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Summary. We investigate the interaction of the radiation produced in the
funnels of thick, highly luminous accretion discs with the walls of these
funnels. Some processes not considered in an earlier discussion have been
included. The turbulent mixing of the surface layer with deeper regions acts
to reduce the luminosity associated with outflowing matter. The modification
of the radiation field by the moving walls is also important. We find, for the
specific funnel geometry studied, corresponding to a radiation luminosity of
8.5 times the Eddington limit L, that up to 1.5 Lg can be carried away as a
particle beam, even for an optically thin funnel. This particle luminosity is
sensitive to the sound velocity and the mixing efficiency in the walls. The
implications for modelling of thick accretion discs are briefly discussed.

1 Introduction

Over the past few years a theory of active galactic nuclei involving geometrically thick radia-
tion supported accretion discs around black holes has been developed, both in a general
relativistic framework (Lynden-Bell 1978; Jaroszynski, Abramowicz & Paczynski 1980;
Sikora 1981, hereafter Sk) and in the Newtonian or pseudo-relativistic approximation
(Paczynski & Wiita 1980; Abramowicz, Calvani & Nobili 1980; Sikora & Wilson 1981,
hereafter SW). The basic concepts involved in these models include: (a) global balancing
of the energy generated by viscosity with that radiated from the disc surface, (b) assump-
tion of a plausible angular momentum distribution and (c) determination of the shape of
the disc as an equipotential of gravitational plus centrifugal forces (e.g. Kozlowski,
Jaroszynski & Abramowicz 1978). In thin disc theory, it is known that the luminosity
approaches the Eddington limit

4nGM,
Lg= 1

K

as the accretion rate approaches a critical value M, = 8mcry/k where M is the mass of the
accreting body, k is the opacity (usually 0.4 cm?gm™! as electron scattering dominates in
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the case of interest) and r, is the radius of the inner edge of the disc. As pointed out by
Shakura & Sunyaev (1973), when M > M,,, the disc must thicken. One possibility is that the
flow becomes essentially radial with a wind carrying off the excess material (e.g. Meier
1982a,b,c). However, if the effective viscosity in the bulk of the disc is sufficiently small,
it seems that a pair of funnels can form along the angular momentum axis of the accreted
material. These funnels have the geometry (Lynden-Bell 1978) and the high luminosity
(Paczynski & Wiita 1980) that appear to be necessary for producing collimated jets in
quasars and other galactic nuclei (Rees et al. 1982 have, however, suggested a different
mechanism for non-QSO radio sources). Early estimates of high velocities (Lorentz factor
v =~ 2) produced by radiative acceleration of test particles in such funnels (Abramowicz
& Piran 1980) have not been borne out by subsequent calculations (Sk; SW; Piran 1982)
where values of y =~ 1.15 for ordinary electron proton plasma have been found.

Although thick disc models are constructed to have normal forces at the surface in
balance, there are unbalanced tangential forces. These were considered by most authors to
be unimportant or to drive slow meridional motions within the disc (Paczynski 1978,
private communication; Sk). Recently, however, Nityananda & Narayan (1982, henceforth
NN) have shown that these unbalanced forces can be very important for narrow funnels.
From geometric considerations, they argued that a funnel of small semi-opening angle ¢
(Fig. 1) cannot have luminosity exceeding ¢>Lg if it is to be in strict equilibrium. Allowing
in a simple way for momentum transfer by flow induced shear stresses, they suggested a
luminosity up to ~ ¢Lg was possible. Since the typical luminosity in thick disc models is
~ Lg/¢, they argued that a significant part of the luminosity must be in outflowing matter
and that this should be included for consistency.

