[(r—r;sin®6/cos0)® +rf sin® 9]

)

~tan® —2 +1In (2r¢/r; cos )

fortan 8, (r¢/r;) both> 1.
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Figure 2. Geometry of a model funnel whose maximum luminosity is analysed in the text. The dotted
lines show a surface a few optical depths below the free surface where the external radiation is negligible.

Equation (5), although based on a simplified picture, can be applied to the inner portion of
the model shown in fig. 4 of PW which can be approximated by a funnel with r; = 8, r¢ = 40,
tand = 5. Equation (5) gives a maximum luminosity 6.9 Lg, which can be compared with
6.1 Lg (for r¢ =40) from the detailed calculation of PW. This confirms that the simplified
funnel geometries used in this paper do capture the essential features of the problem.

So far, the argument has been based on the equilibrium between the pressure of outgoing
radiation, centrifugal force and gravity. It applies not to the surface of the funnel but to a
parallel surface several optical depths below (shown by dotted lines in Fig. 2). When we
consider the surface proper, it is necessary to include the incoming radiation from other
parts of the funnel. Fig. 3(a) shows, for definiteness, a conical funnel. We can no longer

9c

Geft

0
(@) ®)
Figure 3. (a) A simplified funnel with conical geometry. The element at P on the rim receives external
radiation from points such as Q. The surface element on the cap illustrates the calculation of the total
centrifugal force g.. (b) Geometry of incoming rays at P on the rim of the cone in (a). The flux through
the horizontal surface element P gives the vertical force.
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discuss the equilibrium at a given surface point P in terms of local conditions but need to
use information about radiation coming in from other points such as Q.

We can divide the radiation field near P into two parts. The first, made up of all rays
travelling into a hemisphere centred on the outward normal at P, is called the self flux and
originates locally. The second consists of all rays directed into the opposite hemisphere and
is called the external flux. A unit mass at P experiences an upward force due to the external
radiation received from points such as Q below it. We make the plausible assumption that
the brightness of the funnel decreases with height. Replacing it by a constant brightness
distribution with the same total luminosity thus involves moving brightness upwards. It can
be verified that for a fixed total luminosity the vertical force at P decreases in this process
and is thus underestimated. Further, the self force due to the radiation emitted at P has a
positive vertical component. In what follows, we calculate the upward force at P due only to
the external part of the radiation and that too from a uniformly bright cone. This estimate
clearly gives a lower bound to the force and balancing this force against gravity therefore
gives an upper bound to the luminosity.

Fig. 3(b) shows the polar angles x and { defining a ray incident at P. The external vertical
flux at P from the cone of constant brightness b is given by

6 mh
Fv=bf j sin Y sin2xdxdw=—2—(l—0050). (6)
0 Yo
The net escaping flux at any point on the cap of the cone (Fig. 4a) is given by integrating
over a hemisphere, i.e., putting = 7 in (6). The luminosity of two cones is thus
L=2nr*xmb. (7)
The vertical force balance at P gives
GM cos® 0 sin 0/r? = wbk (1 —cos0)/2c. (8)
The upper bound to the maximum luminosity then follows from (7) and (8)

sin @ cos? 9

L Lg< ——mMmM .
max/Le (1—~cosb)

For small opening angles

6=——0
2

Lmax <LE¢2- (9)

Note that this limit is of the same order as Lgqyq(®), the Eddington limit appropriate to the
2m¢? solid angle of the two cones viz.,

Lg4d(¢) = Lg(2n¢*/4m) = Lg¢?/2. (10)

The argument just given assumes a convex funnel, i.e., one in which the radiation from
any part can reach the rim. It is, however, difficult to achieve a larger luminosity by hiding
the rim from the hottest parts of the funnel. One could then choose a point immediately
above the region of the funnel which dominates the luminosity and apply similar arguments.
Thus, the requirement of equilibrium of the funnel surface always leads to a bound with the
same structure as (10).
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3 Luminosity limit with surface stresses

Clearly, (9) shows that funnels with L ~ Lg or greater have a large unbalanced tangential
force on the surface layers. This point is particularly clear in the work of Sikora (1981)
who has carried out a detailed calculation of the radiation field within the funnel including
general relativistic effects. After imposing the condition of equilibrium normal to the funnel
surface, he noted the presence of unbalanced tangential forces. For example, in fig. 3 of his
paper, the net vertical force at z =300 due to radiation is 0.0058 (in units with G =M =c =
1) while the downward force due to gravity is only 300/(300? + 30?)*? =1.1x 107, more
than 500 times lower.

