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Abstract. For the specific case of binary stars we present signal to
noise ratio (SNR) calculations for the detection of the parity (the
side of the brighter component) of the binary using the double
correlation method. This double correlation method is a focal
plane version of the well-known Knox-Thompson method used
in speckle interferometry. We show that SNR for parity detection
using double correlation depends linearly on binary separation.
This new result was entirely missed by previous analytical calcu-
lations dealing with a point source. We conclude that for magni-
tudes relevant to the present day speckle interferometry and for
binary separations close to the diffraction limit speckle masking
has better SNR for parity detection.
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1. Introduction

In ground based high resolution astronomy (for a recent review
see Roddier, 1988) one is faced with problems of imaging astro-
nomical objects through the Earth’s turbulent atmosphere. In-
stantaneous focal plane image of a point source (PSF) is about
one arcsec wide, irrespective of the diameter of the telescope so
long as it is larger than 10 cm. The image contains many bright
spots the so called speckles with nearly diffraction limited size.
The goal of speckle interferometry, pioneered by Labeyrie (1970),
is to reconstruct high resolution images from (perhaps) a large
number of short exposure (~ 10 ms) images. Although the focal
plane image of a point source is quite random two nearby point
sources produce almost the same image apart from overall
brightness and shift. This so called isoplanatic patch, within
which the light from two objects encounters nearly the same
atmospheric turbulence and thus produce similar images, is
typically ten arcsecond wide in the optical. The stochastic nature
of the PSF forces one to use statistical methods of image re-
construction. Labeyrie (1970) proposed and Gezari et al. (1972)
successfully demonstrated the use of the power spectrum

CLI->=C{R,R_,>S,S_, (1a)

qujdzxei“xl(x) (1b)

in measuring stellar diameters. Here I,, R, and S, are Fourier
components of the observed focal plane intensity I(x), the point

spread function R(x) and the source structure S(x) respectively;
the angle brackets denote the average over atmospheric fluctua-
tions. Theoretical estimates of the SNR for the power spectrum
method suggest that the limiting magnitude of the technique is
around 20™ (Dainty, 1974). However, this technique does not
yield the phases of the Fourier components S,s which are neces-
sary for unambiguous reconstruction of the source structure
S(x). Two promising phase recovery schemes exist. In the phase
recovery scheme proposed by Knox and Thompson (1974, KT)
one measures the second order correlation

<Iu1—u+Au> (2)

which is nonzero if Au<Au,, ~r,/Af where ry is the Fried
parameter (~ 10 cm). This second order statistic contains in-
formation about the gradient V,S, of the source structure. The
actual phases are obtained from these gradients recursively.
Weigelt (1977) proposed another technique, the speckle masking,
which uses the triple correlation (TC) (also known as the bispect-
rum)

<Iu101—u—v>=<RuRvR—u—v>SuSvS—u—v' (3)

Although in this case also one has to solve for S,s recursively the
u—s and v—s can take any values right up to the diffraction limit
of the telescope.

The purpose of this paper is to point out certain subtle
features of the KT technique that are unimportant in the TC
method. These special features of the KT method were missed in
the previous works. Nisenson et al. (1983) considered the effect of
photon noise on speckle image reconstruction with the Knox-
Thompson algorithm. Ayers et al. (1988) consider the full four
dimensional extension of the KT algorithm in addition to using
better description of the photon noise and atmospheric statistics.
Chelli (1988) has derived analytic expressions for phase errors in
one and two dimensions. However, these papers deal only with a
point source. For a point source the phases of the Fourier
components of the source structure deal with the location of the
source. Estimating these phases and the error on them is of little
importance. What is more important is that part of the phase
information which can remove the structural ambiguities present
in the autocorrelation analysis. Technically, it is not enough to
consider the SNR only for the Knox-Thompson correlation for
the system response R,s. In addition to the- SNR for the point
source correlation SNR for any technique involves a factor that
depends on the source structure S,. This dependence is not very
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dramatic in the case of TC (Karbelkar, 1990c). To be specific, we
consider a binary star (whose individual components are un-
resolved) with component’s fluxes a, and a, and the separation b.
In the case of binaries the only ambiguity that is left over after
measuring its autocorrelation is its parity (defined as the side of
the brighter component). Binary stars are perhaps the simplest
sources for which some ambiguity (180° in position angle) re-
mains after measuring the power spectrum. Parity is known to
the binary star observers as quadrant ambiguity. Parity is im-
portant in some astronomical applications, examples being the
recently discovered ‘companion’ to SN 1987 A and closely separ-
ated gravitational lens images. Quadrant ambiguity may play
crucial role in determining the orbital parameters for a binary as
in the case of 70 Tauri (Mc Alister et al., 1988). Although it is
known that for a binary with widely separated components first
order method can be used, nevertheless, it is useful to consider
binaries in the context of double and triple correlation for two
reasons. First of all, the simple nature of the object allows explicit
SNR calculations in the image plane for these techniques.
Secondly, a comparison of various techniques is more straight-
forward in the case of a binary as one is directly dealing with a
property of the object itself rather than intermediate quantities
like the phase gradient or the triple correlation. Although the
more relevant phases of the object distribution are built up from
these there is, so far, no explicit analytic connection between the
SNR for these intermediate quantities and the final phase errors.
The principal difficulty lies in the fact that given the phase
gradient (with different individual noises) the final phases can be
obtained in many different ways and the optimum solution is not
expressible analytically. Existing SNR calculations for the phase
errors use very plausible improvement factors which connect the
SNR for the intermediate quantities to the final phase errors.
Karbelkar (1990a, c¢) has estimated SNR for parity detection
using TC. Although the SNR depends on the fluxes «; and «, it
does not strongly depend on the binary separation b so long as it
is smaller than the seeing.

