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Abstract. In a previous paper (Karbelkar, 1990a) the SNR for
detecting the parity of a binary star using the triple correlation
was worked out on the basis of an idealized model of a speckle
pattern. The calculations presented in this paper are based on a
better description of the atmospheric noise and justify these
approximations. The important issue of the relative merit of
different bispectral regions is discussed in the specific context of
binary star parity detection.
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1. Introduction

It is well-known that the atmospheric turbulence limits the
resolution of the long exposure images formed using ground-
based large telescopes (for a recent review see Roddier, 1988).
Random refractive index inhomogeneities, associated with the
turbulent atmosphere, give rise to complex modulation of the
stellar light as it passes through the atmosphere. As a conse-
quence the point spread function (PSF) contains many bright
spots — the so called speckles. These speckles have nearly diffrac-
tion limited size and they are spread over a (much wider) seeing
disk about 1”. As the atmospheric conditions change with time
(typical timescale 10 ms) the speckle pattern changes and on long
exposure one records only the envelop seeing disk for a point
source. Although the speckle pattern is quite random two nearby
point sources will produce similar images as the light from these
sources encounters almost the same turbulent regions. This so
called isoplanatic patch is about 10” in the optical.

The correlations in the speckle images of a complex source
(smaller than the isoplanatic patch) form the basis of speckle
interferometry, a ground based high resolution technique.
Labeyrie (1970) proposed and Gezari et al. (1972) demonstrated
the use of the power spectrum of the speckle image in measuring
stellar diameter. The power spectrum, however, does not yield
the phases of the object distribution. Measuring these phases is
important if unambiguous object reconstructions are needed.
Two promising phase reconstruction schemes exist. Knox and
Thompson (1974) proposed the use of a second order correlation
which gives the gradients of the object distribution. Nisenson and
Papliolios (1983) were the first to investigate the effect of
photon noise on image reconstruction using Knox-Thompson
algorithm. Ayers et al. (1988) have considered the full four

dimensional extension of the technique with a better description
of the photonic and the atmospheric noise. The difference arising
from the nature of the source has been pointed out recently
(Karbelkar, 1990c) in the context of the Knox-Thompson
algorithm itself (i.e. for the double correlation Knox-Thompson
method).

Weigelt (1977) proposed a triple correlation (TC), the bispec-
trum, method of phase reconstruction. This method has been
discussed in detail by Lohman et al. (1983). One of the interesting
features of the bispectrum is that it contains as a subset the kind
of correlations used in the Knox-Thompson method as well as
genuine triple correlation. In this method the bispectrum forms
an intermediate step; the object phases are obtained from the
bispectrum values. A first realistic attempt to theoretically assess
the potential of this method was made by Wirnitzer (1985).
However, using an idealized approximation for the speckle pat-
tern Karbelkar and Nityananda (1987) pointed out that the
previous result overestimates the SNR in the high flux limit.
Ayers et al. (1988), Hoffmann (1988), Karbelkar (1988) and
Nakajima (1988) have pointed out that the previous results
overestimate the SNR for low light levels as well. In their detailed
analysis of the SNR properties of the bispectrum method Ayers
et al. (1988) and Nakajima (1988) study the relative merits of
different regions of the bispectrum for a point source. Karbelkar
(1990a) has considered the specific case of parity detection (i.e.
quadrant ambiguity removal) using the triple correlation
method. In this analysis a simple model for the speckle pattern
was used to reduce the complexity of calculating field-corre-
lations of very high order. In addition the Knox-Thompson
aspect of TC was neglected. These simplifications allowed a
rather complete analysis of the noise properties of the technique
valid at all light levels. In this paper we justify these approxima-
tion on the basis of a better description of the image correlations.
In particular we show that, for binary separations close to the
diffraction limit of the telescope, the genuine triple correlation
aspect of the technique has a better SNR ratio than that for the
near-axes Knox-Thompson aspect. This result appears to contra-
dict the results by Ayers et al. (1988) and Nakajima (1988) who
demonstrate, both analytically as well as numerically, that the
near axes region in the triple correlation has a better SNR. The
explanation lies in the fact that these authors consider only a
point source while the present paper deals with a binary.

This paper is organised as follows. We work with the focal
plane correlations instead of correlations in the spatial frequency
domain. We first calculate the general triple correlation (as used
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in speckle masking) for a point source. This is inversion sym-
metric about its center. We then calculate the triple correlation
for a binary and show that the genuine triple correlation aspect is
not a strong function of the binary separation but the SNR for
Knox-Thompson subset of the TC depends linearly on the binary
separation. This dependence makes the Knox-Thompson regions
less important for complex sources with structure on the scale of
the diffraction limit of the telescope. This result parallels the
similar result for the KT (double correlation) proper mentioned
above and strengthens the relation of the near axes region of the
TC with the KT algorithm.

At low light levels it is necessary to consider the effect of
photon noise. Goodman and Belsher (1976, 1977) were the first to
consider the photon limited images and their restoration.
Applying their method Wirnitzer (1985) has derived the unbiased
estimator for the bispectrum. The variance on this estimator was
derived by Ayers et al. (1988) and Nakajima (1988). In this paper
we use a triple correlation which weights different parts of the
triple correlation differently. An algorithm (Karbelkar, 1990b)
which generalizes the approach of Goodman and Belsher (1967,
1977) has been used.