We now consider the effect of this large tangential radiation force on the surface of the
funnel. One possibility is that this force could set up a surface flow which in turn could
generate balancing shear stresses. To check this, we compare the tangential force Fik/c to
the effective gravity geoer at P in Fig. 3(a). gegs is the resultant of the gravity g = GM/r? and

the centrifugal force g, as shown. If we assume that the net flux of radiation in the interior
is normal to the funnel surface as in PW, gq¢e =~ g/¢. We take ¢ to be small and it is therefore

not necessary to distinguish between the vertical and tangential directions at P. Although
a detailed theory of the surface flow would be difficult, the following limit on the tangential
flux F; for a steady flow seems physically reasonable.

Fik/c < agesr = ag/s. (11)

The parameter « in (11) is like a coefficient of dynamic friction. The effect of the new
criterion (11) instead of Fyk/c < g (as in Section 2) is to modify the luminosity limit 9) to

Limax < @¢Lg. (12)

One could also take the more conservative approach of comparing Fik /c with the largest
force acting locally which is Fk/c, the self-radiation force.

F Fak
FtK/C< o — =Ol(——‘ +geff)- (13)
c c

In (13) F, is the normal component of the external flux and we have used the normal
equilibrium condition. We note that the inequality in (13) is quite close in spirit to the
Shakura—Sunyaev (1973) estimate of the shear stress in thin discs as a multiple « of the
normal stress (both being dominated by radiation). It is expected that a< 1. Now, the .
normal external radiation F can be estimated by arguments similar to those leading to
equation (6). For small ¢ and a uniformly bright cone, F,, ~ F;. The uniform brightness
approximation underestimates F; as argued in Section 2 and also clearly overestimates Fj,.
We thus have

F,=xF; (x<1). (14)
For example, x = % at a point above 90 per cent of the luminosity in fig. 5 of Sikora (1981).
Using (14) in (13), we obtain

ag
$(1—ax)
Comparing (15) and (11) one again obtains a luminosity limit similar to (12), but with an
extra factor (1 —ax)™ which is, however, not large because of the restrictions on a and x.

We thus conclude that the luminosity of a funnel cannot exceed ~ ¢pLy if steady flow is

to be maintained at its surface. While this limit can be larger than the estimate of equation
(9) (obtained assuming strict equilibrium) and is model dependent because of the parameter

Fik/c < agepe/(1—ax) = (15)
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a, these results show quite clearly that funnels with super-Eddington luminosities must
accelerate the matter in their walls, as discussed below.

4 Ejection of matter from a funnel with super-Eddington luminosity

In this section, we concentrate, as before, on the region of the funnel just above that which
dominates the luminosity and make a semi-quantitative estimate of the energy which must
be carried out as a stream of matter when L 2 L. The tangential radiation flux F; is
obtained from (6) and (7) and we write it in the form (for small ¢)

F,=L/4nr? (16)

where r is the radius of the funnel at the level of interest, at a distance R from the central
mass. A force Fik/c acting over a distance R will accelerate matter to a velocity v given by

v} =2Fk/c xR. (17)
Introducing the dimensionless radiation luminosity /, = L/Lg we have
Rr
U2/C2 =lr___£§ (18)
r

where r is the Schwarzschild radius associated with the mass M. Of course, (18) is consistent
only if the calculated v?/c? is much less than 1. It can also be checked that v? is much greater
than GM/R when [, > 1 so that the matter escapes.

The unbalanced tangential force acts on a layer of thickness ~ 1/« p where p is the surface
density. The matter thus flows out over an area 27wr/kp with velocity v, carrying away
energy L, given by

I=L,/Lg=— (I’Rrs)m (19)
poTR/TE 2rg \ r? '
Note the 3/2 power of [, which means that the particle luminosity /, overtakes the radiation
luminosity of the funnel when
i (20)
> —.
r ¥y R3
For typical values like # ~ 100, R = 1000, r¢ = 2, the right-hand side of (20) is about 0.2. The
numerical factor in (20) of course depends on the precise distance over which the accelera-
tion takes place (which was set equal to R in 17) as well as the detailed variation of the
tangential force over the funnel. It seems clear, however, that a significant fraction of
luminosity is in the form of outflowing matter for L 2 L.