In this paper we show that the SNR for parity detection using
double correlation depends linearly on the binary separation (for
separations close to the diffraction limit). It is only in the limit
that the separation approaches the seeing that the SNR for KT
becomes comparable to that of the power spectrum analysis. As a
consequence of this dependence KT has poorer SNR for parity
detection than the TC in spite of it being a lower order statistics.
The advantage due to the lower order statistics shows for magni-
tudes greater than 18™. This result is contrary to the existing
analytic calculations which use a point source as representative.
In Sect. 2 we present our analytical estimates for parity detection
using double correlation. Numerical results are presented in
Sect. 3 while the details are left to the appendices.

2. Parity detection using double correlation
2.1. Motivation

Our motivation for considering parity detection using double
correlation is as follows. The crucial point in the KT method is
the restriction Au <Au,,,,. The pupil plane length scale r, gives
rise to the seeing disk of size o =A4f/r, in the focal plane. If r,
were zero then the seeing disk would be infinite in comparison to
the speckle size p = Af/D rendering the KT method useless. In the
limit r,/D—0 the focal plane pattern due to a point source will

become stationary (statistically invariant under shifts) in the focal
plane. If any process is stationary then the only nonzero second
order correlation is the power spectrum which does not contain
any phase information. In reality, the finite size of the seeing disk
saves the situation by breaking the stationarity in the focal plane.
Note that the bispectrum, on the other hand, is a special case of
the most general triple correlation (I, I,1_,_,, > With Au=0.It
is, therefore, meaningful even in the limit ro/D—0.

For a binary within an isoplanatic patch the focal plane
image consists of two similar speckle patterns due to the two
stars forming the binary. Different speckles due to the same star
have uncorrelated intensities, however, for every speckle due to
star 1 there is one speckle due to the star 2 which has the same
relative intensity and separation as the true binary. Any informa-
tion about the binary must come from these correlated pairs of
speckles (otherwise one can be happy with the long exposure
image). Above, we argued that for KT to work finite size of the
seeing disk is a must. The statistics of speckles change on the scale
o of the seeing disk and this change must be felt by the correlated
pairs of speckles with separation b. We, therefore, expect a small
parameter b/o in the SNR for parity detection using double
correlation which goes to zero smoothly as (b/c)—0. This phys-
ical interpretation explains the existence and the crucial import-
ance of the restriction Au<Au,,, required by this technique.
Before presenting the details of focal plane calculations we give
frequency domain arguments to show that this small parameter
should also be present in the SNR expression for phase deter-
mination for objects small compared to the seeing disk.

2.2. Frequency domain estimates

The double correlation used in KT method can be expanded in a
Taylor series as follows

<Iu1—u+Au>=<IuI—u>+Au.<RuR—u>SuVuS[—u
+Au-{R,V,R|_,>S,S_,+O0(Au?). 4)

The first term is just the power spectrum (I,I_,>. The third term
contains only the power spectrum of the source and not its phase.
Only the second term contains phase information. Also note that
both the second and the third terms depend on the choice of the
origin, in the focal plane, through the gradient. Since the second
term contains phase information we show the origin dependence
explicitly. Let the binary be

S(x)=0a;0(x—x)+a0(x—x,)
or

S,=o, e o, ei2 (5)

where «; and a, are the relative fluxes of the components situated
at x, and x, respectively. If b=x, —x, is the binary separation
then the flux center x, is (a; x; +0,x,)/(0; +0a,). With this, the
second term (apart from {(R,R_,)>) becomes

Au-S,V,S|_,=iAu-x (a?+ a2+ 20, a, cosub)

2
a0y —a ala .
—jr2r 2 2(% 2)Au‘b+ih1 2 emiAy-b

oy +a, oy +a,

2
o a .
—i— 2 b Ay-p. (6)
oy +0£2
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Note that the coefficient of the flux center x. is the power
spectrum of the binary. In general, although the second term
depends on the choice of the focal plane origin, the origin
dependent contribution is the power spectrum. The KT signal
proper comes when the flux center is chosen as the origin.
Although the first term in Eq. (4) is noisy it is purely real by
construction and cannot contaminate the purely imaginary part
of the KT signal [for example the second term in Eq. (6)]. The
noise on this comes from the third term of Eq. (4). Since all origin
shifts can be attributed to the source structure, without any loss
of generality, we origin the system response at the flux center so
that in Au-{(R,V,R|_,> origin dependent term analogous to the
first term in Eq. (6) is absent. R, and V,R|_, can be regarded
uncorrelated and thus (R,V,R|_,> vanishes. However,
<|RuVuR| —u|>~<RuR—u>/Aumax as Aumax=r0/1f= 1/6 is the
correlation length for R,. Thus the noise on { RVR) is the same
as that for the usual power spectrum. We emphasize that the
b- Au dependence is true for all light levels. The SNR for KT
method is b/o times poorer than the corresponding SNR for the
power spectrum method:

SNRphase ~(b/0)SNRpower spectrum> (7)
SNRparity ~ ( b/O' ) SNRautocorrelation . (8)

Equation (8) follows from Eq.(7) since information about the
parity is contained in N~ (D/r,)? independent phases. The situa-
tion is similar to the autocorrelation for the binary which has
SNR better than individual power spectrum values. Supple-
menting these results by the known results for the autocorrela-
tion method (Dainty, 1974; Dainty, and Greenaway, 1979) we get
the SNR for the KT method

SNR a6 ~(b/a) high flux, (9a)
~(b/o) A low flux &/ <1, (9b)
SNR i1y ~ (b/o)N§'* high flux, (10a)
~(b/o)NI2 N low flux A <1, (10b)

where 4" is photon count per speckle in an exposure and
Ng~ D?/r? is the average number of speckles in the PSF. In the
following sections we support these frequency domain arguments
by explicit analytic calculation for the SNR for parity detection
using double correlation. The results agree with the scalings
given above. We also note that the factor b/s is about Ng /2 for
binaries close to the diffraction limit.