We can give a rather general argument for the potential importance of particle outflow in
narrow funnels. Near the bottom of the funnel, where much of the luminosity is generated,
the radiation field has a large isotropic component. Looking at a unit area oriented normal
to the axis of the funnel, we therefore have a flux Fy crossing it upwards and an almost equal
flux in the opposite direction. The associated momentum flux, i.e. radiation pressure, is
given by 4F;/3¢ in the isotropic case. The vertical momentum crossing a section of radius

-
M

Figure 1. Geometry of a funnel of semi-opening angle ¢ in a thick accretion disc around a black hole at M
(schematic). The cylindrical coordinates are r and z, while R is a coordinate along the funnel surface. The
fluxes Fy, Fy, and F along the tangential, inward normal and outward normal are used to characterize the
radiation field.
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r’ is thus 4mwr?Fg/3c. The crucial point is that n72F; is significantly greater than the net
luminosity L, which finally leaves the funnel, carrying away a momentum L /c since it is
well collimated. We conclude that a large fraction of the momentum injected by radiation
into the lower part of the funnel is not contained in the radiation which finally escapes, and
is therefore deposited in the walls. In the extreme case when the walls are accelerated to
relativistic speeds, the particle luminosity, L,, is thus of the same order as L, or greater,
while in the opposite case of low particle velocities, the energy associated with this
momentum is very small.

Motivated by the ‘momentum problem’ just described, we have tried to analyse various
accelerating and drag forces which act on the funnel walls. In the process, we have re-
examined the assumptions and approximations in the earlier work of NN. Since the calcula-
tions require knowledge of the radiation field, we have used the results of Sk for a model
funnel with a luminosity of 8.5 L,, making some changes to allow for the moving walls. We
have not attempted a fully self-consistent determination of the radiation field with moving
walls. Our results confirm the general validity of the points made by NN. However, Ly is
significantly less than their estimates and depends sensitively on two factors: (i) the sound
speed B =vg/c in the outer layers of the funnel, (i) the ratio a/? of the largest (rms)
fluctuating component of the turbulent velocity to the sound speed vy.

The rest of the paper is organized as follows. Section 2 shows that the radiative accelera-
tion of the surface layers of the funnel induces strong Kelvin—Helmholtz instabilities. These
mix the surface layer with the interior on a time-scale short compared to that for accelera-
tion, and carry tangential momentum away from the surface. Appendix A discusses a simple
mixing length model for the turbulent momentum transport. The velocity of the surface
layer can only grow very slowly (i.e. logarithmically) until turbulent velocities become of the
order of the sound speed. Thereafter, the drag saturates and the surface layer can accelerate.

In Section 3 we discuss the radiation field in the funnel, drawing on the work of Sk but
making some changes to allow for the moving walls in order to conserve the total radiative
luminosity. The tangential momentum delivered to the funnel walls is calculated on a simple
model. Appendix B shows that the errors involved in this approximation are not large for the
kind of radiation field expected in the funnel. We also compute the tangential momentum
carried away from a surface element by radiation.

Section 4 combines the results of the two previous sections to set up the momentum
balance equation for the surface layer. Numerical results are given for the funnel and
radiation field studied by Sk. Section 5 gives our conclusions and a discussion.

2 Turbulent mixing and drag
2.1 KELVIN-HELMHOLTZ INSTABILITIES

Let us consider a fluid layer of depth a, moving at a velocity v with respect to an underlying
fluid at rest (Fig. 2). We would argue that the rate of growth of perturbations at the inter-
face would only be underestimated if we use results for the standard case of two semi-
infinite fluids in relative motion. We use the results of Turland & Scheuer (1977) (see also
Blandford & Pringle 1977) which are applicable when the relative velocity and the sound
speed can be relativistic. As long as v<uvg, some perturbations continue to grow at rates
~ vk (k = wavevector). For v > v, only perturbations sufficiently oblique to v will grow, with
rates ~ ygk. Although the shortest wavelength modes grow most rapidly, those with wave-
lengths ~ a are most relevant for mixing the layer with the substrate. Allowing for the
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Figure 2. Momentum transfer from the surface layer (labelled 1) to the bulk is idealized by considering a
constant shear o acting on the inner wall of a cylinder for R > 0. The velocity field U(R, y) is calculated
in Appendix A. The effective depth of the layer over which the tangential flux Fy acts is denoted by a.

retardation in growth rates due to the mildly relativistic sound speed (at most a factor of 2.5
— Turland & Scheuer 1977), we have growth time-scales z, given by

tg < max (a/v, a/vs). 2)