We note that Sikora (1981) has mentioned the possibility of a ‘disc wind’ and Sikora &
Wilson (1981, SW) have studied the motion of test particles in the radiation field of a funnel.
They concluded that the particle luminosity is limited since the optical depth of the blown
off matter in the longitudinal direction, i.e., along the funnel axis, must be of order unity or
less. However, this is only a condition for the consistency of the radiation field computed
by SW. The arguments given earlier show that a layer with transverse optical depth of order
unity is out of equilibrium and thus accelerated by the escaping radiation. If the matter in
this layer fills the funnel, the longitudinal optical depth would certainly be greater than
unity. This would imply even more efficient coupling between the radiation and the matter
and the conclusion about the importance of the particle luminosity is reinforced.
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The calculations given above are for the non-relativistic case. The most important effects
of relativistic motion are the aberration of the transverse fluxes F and £}, and the Doppler
redshift of the accelerating flux F;. Both of these act to brake the motion of the walls. As
an illustration, if we have F, = F; = F}, then the total force falls to zero for v/c =0.27 i.e.,
for a Lorentz factor y = 1.04. In fact, SW find from detailed calculations that normal matter
can be accelerated to y—1=0.1 or so (which is greater than 0.04 probaby because in the
outer regions of the funnel F; > F,, F,). We thus find the following limit for the particle
luminosity

2nr v v

Ly max=—" X—X pc X (y—1)c? =~ 0.25rc3/k (for—z 04,y—1= 0.1), 21
Kp ¢ c

i.e.

; Ly max 1 (r)

P Ly 25\

For the parameters used earlier (v ~ 100) we have [, m,x = 4 which is still substantial.

5 Discussion and conclusion

The models of thick accretion discs studied by PW, JAP and ACN have two attractive
features: (i) the super-Eddington luminosity and (ii) the funnels which collimate it.
However, in their present form, these models do not incorporate the processes of energy
generation and energy transfer within the disc. Instead one uses a postulated distribution of
angular momentum on the surface to make definite predictions about the shape and
luminosity of the funnel. Further, the equilibrium condition imposed is valid only in the
interior of the disc, while external radiation is a new factor which has to be taken into
account at the surface of the funnel. We believe that the above mentioned uncertainties in
these models justify the more phenomenological approach taken in this paper.

We characterize the funnel geometry by the semi-angle ¢ and calculate the radiation force
acting on the matter in the walls in terms of the luminosity L. Strict equilibrium at the
surface requires L < ¢>Lg while a steady flow with viscous stresses balancing excess radiation
forces seems possible only for L < ¢Lg. In contrast, the PW family of models have L = Lg/¢.
The effect of the external radiation on the funnels of JAP has been studied in a fully
general-relativistic framework by Sikora (1981). The main result of his work is a brightness
distribution and associated radiation field consistent with equilibrium normal to the surface.
The radiation field is greatly enhanced by the ‘reflection effect’ i.e., the exchange of
radiation between different parts of the funnel. This effect is of course already included in
our calculations. As expected from our arguments, there is a large unbalanced force in the
tangential direction in Sikora’s calculations, but this receives only passing mention. From
our point of view, it is this tangential force which determines the behaviour of the funnel.
For luminosities of the order of Lg or greater, we find that the matter in the walls is
accelerated to much greater than escape velocities. The total luminosity carried away by the
particle flow grows faster than the radiation tuminosity in the non-relativistic limit. The two
become of the same order as L crosses Lg, though our estimate is probably not accurate
enough to fix the critical cross-over value of L precisely. The particle luminosity, however,
saturates at a few times Ly due to aberration and Doppler shift effects. There is some
overlap between this part of our work and the calculations of SW (1981) who calculated the
motion of test particles in the intense radiation field of the funnel. They concluded that the
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longitudinal optical depth (parallel to the axis) would limit the luminosity emerging as a
particle beam to insignificant values. In our calculations it is only the transverse optical
depth of the surface layer which has to be less than unity and the resulting luminosity is
therefore significant — a possibility that is mentioned by SW without elaboration.

An intense, collimated stream of particles is not unwelcome from the point of view of
observations. However, if the flow carries a significant part of energy output, it is not at all
clear that the original starting point (PW, ACN, JAP) which neglects the flow is a good one.
We have shown that a considerable flow must exist in any funnel with L ~ Lg or greater on
rather simple physical and geometric grounds, independently of detailed models for the disc
interior. This result suggests (at least!) two possible alternatives for thick disc models with a
realistic distribution of frictionally generated energy. One is quasi-spherical accretion with
quasi-radial energy flow near the black hole and a luminosity limited to ~ Lg by matter
outflow. This picture was in fact suggested by Shakura & Sunyaev (1973). The second
possibility is that super-Eddington luminosities survive even when the energy generation and
transport as well as flow dynamics are properly included. It would appear that the question
can be answered only with detailed calculations on realistic models. This formidable problem
now seems unavoidable because of the gross failure of equilibrium and significant outflow of
matter which we have demonstrated in this paper.
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