2.3. SNR for parity detection using double correlation

Our method is as follows. First we calculate the general double
correlation PSFDC for the point spread function (PSF). This
PSFDC turns out to be inversion symmetric. The general double
correlation for a binary is calculated next. It consists of four
PSFDCs. The strength and locations of these four PSFDCs are
asymmetric about the center of the binary double correlation.
This leads to an asymmetry in the double correlation for the
binary. Our aim is to locate those regions of the double correla-
tion which contribute more to the asymmetry at the cost of
minimum variance. To calculate PSFDC we need to assume the
statistics obeyed by the pupil plane fields. We mimic atmospheric
degradation by a single scale Gaussian correlation. In reality,
departure from the single scale correlation is known to result in
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drifting centroids of the instantaneous speckle pattern. We dis-
cuss this issue later on. In this paper we are not interested in
correlation effects due to secondary Airy rings so use an apodized
aperture to yield a Gaussian beam. The parity statistics P when
defined will be of the form

P=Id2xd2yW(x, WA (y)) (11a)

the sign of which tells us the parity of the binary. The lowest
second order variance on this is given by

V=Jd2xd2yW(x, NW(x, )+ Wy, x)<T(x)1(y)>.  (11b)

A near optimum choice will be made for the weight function W so
that the SNR is (apart from a numerical factor of the order unity)
at its best. The parity signal, Eq. (11), is second order in the
intensity and is evaluated for the single scale model. The variance
of such a general double correlation involves terms second, third
and fourth order in the intensity. In the case of autocorrelation
method it is enough to consider only the lowest second order
contribution if one is interested in “low” light levels. It is well-
known that for autocorrelation method “low” light levels mean
fainter than about 13™ when a speckle receives less than one
photon in an exposure. Although it is obvious that even in the
case of a general double correlation the second order terms
should dominate at sufficiently “low” light levels it is not known
what “low” means for a specific choice of the weight function.

Below we show that the PSFDC contains two features A and
B. Both these features are capable of yielding parity information.
The feature B, which is also the basis of the autocorrelation
analysis, yields parity with better SNR than the feature A (basic-
ally long exposure). For feature A there are two transitions in the
flux levels. The first transition occurs when a speckle receives less
than one photon in an exposure. The second transition occurs
when the entire telescope receives less than one photon in an
exposure. Since this feature is not a genuine high resolution
feature we evaluate its variance approximately (however, to all
orders) in Appendix B. It is also shown, as a byproduct, in this
appendix that for the usual autocorrelation and for parity detec-
tion using the feature B low light levels indeed mean fainter than
13™. So for this feature we evaluate the variance only in the
lowest order but using no further approximations than the single
scale model already mentioned.

The connection between the focal plane approach taken here
and the usual Fourier domain statement of the KT algorithm is
seen clearly by substituting in the double correlation [ Eq. (2)]
the definition [ Eq. (1b)] of a Fourier component. Individual KT
Fourier domain correlation is then seen to be equivalent to

jdzxdzyei“""”eiA"yl(x)I(y)‘

The intensities I(x) and I(y) are correlated if x and y have a
speckle in common i.e. x~y or y+b. Thus the factor exp[iu(x
— )] can be pulled out of the integral. Since Au is small we get
the deviation of the individual KT correlation from its zeroth
order power-spectrum relative in the form

fdzxxl(x)l(y).
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To get the parity from individual KT correlations one has to,
anyway, use different weights for different KT correlations so
that there is nothing special about the linear weight. The weight
function should only be inversion antisymmetric about the flux
center.

2.3.1. The PSFDC

The focal plane is, of course, two dimensional. In the following we
use x,; and x, for focal plane coordinates. When we make one
more copy of the focal plane the corresponding coordinates will
be denoted by y, and y,. As a result a general double correlation
is four dimensional. In Fig. 1 the PSFDC is shown in the (x,, y;)
plane. It consists of two features. The feature A has an extension
of the order of the seeing disk and is shown symbolically by a
circle. The feature B too has an extension of the order of the
seeing disk but its width is just of the order of a speckle size

—_——————a

B - feature

A- feature

Fig. 1. Schematic representation of the PSFDC in the (x;,y,) plane.
The feature A extends upto the circle of radius of the order of the seeing
disk. The correlation ridge feature B exists only along the +45° diagonal
and has a width of the order of the speckle size. It is shown by a segment.
The PSFDC is inversion symmetric about its center shown by a filled
square