We assume that a time ~ 5¢, is needed for significant sharing of mass and momentum
between adjacent layers. This is to be compared to the time-scale ¢, for acceleration of the
surface layer over the characteristic length scale R of the funnel (Fig. 1). Typically,
t, = 2R/v. We thus find that

2R,

Sav

ta/t mix ~ 25—R (v<wvy) or for V> v, ?3)
a

The depth a is discussed in detail in the next section and in Appendix B but corresponds to
an optical depth ~ 1, i.e. a~ 1/k po. Using typical p, values from Wiita (1982), we find that
typically R/a~ 10* and invariably R/a > 50. It is thus clear that the mixing is extremely
effective and we can model it as fully developed turbulence. Analogous results were found
by Elmegreen (1979) who studied the interaction of a protostellar wind with the
surrounding preplanetary nebula.

The standard analysis predicts that the interface between the moving layer and vacuum
is strictly stable (Blandford & Pringle 1977). However, convective motions, flows along
magnetic field lines and the powerful subsurface mixing just discussed should all lead to a
‘wind’. Such a wind has in fact been invoked (e.g. Sk) to feed the funnel with ‘test particles’
that can be accelerated and collimated into beams. In the rest of this paper we shall ignore
this factor but assume that the funnel still remains optically thin, so that we can use the
radiation field computed for vacuum funnels. Optically thick funnels would of course
require an entirely different approach (Abramowicz, Calvani & Nobili 1983).

2.2 TURBULENT DRAG FORCES

Because of the strong mixing, we ignore microscopic and radiative viscosity™ and use results
from turbulent shear flows (Monin & Yaglom 1971). If ¢ is the applied shear and p, the
density, the characteristic velocity v, = (0/p0)"? is a measure of the random velocities in the

* Radiative momentum transfer can become comparable to that arising from mixing when there is a steep
velocity gradient near the surface (see equation 15 and the discussion in Section 5).
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turbulent flow. Defining the R and Y directions along and perpendicular to the layer (Fig.
2), the fluctuating velocity components Uy and Uy satisfy

UrUy = v%; UrUr > (2.204)%; Uy Uy =~ v} 4

The first equality follows from the definition of shear stress while the second and third are
experimental results.

We now make the assumption that the rms value of Upg, the largest turbulent velocity
component, cannot exceed a multiple aV'? of the sound speed, where the factor « should be
of order 1 but is retained explicitly to reflect the uncertainty in this estimate. The maximum
stress which can be transmitted is thus given by

.2 _ (UR UR)max _ 2
Omax/Po = Vi, max 184 avg/4.84. (5)
We note that a similar estimate for the maximum stress has been given by Shakura &
Sunyaev (1973) in the context of thin, Keplerian accretion discs. We also note that this
criterion should be applied in a frame moving with the mean velocity.

We thus arrive at the following physical picture. The flux of radiation F; parallel to the
funnel walls (Fig. 1) deposits tangential momentum at a rate o into the surface layer of
thickness a. So long as ¢ does not exceed the critical value (5) there is efficient mixing and
the velocity of the surface layer grows very slowly (equation A12, Appendix A). For an
applied stress greater than o,,,,, we have acceleration of the surface layer with a drag given
by (5) coming from the layers below. In what follows we use the subscripts 1 and 2 to refer
to the surface layer and the one below (Fig. 2). From (A15, Appendix A), the maximum
stress which the 2 layer can carry is given in the rest (funnel) frame by
ony, = 2%

4.84

Y2 (1 +B2812). (6)

where ¢, = velocity of layer 2, v, = (1 —83%) "2 is the corresponding Lorentz factor, 8;, the
velocity of the layer 1 relative to 2, and p, the proper rest mass density of either layer.

3 Radiation field and tangential stresses
3.1 RADIATION FIELD IN THE FUNNEL

The outgoing radiation at any point on the funnel surface is described by giving Ff, the self-
flux. The incoming radiation field has a significant angular dependence, and two important
quantities derived from it are the normal flux F, and the tangential flux Fy. Fig. 1 shows
these fluxes schematically. For steep funnels, with a small semi-angle ¢, the net outgoing
flux (F;— F,) is a much smaller quantity than either F or F,,, over much of the funnel,
because of the strong ‘reflection effect’. This net flux is what enters the normal equilibrium
condition at the surface and is determined by the funnel geometry and angular momentum
distribution (Sk; SW). In the following, we denote the radiation fluxes computed by
Sikora (1981) by the subscript ‘Sk’. Our calculations of particle luminosity are basically for
his funnel model, with some modifications of the radiation field to allow for the motion of
the walls, conserving the total radiation luminosity L,. Since the tangential flux F
integrated over the funnel cross-section at any point gives L, below that level, we have
retained the F, values computed by Sk. However, the fluxes F and F,, which are deter-
mined from the equilibrium condition and the reflection effect, will now be different
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when we allow for the motion of the funnel walls. Rather than solve this problem ab initio,
we have modified the self-flux computed by Sikora to ensure that the escaping luminosity
remains the same. Thus, if F; is the self-flux emitted isotropically from layer 1 in its rest
frame, the specific intensity™ in the direction of motion in the funnel frame is enhanced by a
factor (1 +8,)%/(1—B,)%. It can be checked for §; < 0.5 and ¢ ~ 10° that this enhancement
holds for all rays which escape and not just in the forward direction. To obtain the same
escaping luminosity with moving walls, we thus write

1+51)
7
sSk FS](I»& ()

3.2 PENETRATION OF RADIATION AND TANGENTIAL STRESSES

We first discuss the incoming radiation at the funnel surface (subscript ‘in’). The tangential
(R-component of) momentum crossing a unit area of the funnel wall (i.e. in the Y direction
of Fig. 2) is denoted by TRY. In terms of a unit vector n and the specific intensity 7, we can
write

cTRY = f[in(n)anY ds. (8)

In the same notation, the tangential flux Fy is given by
Ft in = TOR = flin(n)anQ- )

If the effective depth of penetration of F; is a, we can write the tangential force on a unit
area as Fy(k/c)poa. For consistency, this equals the tangential momentum entering viz.,
TR The optical depth kpea over which the penetration is effective in thus the ratio
cT; PRy RYITYR, Of course this will depend on the precise angular dependence of the radiation
ﬁeld For a field with the simplest kind of anisotropy, viz. I(n) =1, +I;ng, we have
TRY =(mw/4),, TOR =(2m/3)I,. The effective optical depth for penetration is thus 3/8.
Appendix B cons1ders a more general radiation field which perhaps mimics that in a funnel

more closely. The penetration optical depth does not vary too much over the range of
interest, and we thus adopt

3
eTRY =" Fumi a=3/(8kpo) (10

We also need the tangential momentum carried away by the outgoing flux. This quantity
is zero in the frame 1, in which there is a flux T9Y =F,, in the Y direction. A Lorentz
transformation gives

cT &Y =718, Fg1. (11)

Further, the contribution of Fg to the tangential flux in the funnel frame is also given by a
transformation

8
OR _ 2
Tout g Y181 Fyy. : (12)
*We use the specific intensity integrated over frequency, which behaves as (frequency)* under Lorentz

transformations.
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From the requirement of fixed total luminosity we have

Fy sx =TR+ TR (13)

out*

Strictly speaking, this condition applies only to the integral over the funnel cross-section,
but for steep funnels the variation of the fluxes over the cross-section is not strong. Equa-
tions (7) and (10—13) give us all the quantities entering the momentum balance for the
surface layer, which we discuss in the next section.

4 Momentum balance and equations of motion for the surface layer

As a preliminary step, we need to discuss the sound speed. This is given in terms of the
radiation energy density £ by

(14)

Here we have expressed the self-flux F in terms of E through F = cE/4 which is strictly
true only for an isotropic radiation field but is quite accurate in the disc interior. While
Wiita (1982) has given estimates of po(R) and po(R) for a range of model funnels, his
calculations do not include the reflection effect which tends to enhance F by a factor
ranging from 10 to 10* (SW). However, the reflection effect also enhances po. Bearing
these factors in mind, we investigate the cases §; =0.01, 0.03 and 0.1, and treat 8 as a
constant over the funnel. (The results of Wiita 1982 show a variation of only a factor of
~ 2). The dissipation associated with the mixing will heat the material and we assume that
this is allowed for in choosing f.