(shown by a segment along the +45°). In the full four dimen-
sional space (x,, x,, y;, y,) the feature A is a four sphere while
the feature B is a two dimensional layer. In our Gaussian model
all these features have Gaussian fall offs with the above men-
tioned length scales. The two features have the same strength at
the origin that can be readily estimated. With our normalization
nN,R? is the total photon count per exposure for a zeroth
magnitude star. This is distributed over the entire seeing disk of
extent o ~f/kl where k=2n/4 and [ is the parameter of the single
scale model (it is related to the Fried parameter r,). Thus the
average intensity density is Nok2I?R?/f2. The general double
correlation depicted in Fig. 1 correlates intensity at two points in
the focal plane. Now if these two points are separated more than
a speckle size then their intensity fluctuations will be independ-
ent. For these regions the double correlation density will be the
product of the two intensity densities. This is the reason for the
term A whose strength is, therefore, N2k*I* R*/f*. Note that this
feature is meaningful even for a long exposure image. Now
consider those regions of the double correlation where the two
points involved in the correlation are within a speckle size. This
region is specified by the plane x ~ y with a tolerance of the order
of the speckle size. The intensity at these two points is correlated.
Therefore, in this region there is excess correlation in addition to
the term A. This excess is the term B. Note that this is a genuine
high resolution feature: it does not exist for a long exposure
image.

The double correlation for a binary is shown in Fig. 2. It
contains four units of PSFDCs with strength and location shown
in the figure. Because of the asymmetry in their strengths and
locations, with respect to the center of the double correlation, the
binary double correlation is asymmetric and one has to identify
those regions of the double correlation which contribute signific-
antly to the asymmetry. A more interesting question is to ask the
relative importance of the two features of PSFDC in determining
the parity of the binary. The answer to this question has implica-
tions for the more general question of optimum weight function.
Intuitively one expects the optimum weight function to have two
domains: one each for the two features of the PSFDC. The
relative weight of the two domains determines what fraction of
information is obtained from a specific feature. So one should, in
principle, consider a weight function with two domains whose

Fig. 2a and b. The general double corre-
lation for a binary. The relative strengths
of the four PSFDCs are shown in b. In
the middle strip S, the features B, and
B, should have passed through the
dots 1 and 3 representing the centers of
the first and the third PSFDCs and
should therefore overlap. In the figure,
for the sake of clarity of their extension,
they are shown slightly displaced. The
center of the binary double correlation
is shown by a filled square
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relative weights are such that the SNR for the resulting parity
statistics is maximum. However, it is not necessary to carry out
such a programme of parametric optimization. A kind of super-
position approximation holds for the signal and the variance (but
not for the SNR of course). Imagine that one knows the signal
and the variance for the two features separately. Then the signal
and the variance for any linear combination of the two features
will be (approximately) the same linear combination of appropri-
ate quantities for the individual features. This simplification owes
its existence to the fact that the features A and B have vastly
different four-volumes. If we take the four-volume of the feature
B as unity (it actually contains Ny statistically independent
regions) then the four-volume of the feature A is about Ng=2000
(N2 independent regions). For this reason, the difference between
signal and noise due to the feature A and the feature A with voids
of the size of the feature B is negligible.

It turns out that for binary separations close to the diffraction
limit the feature B contributes dominantly to the parity while
close to the seeing-sized separations parity is better determined
by the feature A. So we consider two kinds of weight functions:
one designed to emphasize the feature B and the second to
emphasize the feature A. We give the order of magnitude scalings
below while the details are left to the appendices.

2.3.2. SNR for parity detection using feature B

In Fig. 2 we have taken the star 1 as the origin in the focal plane.
We have aligned the axes so that the binary lies along the first
axis. The center (X, Xc2, Ve1» Vc2) Of the entire double correla-
tion is the same as the flux center of the long exposure image. The
double correlation is, of course, four dimensional but for the
planes (x,, y,) and (x,, y,) the center coordinates are the same as
the corresponding components of the flux center of the long
exposure image i.e. X., =y =bo,/(ot; +a,); X, =y.,=0. The
center of the double correlation is shown by a filled square in
Fig. 2. It is closer to the brighter star (which we take to be the star
1). We note from Fig. 2 that the correlation ridges (feature B)
appear along three strips, labeled S,, S, and S5 in the figure, in
the (x,, y,) plane. So our first choice of the weight function which
emphasizes the feature B is one which is nonzero only along these
three strips. The weight function is shown in Fig. 3. The strips
have width equivalent to the feature B. The asymmetry in the
double correlation about the flux center can be considered as
asymmetry in the individual strips about a —45° line passing
through the flux center. This is because the middle strip passes
through the flux center and therefore its one side becomes the
other on inversion through the flux center. However, the upper
part of the strip 1 becomes the lower part of the strip 3 on
inversion through the center. But the strips 1 and 3 are identical
in all realizations (because of the symmetry of the double correla-
tion) so the lower part of the strip 3 can be replaced by the same
as that of the strip 1. Thus one can talk about the asymmetry of
the individual strips about the —45° line passing through the
center of the double correlation. In other words, one can com-
pare the center (evaluated using the double correlation as the
weight) of every +45° strip in the double correlation with the
point of intersection of this strip and the —45° line passing
through the center of the double correlation. The middle correla-
tion ridge has its center displaced towards the brighter compon-
ent of the binary while the other two strips have their centers
shifted towards the fainter component by half the amount of the
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Fig. 3. The weight function used to emphasize the feature B. It is
nonzero only along the strips S;, S, and S;. The sign of the weight
function is also shown

middle strip. Therefore, for these three strips taken together the
center coincides with the flux center (the deviation appears in the
third order in the binary separation). For any other +45° strip
consisting only in the feature A the center of the strip deviates
from the —45° line only in the third order in b and thus negligible
for small separations. This motivates our weight function shown
in Fig. 3. In this paper we have considered a very simple weight
function which takes only three values: —1, 0, + 1. In all figures
the sign of the weight function is shown whereever it is nonzero.
We emphasize that this simple choice should give SNR with
correct scalings. In fact it is argued later on that although one can
fine tune the weight function a bit one cannot improve the SNR
by a factor much larger than unity and the scaling dependence of
the SNR on Ng, b and A" won’t be affected.