Another point concerns the relationship between Fy,, the isotropic self-flux crossing
from layer 2 to layer 1 (viewed in the 2 frame) and Fj,, the flux directed from layer 1
(assumed to be optically thick) either into the funnel or into layer 2. Viewed in the funnel
frame, we assume that the net energy transfer is zero, because Fy — F, < F, Fy,. This leads to

Y1Fs1 =72 Fga. _ (15)

Since the Lorentz factors are quite close to 1 and F, is needed basically for the sound speed
determination, this approximation should be adequate.

Consider now the element of the surface layer shown in Fig. 3, of thickness a, radius r,
and slant length AR. The tangential momentum entering a unit area of its inner surface per

unit time is given by T §Y=(3/8)Ft,in/c (equation 10). Then we have a stress T(Iflft(

o

| ————

Figure 3. Slice of the surface layer to which momentum conservation is applied. Tangential stresses due to
raidation act on the inner walls, while frictional forces due to turbulent mixing act on the outer walls.
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(equation 11) representing momentum carried away by the outgoing radiation. We thus have
a total radiative stress o given by

3 Y18 F
o= _Ft’in B 1P14's1
8¢ c
3 Y1811 +v1) (A —B1)* Fy, sk
= It sk . (16)
8¢ (1 +8y)? ¢

Here we have used (12), (13) and (7) to express F ;n and F in terms of Fy g and F gx.
This tangential stress must be compared to the maximum value which can be carried in the
turbulent shear flow, given by (6). If 0 < 0,,,,x We have the subsonic case and the velocity of
layer 1 is given by (A12).

If 0> 0ax We have the supersonic case and layer 1 accelerates since it receives more
momentum than layer 2 can drain away. The velocity of the second layer is now given by
(A13). The condition for the supersonic case is 0 > 0O,y €.

0375 Fy — (1 +7,)7282Fs1 > 0367 ay, Fs. (17)

In this case, we can draw up the momentum balance for the surface element as follows.
The rest mass entering the element (through the annular face) per unit time is given by
2mrapyy;Bic and that leaving by the same expression evaluated at R + AR. Clearly, a rest
mass Am per unit time must be drawn into the surface layer from layer 2, where

d
Am=— 2nra ¢)AR.
dR ( PoY1B1¢)

This mass changes from velocity $,¢ to 8;c and the associated change of momentum is
given by Am(y{B1¢ —7v28,¢). In addition, the mass entering the layer through the annular
face gains speed, and the associated rate of change of momentum would be

d
AP:271"‘0»00’)’1316‘'-AR'CE2 (71B10). (18)

The total momentum change is equated to the net stress, which is given by (16) reduced by
the drag term o0, between layers 1 and 2. The consolidated momentum equation reads

d (3w VN d (3nr
— | —7iBic’r) — — \—— 71Bic) " v2Bac

dR \4k dR \ 4k
2nr { (1+y)(1—6,)
=—— 10375 F - F, —0.367 ay((1 +B,812)
c t, Sk Y184 a+ 51)2 s, Sk 71( 2P12
(lwﬁ‘)zF (19)
X | — .
1+ﬁ1 s,Sk}

Before studying the solution of this equation, we mention two implicit features. Usually,
the radiative force is expressed in terms of an acceleration by the directed component and
drag by the isotropic component. However, this can also be understood in terms of absorp-
tion followed by isotropic re-emission in the rest frame. The approach used above keeps
track of momentum in the incoming and outgoing radiation and is thus physically equivalent
to the usual treatment.
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The second point concerns the radiative transfer of momentum across the 1—2 interface.
The associated stress is =~ FyB;,/c. Since our drag term also has a similar structure,
~ 0.367a(Fg/c), we note that this becomes important when

Bi2 20367 a. (20)

In these cases, a higher effective value of & should operate. Apart from this complication, we
consider this radiative momentum transfer to be absorbed in the turbulent drag, especially
in view of the uncertainties regarding .

Only a brief description of how the equations of motion are solved is needed. Fig. 3 of Sk
gives the necessary input values of the radiative fluxes F gy and F; gy at various points
along the funnel. We approximate the geometry by zones whose boundaries are given by
straight line segments joining these points, and we approximate the variation of the fluxes by
power laws in r over each such zone. At each point it is necessary to check whether we are in
the subsonic or supersonic regime. In the first case, 8, is given by (A12) with v, defined by
(A3), and the stress o is given by (16). In the supersonic case we use the equation of motion
(19) to compute B, while 8, is given by (A13). i

5 Results and discussion

The results of the calculations for three values of a, viz., 0.3, 1 and 3, and for three values of
Bs, viz., 0.01, 0.03 and 0.1, are given in Table 1. The particle luminosity L, at the top of the
funnel (viz., at r = 80 GM/c?) is given in the funnel frame by

Ly=4nr-aipocy1(Y1— Yesc)s e

where 7. is the Lorentz factor corresponding to the escape velocity. When we recall that
a =3/(8k po) and divide by Ly we find the dimensionless particle luminosity to be

Iy = Ly/Lg = 0.3757B171(Y1 — Yese)» (22)

with r in units of GM/c?. Table 1 gives our estimates of /, for the varjous cases studied. We
notice that the largest value of the particle luminosity is about 1.5 times Lg. We now
compare this to the results obtained by NN. They estimated a particle luminosity of 4L

Table 1. Particle luminosity in units of the Eddington
luminosity (lp) calculated for various values of the sound
speed (3s) and the fraction coefficient (a). The asterisks
indicate those cases where radiative momentum transfer is
important according to equation (20) and could alter the
results. ¢, and eB, are the velocities of the surface layer
and the next layer respectively.

ﬁs B] |62 Ip
0.38 0.03 1.0*
0.01 0.23 0.06 0.2
0.10 0.10 0.0
0.39 0.05 1.1%
0.03 0.30 0.11 0.4
0.23 0.20 0.2
043 0.02 1.5%
0.1 0.40 0.05 1.2
0.33 0.14 0.6
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for the funnel model described in Sk. The outflow velocity they estimated corresponds to
B; = 0.4 which is similar to the values in Table 1. However, their estimate of the penetration
depth of the accelerating flux was 1/k p rather than 3/8 k p and this accounts for the lower
luminosity found here. That apart, the present work clarifies some aspects of the problem
raised by NN. (a) The criterion used by NN for surface acceleration had the form F; > aF,,,
and was based on an analogy with the Shakura—Sunyaev (1973) estimate of shear stresses in
thin discs. Our criterion (17) still involves the ratio Fi/F,, but now has as underlying
physical mechanism (viz., turbulent mixing) and some velocity dependence. (b) The modifi-
cation of the radiation field by the moving walls has been put in through equation (7) and
this is an important effect. For a fixed total luminosity, we find that the radiation from
moving walls carries away transverse momentum and also contributes to the transverse flux.
Both these effects reduce the amount of tangential momentum actually available for
accelerating the layer, as is clear from equation (16) for the stress. (¢c) The importance of
mixing shear stresses described by « and the sound velocity §, becomes clear from Table 1.
The maximum particle luminosity is obtained for low « and high g.

The asterisks in Table 1 indicate those cases where (§;, > 0.367 « at the top of the funnel
(equation 20), showing that radiative momentum transfer across the 1—2 interface becomes
important. However, the momentum transfer in the disc interior is still limited by av?/4.84
from (5). Thus there will be acceleration of the second layer also in this case. While the
sharing of momentum over a larger mass by itself tends to reduce the kinetic energy in the
outflow, the reduced velocity can increase the accelerating stress (16), so it is not clear what
the net effect on the particle luminosity will be.