Two points need to be clarified. The first point to note is that
by definition the double correlation is symmetric in x and y for
every realization of the atmospheric and photonic noise. There-
fore, the strips 1 and 3 are identical. Our weight function,
however, does draw information from both these strips. It can be
shown that the SNR would have been the same if instead of using
all the three correlation ridges we had used only the strip 1 and
half (split along the plane x=y) of the middle strip. This is
because although three strips give twice as much signal as would
14 strips the variance for three strips is four times larger than that
for 14 strips. This is for the following reason. For weight func-
tions which are nonzero only on one side of the plane x=y only
one term in Eq. (11b) contributes to the variance and that too
half of what it would if the weight function were extended to the
other side symmetrically. The second point to be noted is that the
strips come with equal weights. Actually, one should weight the
strips differently and work out the SNR for a choice of the
relative weight. The relative weight is to be chosen so that the
SNR is maximum. This question is best answered in the scheme
which uses 14 strips. The variance due to the strip 1 and the
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upper half of the middle strip is «?+ 30,0, +a3 and a? +a,a,
+ a3 respectively in proper units. The difference in the variance is
not alarming especially when one is interested in binaries with
widely different magnitudes of the components. It is well known
that if two independent variables estimate the same quantity then
the best linear combination is the one which weights the two
variables by the reciprocal of their variance. Since the variances
for the strips under consideration are nearly equal we consider
equal weights for simplicity.

The order of magnitude scaling of the signal can be readily
estimated. We note that if the binary separation were zero then
there would be no asymmetry. For small separations the asym-
metry is of the order of the binary separation b along the +45°
line. Now, we have seen before that the double correlation
density is N3k*I*R*/f* To get the signal we must multiply this
by the four volume equivalent of the asymmetry. Taking this to
be of equivalent extension b and g ~f/kl in the x, =y, plane and
of the speckle size f/kR (remember there are two dimensions
normal to this plane) normal to the plane we get the asymmetry
in the double correlation to be N 3k/® R?b/f. Indeed it is shown in
Appendix A that the parity signal from all the three strips is
SB=n"5N§kl3R2ba1a2(a1—oc2). (122)

233 (oy +t5)
The low light level variance is obtained by simply multiplying the
double correlation density and the entire four-volume of the
feature B. It is shown in the Appendix A that the low light level
variance is given by

1
VB=5n2N312R2(a1+a2). (12b)
Thus our estimate for the SNR for parity detection using the
feature B is

SNRB=i_qM”2M (13)

Jn (N i+ A)
where A" =mnl?> Nya/16 is the average photon count per speckle in
an exposure, B=kRb/2f is the binary separation in units of the
diameter p=2f/kR of the PSF in the absence of atmospheric
noise, g is the detector quantum efficiency (optics + detection)
and M is the number of frames of data used. It may appear that
only a fraction b/o of the strips contributes to the signal. This is
not true. For example the signal density along the central strip is
(apart from overall strength) of the form

S(n)ocnexp[—k*1>n?/8f*]

where 7 is the coordinate along the strip. The signal density is
obtained by taking the difference between the double correlation
values at two points +#n away from the —45° line. We see that
the signal comes from all parts of the strip. If it were coming from
some localized region then one could improve SNR by restricting
the weight function to this area and thereby cutting down noise
from regions with no or little signal. Thus the weight function
chosen is near optimum and one can improve SNR only slightly
by fine tuning the weight function but that should not affect the
scaling with b and 4. Further improvement can be achieved by
letting the weight function follow the signal. As one moves away
from the center the photon noise will become more and more
significant so the weight function should taper off to zero as one
moves away instead of remaining constant. It can be shown that

(14)

instead of the step function kind of antisymmetric function if we
had used a linear weight function (which is also antisymmetric)
the SNR would have been \/ n worse as this weight function gives
more importance to regions farther away.

In autocorrelation analysis one is interested in getting the
binary separation and one integrates along all +45° strips.
For the correlation ridges the result stands out relative to its
neighbours.

2.3.3. SNR for parity detection using feature A

We now consider the asymmetry due to the uncorrelated regions
of the double correlation. A representative weight function is
shown in Fig. 4. As mentioned earlier the contribution to asym-
metry is in the third order in the binary separation. A straight-
forward calculation based on formulation given in Appendix A
and for the weight function shown in Fig. 4 gives the parity
contribution for this weight function:

1.5

Sa [N3K*PR*b3/f3]

=3,24.5

N af ooy —oy)+ 5oy oy (o —y)?
(@ +a,)°

(15)

However, the noise calculation is not very straightforward be-
cause in the context of general weight function the term “low
flux” needs qualification. In the Appendix B we show, using
reasonable approximations that the variance for this weight
function is given by

8 3 s 4 3
VA=§NS('/V1+'/V2) +§NS(JV1+JV2) +2NG(N '+ N)
(16)

For this weight function there are two transition regions. The
first one is when the dominant variance comes from the third
order terms instead of the classical fourth order which dominate
for bright sources. This happens around 11™. The second trans-
ition occurs when the total flux is less than unity. The second
order terms take over finally (18™). The SNR for parity detection

Fig. 4. The weight function used to emphasize the feature A
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using the feature A is given by
8 M2