One unsatisfactory aspect of the present work is that numerical results could be given for
only one funnel model. However, this is a fairly typical model for a thick disc. Models with
higher luminosities (e.g. Abramowicz et al. 1980) tend to need very large accretion rates
and may not be of interest in the context of active galactic nuclei. On the low luminosity
side, we have to fall back on the Newtonian estimates of particle luminosity made by NN
(equation 19 of that paper) which should be applicable, since at low velocities, radiative drag
effects are unimportant. We thus have

. 32
lp - i L (irﬁ) 13/2
16 r \ r?

where [, = L,/Lg. Note that the penetration factor of 3/8 which was not used by NN is
included in (23). From (23) we have [, =/, when

1_256( r4)
"9 \nRY

In units with G =M = ¢ =1, typical values are r ~ 100, R ~ 1000, (rs = 2) and we find that
Iy =1, at 1.4 Lg. However, from the results of this paper, the various drag effects are already
significant at this stage. So equation (23) is applicable only at somewhat lower luminosities.
It is interesting to compare the momentum carried in the particle beam with the estimate
given in Section 1. At a point near the bottom of the funnel where r = 16, the self-flux Fj in
Sikora’s model is given by Fik =0.09, and the associated rate of momentum transfer at this
cross-section is (4m/3)r*F, = 96/k. The momentum escaping in a beam of (8.5/2)Lg (for
one funnel) equals 53/k (since Lg =4mn/x). The maximum momentum which the particle
beam can carry is thus 43/k, i.e. somewhat less than that contained in the radiation. For 8, =
04, this corresponds to an energy outflow of 1.4 Ly (from both funnels). This is in
reasonable agreement with the particle luminosity we compute in the a = 0.3 case and with
calculations for smaller o, not shown in Table 1, providing a consistency check on the

(23)
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assumptions made concerning the radiation field and accelerating forces. Of course, when
the turbulent mixing is efficient, i.e. for higher values of «, the excess momentum is taken
up by the disc and only a small fraction emerges in the particle beam.

There are two further effects which tend to enhance the particle luminosity. If the out-
flowing matter makes the funnel optically thick, the coupling between the matter and radia-
tion will be more efficient. Further, the energy dissipated by turbulent mixing will act to
raise the local sound velocity and thus favour larger values of L,,. However, large values of v
seem unlikely, at least for optically thin funnels. It appears that the main role of the mass
outflow in this case is to modify the radiation field in the funnel, and, to a lesser extent,
carry away a portion of the luminosity. Further self-consistent calculations of these effects
would be of interest.
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Appendix A: Mean velocity and shear in the mixed region

We first consider an auxiliary problem, viz., a cylinder with a tangential stress ¢ parallel to its
axis (which we take along R) acting on its walls and being transmitted by turbulent mixing
through a fluid of density p occupying the space Y >r. Here 7 is the radius of the cylinder
and Y, the distance from the axis. We write Y=Y, —r. Let U(Y) be the steady state
velocity parallel to the axis set up in the fluid. According to the mixing length theory
(Monin & Yaglom 1971) the shear stress is given by pl2,(3U/dY)?. As is usual, we take the
mixing length I, to be equal to AY, where the constant 4™ ! is approximately 2.4 in the

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1983MNRAS.205.1103N

TO3K;

5. 1103

FTOB3WNRAS,”

1114 R. Narayan, R. N. Nityananda and P. J. Wiita

related problem of flow past a wall (Landau & Lifshitz 1959). Conservation of the R
component of momentum then gives

oU\?
2nro =2n(r+Y)A?Y?%p|—]) . (A1)
Y
This leads to the solution (satisfying U = 0 as Y - )
Vi+Y/n+1
U=24v,In (————) (A2)
V1i+Yir—1
=~ 24v, In(4r/Y) (for Y <7r) (A3)
where
v = o/p. (A4)

However, this velocity field is not directly applicable to our problem because of the steady
state assumption, which effectively neglects inertial terms, i.e. the acceleration of the fluid in
the R-direction. The momentum current associated with the flow (A3)is given by

4r
P~ f 2u(r + Y)pU*(Y)dY = 2ar2pv2 - 16 x (2.4)% - 3/4. (A5)
0
We can define a length scale R¢¢ such that

2n¥Ress0 = P. (A6)

The injected momentum over a length R of the wall equals that carried in the flow. From
(AS) and (A6) we find

Repe =~ 12 X (24)2 r. (A7)

It is clear from (A7) that the steady-state situation is attained only over length scales of the
order of 10?r. Since the funnel under discussion is not in this regime we incorporate inertial
effects in a heuristic manner as follows. Consider a velocity field

4d(R):|~

U(Y)=24v,In [ (A8)

(A8) is just (A2) modified to allow a depth of penetration, d (R), which varies with distance
R along the funnel. Just as in (AS), we can calculate the momentum current associated with
this velocity field. We find

P(d)~161rd (2.4)*pv (A9)

where we have taken d<r as justified by the result and neglected d* compared to rd.
Equating P(d) to the total momentum injected up to the point R, viz., 2770, we find
d(R)= R[46. With this choice of d we have the velocity field

U(R,Y)=24v,In(R/11.5Y), (A10)

Although (A10) does not satisfy the detailed momentum balance in each element dRd, it
satisfies the global condition (A6) and this is sufficient for our purpose. The treatment of
the flow in the mixed region has been non-relativistic. While we do not have a fully relativi-

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1983MNRAS.205.1103N

TO3K;

5. 1103

FTOB3WNRAS,”

Luminosity of particle beams from accretion discs 1115

stic treatment, it seems reasonable to incorporate relativistic velocity addition by rewriting
(A10) as follows

UR,Y)=ct h[2'4v*1 ( X )} (A11)
,Y)=c tan n .
¢ ¢ 1157

In the subsonic case, as explained in the main text, the mixing is able to transfer all the
injected momentum into the interior. The velocity v, of the first layer is then given by

Uy R
=tanh |2.4—In ( ) . (A12)
c 11.5a

In the supersonic case, we have v2 = avZ/4.84 (equation 5). The velocity of the second layer
is then given by

6, =t h[2.40z1/2vSl ( R )] (A13)
=tan n .
2 22c¢ 11.5a

_ U(R, a)

4

B

The layer thickness, @ = 3/8 kp, can be calculated through equation (14)
a=27c*B2(128 K Fyy). (A14)

The stress due to mixing in the supersonic case has its maximum value omax = apv?/4.84.
Associated with this stress is also an energy current since the 1 layer is losing energy to the
drag forces. Both these quantities are in the frame of layer 2. Returning to the funnel frame,
we have

apv?

484

Y2(1 +B2812). (A15)

Umax

This is equation (6) of the main text.

Appendix B

The incoming radiation field at any point on the funnel surface is very intense for rays
coming from the interior (ng tending to +1 in the notation of Section 3.2) and vanishes for
rays coming from the opening (ng = — 1). A simple analytic form with these properties is

(B1)

where the parameter A can range from —1, describing an isotropic radiation field, to +1,
which gives a field peaking sharply for rays coming from the interior of the funnel. Fy, F
and TRY can be calculated for this field (B1) and the results are given below

o212
Fo/nly = [2 + 1—;—(—11‘7\—2)1/2] / [1+(1-\)Y?] (B3)

{ 1 B (3+2?)
A= [T+ =2AHY2] 4[1+N2+Q =N V2]

cTRYml, = (B4)
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Table 2. The parameter A, defined by equation (B1), measures
the anisotropy of the incoming radiation at a point on the
funnel surface. The next row gives the ratio of tangential to
normal fluxes, and the third row the optical depth of the
layer feeling the accelerating force.

A -0.8 ~0.1 0.9
Fy/Fy 0.498 1.235 3.261
cTRY/F, 0.335 0.375 0.307

Table 2 shows the behaviour of F;/F, and ¢T RY/F, for three values of .

Even for a rather anisotropic field, corresponding to Fi/F,=3.26, we find that the
penetration optical depth is greater than 0.3, not too far from the value of 0.375 for dipole
anisotropy which we have adopted for simplicity in the main text (equation 10). For

comparison, the range of F;/F, in the region of interest for Sikora’s model funnel is about
0.5-2.5.
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