S N

§ /V%J‘/g(ﬂl"=/V2)+%-/V1‘/V2(JV1"JV2)233

SNR, =

(N1 +H3)°
high flux, (17a)
8\/5 q1/2M1/2
_3\/; Ns
y NINFN (= N ) HIN | N (N =N ,)? B
(N 1+ N )3
medium flux, (17b)
16 gqM'2
T3/ NP
AV HN = NN NN = K
(N +A47)*
low flux. (17c)

We now show that although the feature A is a double correlation
it is equivalent to a long exposure image. Let the intensity of the
ith speckle sized pixel (see Appendix B for the physical motiva-
tion of this) be denoted by n;. In the regime the feature A
dominates one can write the double correlation ZW;;<{n;n;>
approximately as TW,;{n;>{#;). We can think of this as equi-
valent to a first order statistics X f;n; where the equivalent weight
function f; is given by ff=XW;;n;. Now if we go to the flux center
of the long exposure binary image then a constant weight func-
tion would give the total flux; a linear function would give zero
(by definition of the flux center); a parabolic weight function
would give the width of the image and thus can tell us the
nonpoint nature of the source; a cubic weight function could give
the parity. Now since W; is inversion antisymmetric f; contains
only odd powers of i in the average sense. So we see that our
weight function is essentially playing the role of an equivalent i*
in the case of first order parity statistics. In fact it is worse than
that. The £, has a fluctuating nature as opposed to the i* which is
deterministic. In Appendix C we derive the SNR for parity
detection using long exposure images.

3. Numerical results and discussion

Since there are two features to the PSFDC one can ask the
following question. For a given brightness of the source what is
the binary separation beyond which the parity is better deter-
mined by the feature A than the feature B. We do this for a binary
with A, =(A",—A",)=%4",. This binary is expected to have
better SNR as almost all SNR expressions have A"y A, (A"
— ;) in the numerator. Equating the two expressions for the
SNR we find this separation to be
B =%q1/4N§/2W}/4. (18)
This formula is valid for 2q.4#"; <1 (as we use low flux SNR for
the feature B) and 3qNs.4"; > 1 (as we use medium flux SNR for
the feature A). When 4", =1 we get B=N{/? i.e. the separation is
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Table 1. Binary separation beyond which the feature A has a
better SNR than the feature B for parity detection

Magnitude 14 15 16 17 18 19
Separation 34 26 21 17 13 10

equal to the seeing disk (this is a rather risky extrapolation of the
Taylored calculations). As 4", decreases the binary separation
for which the two features contribute equally also decreases. For
a 4 m telescope, ¢=0.2 we have given in Table 1 the values of B
(the binary separation in units of speckle diameter p) for various
magnitudes. It is evident from the table that the feature A is of
little importance for binaries close to the diffraction limit.

Having shown the importance of the feature B in high resolu-
tion parity detection we now present SNR for parity detection
using this feature. First of all letting 4", =1.4", we see that for
reasonable observational parameters (10 ms exposure, 10°
frames, 100 A bandwidth, 4 m telescope diameter and detection
efficiency 0.2) a SNR of 3 can be obtained for objects brighter
than 14™ for separations close to the resolution limit. Also note
from Eq. (13) that the SNR for fixed B does not depend on the
telescope diameter. If in any technique individual speckles carry
information then the SNR for such technique has a factor N /2
representing Ng independent elements of information. In the KT
method, however, the small parameter b/o masks this factor. In
Table 2 we present the limiting magnitude of the fainter star for
which parity can be determined using double correlation. This
table also gives the limiting faintness for parity detection using
the speckle masking method (Karbelkar, 1990a). Also the limiting
magnitudes for parity detection using long exposure images, a
result derived in the Appendix C, are given in this table. From the
table we note that for separations close to the diffraction limit the
speckle masking method has the best SNR. As the separation
increases the KT method has better SNR. Finally, the long
exposure image gives better SNR.

We have assumed that the flux center is a given quantity. It is
well known that the flux center for every frame wanders in the
focal plane and significant improvement is possible by aligning
the centers of all the frames. The shift in the centroid is attributed
to the turbulence scales larger than the Fried parameter (espe-
cially scales of the telescope size or larger). Refractive index scales
on such large scales tilt the wavefront as a whole. The effect of
these larger scales can, however, be mimicked by a larger value of
o for the following reason. Consider a short exposure frame. We
can calculate the intensity double correlation for this frame. Now
if we shift the image in the focal plane then the double correlation
will also shift but the shift is along the 45° in the (x,, y,) plane.
This is equivalent to a larger value of . Note that shifts in the
focal plane do not diffuse the correlation ridges normal to their
plane. This, of course, leads to a poorer SNR as the small
parameter b/c becomes smaller. Beletic (1988) in his numerical
simulations finds the TC method to have better SNR than the
KT method for complex sources. This he attributes to the
wandering of the centroid of instantaneous image. As we have
argued this is indeed true. The wandering makes the KT method
poorer but that is not the entire truth. The main reason why the
KT method is poorer for complex sources is the fact that this
method depends on stationarity breakdown crucially and has a
small source size parameter in its SNR.
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Table 2. Limiting magnitude for parity detection using the long exposure (LE) image, the Knox-Thompson (KT) method
and the triple correlation (TC) method. The limiting magnitude m, of the fainter star given as a function of the magnitude m,

of the brighter component

m, Binary separation

1 4 7 10

LE KT TC LE KT TC LE KT TC LE KT TC
13 X 16.2 17.2 16.5 17.7 17.2 18.5 182 17.2 19.5 18.7 17.2
14 X 15.7 17 16.5 17.7 17 19 18.2 17 20 18.7 17
15 X X 16 16.5 17.7 16 19.5 18 16 20 18.7 16
16 X X X X X X 19.7 18 X 20 18.7 X
17 X X X X X X 20 X X 20 X X
18 X X X X X X 20 X X 20 X X
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Appendix A

The focal plane intensity R(x) due to a point source (the PSF) is
related to the pupil plane field ¢(&) by

k ? 2 2
RE=No( 57) |26,

xei(k/f)r(in“{z)(p(él)(p*(éz)e—(ff+€§/2Rz) (A1)
where N, is normalization (see below), k=2n/4,f is the focal
length of the imaging system, exp—([£%+¢2]/2R?) is the
apodization designed to give a Gaussian beam if the pupil plane
input fields were not corrupted by the atmosphere. In that case
o(¢)=1 for a point source at the origin and the PSF R,(x) is
given by

kR \?
Ro(x)=N0<—) e (KPR2x2/12) (A2)
f
The speckle diameter p is defined in terms of the equivalent area
of the PSF

1 2f

_npzzj‘dzxe—(kzkzlefl)’ ie. p=— (A})

4 kR’

The normalization N, is the average photon count in an expos-
ure per unit area due to a zeroth magnitude star i.e.
jdszo(x)=N0nR2 (A4)
gives the total number of photons passing through a telescope
of radius R during one exposure time (bandwidth taken into
account).

We assume that the pupil plane fields (&) are stationary
Gaussian fields with two point correlation function

CO(E,)@*(&y)y=e~Ham M, (A5)

With this pupil plane field statistics the long exposure PSF is
given by

<R(X)>=1—V°—1kg%22—Ri TKHELer?, (A6)

The equivalent diameter of this seeing is

%n02=jd2xe'“z’2x2/l6f2 or a=i—{. (A7)

In this Gaussian model the average number of speckles Ny is

NS=E;=16R—22. (A8)
p )

For example, if the seeing is 1” the decorrelation length I defined
by Eq. (A5) is 20 cm. A general correlation of any order can be
obtained by the well known pairing theorem for Gaussian ran-
dom variables (Reed, 1962). According to this rule the average of
a high order correlation can be written down in terms of the two
point correlation if the underlying distribution is Gaussian. To be
more specific consider N random fields ¢,, ..., ¢y and their
conjugates @¥, ..., @¥. Then form N distinct pairs out of these
2N variables. Take the average of every pair. The average of the
original 2N-product is a sum of such paired products in every
possible way. However, as every path in the Earth’s atmosphere
has a random path length of the order of hundreds of wave-
lengths in speckle interferometry further constraint can be im-
posed on the pairing rule. Every pair must have one ¢ and one
@* as ¢, ¢, has a completely random phase. Using this pairing
theorem we get the PSFDC

k*1*R*
f4

_,_e*(kZRZ/Zfz)(xZ—yZ)C—(kltz/szm(xw)l}

(RE)R()> =15 N3 {e““””w”‘*’”z’

(A9)

The first term is the term A and the second term is the term B.
Now consider a binary with separation b and the relative
strength o; and a, of the components

S(x)=0a,0(x)+0a,6(x—b) (A10)
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where we have chosen the focal plane origin to be the star 1. We
also align the binary along the first axis. The general two point
correlation for the binary contains four PSFDCs:

I(x)1(y))=ai{R(X)R(y)> +a;2,{R(x—b)R(y)>
+a;,0,{R(x)R(y—b)>+a3{R(x—b)R(y—b)).
(Al1)

This correlation is shown in Fig. 2. Now consider the weight
function of the first kind shown in Fig. 3. This has three strips
whose width is equal to the width of the feature B. Consider the
central strip. It contains B features due to the first and the third
basic PSFDC unit. In addition it also covers part of the feature A
due to all the four PSFDCs. The overlap of a A-feature and the
weight function is equivalent to a B-feature. The centers of the
second and the fourth PSFDCs do not lie on the central strip so
the overlap of their A-features and the weight function is not
exactly the same as that for the first and the third feature.
However, as we are dealing with small binary separations we can
take all such overlaps equal. The difference is in the third order in
the binary separation. There are two reasons for this cubic
deviation. One reason is that the maximum strength of an
equivalent B feature falls off quadratically if the center of the A
feature generating it does not lie on the strip. Secondly, the
extension of the effective B feature also falls off quadratically. The
correlations to the leading term are b? times smaller. So the
central strip contains six equivalent B-features. Their strengths
and centers are shown in Fig. 3. This figure also shows the
contents of the other strips. We have shown equivalent B-features
by a prime and the subscript tells us the PSFDC whose A-feature
generated it. It is possible to project the double correlation on the
+45° line by integrating along the —45° direction in the (x,, y,)
plane and along the x, and y, directions as the weight function
does not depend on them.

Let n,=(x,+y,)/2 and &, =(x, —y, )/2. Consider an equi-
valent B-feature whose center is n, away from the jump in the
weight function. Integrating along x,, y, and ¢ we get the signal
and the variance due to one equivalent B-feature:

nl.SN(Z)kISRZﬁ k212 5
S=——F 55— |dmwn)exp| ———(n,—n.)* |, (A12)

2251 8f—2
n1'5N(2)kl3R2ﬂ k212
V=~_—2‘T dn w?(n,)exp —-gf—z(m—nc)"' ., (A13)

where w(n,) is the weight function along the +45° line and f is
the strength of the equivalent B-feature. For the representative
weight function considered here the integral in (A12) is equal to
the area of the central +#_ part of the feature. For small binary
separations this is well approximated by 27, into the projected
correlation density. The contribution to the signal and the vari-
ance due to an equivalent B-feature is
n'SNGKIR? Bw(n)In.|

S= 25 , (A14)

n? i
V=§N512RZB. (A15)
In the expression (A14) the factor w(#,) comes because depending
on which side of the —45° line the center is the contribution is
+ve or —ve. By summing up the contributions of the individual
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effective B-features one get the signal and the noise for this weight
function.

Appendix B: noise on a double correlation

As mentioned in the text the term “low light level” needs quali-
fication in the case of a general weight function. It becomes
necessary to consider the noise in all orders. Consider, then, a
general second order statistics

Z u/;j ﬁiﬁj

where n; is the intensity on the i-th pixel. The noise on this
statistics involves intensity correlations of second, third and
fourth order. In order to avoid the task of dealing with field
correlations of rather high order we use a simpler model of the
PSF. In this model, we consider speckle-sized pixels so that
intensities on the adjacent pixels can be considered independent.
We assume that the intensity of a speckle is distributed according
to the Rayleigh statistics (see Karbelkar, 1990a, for the details of
the model used here). Another simplifying factor is that while
considering the variance one can take a point source as repres-
entative. This is because the variance does not depend on the
binary separation in its leading term. We, therefore, consider a
point source with strength (e; + a,). Let g; be the average photon
count in an exposure due to a zeroth magnitude star. Calculation
of noise on a correlation involves two steps. In the first step one
removes the well-known photon bias from the statistics and then
considers the atmospheric noise on the unbiased estimator. The
problem of photon limited imaging was originally investigated by
Goodman and Belsher (1976, 1977). In the following we use an
algorithm which extends their results for a general weight func-
tion (Karbelkar, 1990b). The classical noise on the general double
correlation is given by

Ve=(a;+ay)* Z Wi W L sttt — it > < ety D 1

ijkl

(BD)

(B2)

For the assumed statistical model for the us the term in the
classical variance can be shown to be [apart from (a; +a,)*]

V4=8Z W:‘j u/ik<#i>2<”j></‘lk>+8z Wi2j<ﬂi>2<#j>2

ijk ij

+8 Y Wy Wl ey > +6 5 WA py*. (B3)
uy

In deriving this equation the symmetric nature of all the W’s

considered in this paper and the fact that two W’s appear was

used. We consider two kinds of weight functions. The first U;

covers the cases of the autocorrelation and the one which stresses

the contribution due to the feature B.

U;;=F;é;;. (B4)

For this weight function only one summation exists. Thus all
terms in the classical fourth order variance are of the order of
Ng A%, It will be shown later that for the weight function of the
first kind the third order and the second order terms are of the
order of Ng#"3 and Ng.#? respectively. Thus for a weight
function of this kind low flux means A4 <1 i.e. objects fainter
than thirteenth magnitude. Now consider the weight function of
the second kind shown in Fig. 4. The discrete analogue of which
is

Wi =signli; +j1] (BS)
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where we have written the vector subscript i in terms of its
components and chosen i, along the binary. The components run
from —N{/?/2 to + N4/?/2. This restriction actually comes from
the fact that all correlations extend only up to the size of the
order of the seeing disk. For this weight function it can be shown
that

Y =2i,Ns.

Jrj2iz

(B6)

Using this result it can be shown that the fourth order contribu-
tion to the variance is (apart from (A} +.47,)%)

8 8
[§N§+12N§+6Ns:|/V“~§N§/V4. (B7)
The third order variance is given by (Karbelkar, 1990b) [apart
from (A" +.47,)%]

V3=4Z W VV:‘k[(ﬂi><”j><.uk>+5ij<ﬂi>2<.uk>

ijk
+5ik<1ui>2<.uj> +6jk<.ui><ﬂj>2+25ijk<”i>3]' (B8)

In deriving this the symmetric nature of all the #’s used in this
paper and the fact that two W’s appear was used. Note that for
the weight function of the first kind all terms are of the form
NgA"3. Coming back to the weight function of the second kind it
can be shown that the third order contribution to the variance is
[apart from (A" +.47,)%]

4 4

§N§+8N§+8NS /V3~§NS3JV3. (B9)
Similarly the second order contribution can be shown to be
[apart from (A", 4+ .A4",)?]

2[NZ+ NN 2~2N2 N2, (B10)

Combining contributions to all orders we get the variance
[Eq. (16)] for this weight function.

Appendix C: parity detection using long exposure image

While discussing the feature A we argued that it is equivalent to a
long exposure image. Although it is not a genuine high resolution
method we derive SNR for parity detection using long exposure
images. We consider the first order statistics

) a,b 3
§ =,~§2["—(m+m] & ©h

where we have used the discrete pixel model used in the
Appendix B. We have centered the cubic weight function on the
flux center. The cubic nature follows because one is interested in
the asymmetry in the long exposure image about the flux center
(which is defined as the location where a linear weight function
gives zero). A straight-forward calculation gives the signal and
the variance

s AN AN =)

Sie=NsB R AEE (€2
LE=%[(‘/V1+‘/V2)2+(-/V1+'/V2)]' (C3)
The SNR is given by
SNRLE=8\/7M1/2§_:JV 1(“‘:;1(1‘/ }:):Vg) high flux,  (C4)
___q1/28\/§M1/zB_3‘/V“/V2(‘/Vf_/V%) low flux. (C5)

Ng (AN + A7)0
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