2. The triple correlation for a binary

In this paper we model atmospheric noise by using single scale
Gaussian statistics for the pupil plane fields due to a point source.
In reality, multiscale turbulence is known to result in randomly
wandering centroid of a speckle image. This is attributed to large
scale refractive index inhomogeneities which contribute to the
overall tilt of the pupil plane wavefront. The effect of centroid
shift has been considered by Ayers et al. (1988) and Beletic (1988)
in their comparative study of the KT and the TC analysis. Beletic,
in his numerical simulations, finds the TC to have better SNR for
complex sources. He attributes the shortcomings of the KT
method to the drifting nature of the centroid. A recent focal plane
analysis by the author (Karbelkar, 1990c) brings out another
reason why the KT method should perform poorer for complex
sources. Here we briefly summarize the argument. Different
speckles due to a point source can be considered to have un-
correlated intensities. In a speckle pattern for a binary every pixel
receives two speckles: each one due to both stars. The intensity of
these speckles are uncorrelated. However, two pixels separated
by the binary separation will have a pair of speckles with the
same relative intensity as the binary. Any information about the
binary must come from this correlated pair of speckles (otherwise
one can be happy with the long exposure image). Now, for the
KT method to work finite size of the seeing disk is a must. If the
telescope diameter were infinite in comparison with the Fried
parameter then the speckle pattern would become stationary
(statistically invariant under shifts) in the focal plane. As is well-
known, the only nonvanishing double correlation for a station-
ary process is its power spectrum which does not contain any
phase information. The statistics of the speckles change on the
scales of the seeing disk and this change must be felt by the
correlated pairs of speckles separated by the binary separations.
Therefore, we expect a small factor b/c in the SNR expression for
this method. We note that for separations close to the diffraction
limit this small parameter is Ng /2. This dependence makes the
KT method poorer for complex sources. We note that the TC
technique, on the other hand, does not demand any such restric-
tion on the values of the spatial frequencies. A process may be

stationary and yet have nonvanishing triple correlation. How-
ever, it remains to be seen whether the TC method also has any
dependence on the binary separation. In this section we answer
this question.

2.1. The PSFTC

The triple correlation, as used in the speckle masking method, for
a point source

To(Y, Z)=fd2X<R(X)R(X+ Y)R(X +2)). Q)

is defined on the four dimensional space (Y, Y,, Z,, Z,). Here
R(X) is the point spread function (PSF). We emphasize that in
this paper we are dealing with focal plane triple correlation. As
the name suggests it correlates intensity at three points. We have
shown this PSFTC schematically in Fig. 1. In the (Y;, Z,) plane
((Y,, Z,) is similar) there are five features of this triple correla-
tion. The feature A is a plateau region with extension of the order
of the seeing disk. Then there are three ridges B, C and D with
width of the order of speckle size and extension of the order of the
seeing disk. In the full four dimensions these are actually planar
layers (for example the feature B is the plane Y'=Z). The layered
nature comes about because the equalities are not exact but allow
for a tolerance of the order of the speckle size. The feature E is
located at the center of the four-space and has a size of the order
of the speckle size. In our Gaussian model all these features have
Gaussian fall-offs with above mentioned length scales. At the
origin of the four space the feature E is twice as strong as other
features (which have equal strengths at the origin). The strength
at the origin can be readily estimated. With our normalization
nNoR? is the total photon count per exposure for a zeroth
magnitude star. This flux is spread all over the seeing disk of size
o~f/kl where [ is related to the Fried parameter. Thus the
average focal plane intensity density is ( R> = NoR?k?I%/ f2. For
far away points in the seeing disk the three intensities entering the
triple correlation will have statistically independent fluctuations
so the scaling estimate for the triple correlation density for a
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Fig. 1. The triple correlation for a point source shown schematically. It
consists of the genuine triple correlation feature E, three correlation
ridges B, C and D which are Knox-Thompson kind of regions of the triple
correlation and the uncorrelated feature A
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typical triple correlation element within a seeing size is
Nok?I?R?\3 N3k*I*R®

7 ) A
This is precisely the term A arising from uncorrelated fluctu-
ations in the three PSFs involved in the triple correlation. The
ridges B, C and D appear because in this region of the triple
correlation two (and only two) of the three points involved in the
triple correlation are within a speckle size and thus have corre-
lated intensity fluctuations. Thus in addition to the all pervading
feature there is enhancement of the triple correlation. Finally the
term E with weight two comes about because all the three points
involved in triple correlation are within a speckle size. Note that
the number of terms (counting E twice) is a reflection of the
asymptotic Rayleigh distribution assumed in the Appendix B. In
those regions where some of these terms are equal (even though
they might have fallen off considerably from their peak values
at the center) we see that for general element only one term,
for ridges two terms, and near centre all six terms contribute.
This is indicative of the Rayleigh asymptotic {u)>=<{pu); {u?>
=2{u>?%;{ud>=6{ud3 where u is a Rayleigh variable with
mean {p).

We note that of the three correlation ridge features B, C and
D only one contains statistically independent information as the
others are just two different ways of writing the same event. This
is true in all realizations of atmospheric and photonic noise.

Let us call all the features (A, B, C, D, 2E) collectively a unit
of triple correlation (short for triple correlation transfer function).
For a binary the intensity I(X) is given by

Jd2X<R>3~(f/kl)2< 2)

H(X)=0;R(X)+a,R(X —b), 3)

where b is the binary separation, «, and «, represent the relative
strengths of the component stars. We align the focal plane axes
such that the binary is along the first axis with subscript 1. The
triple correlation Tj for the binary can be written in terms of the
same Ty for the zeroth magnitude point source

Tu(Y, Z)=(ad+a)Tx(Y, Z)+o2a,[ Tx(Y, Z—b)
+To(Y—=b, Z)+ Tx(Y+b, Z+b)]
+a,a2[Tx(Y, Z+Db)
+ Ti(Y+b, Z)+ T(Y—b, Z—Db)]. 4)

It contains seven basic units with strengths and locations shown
in Fig. 2. Note that this is just a convolution of the basic triple
correlation unit (Fig. 1) and the triple correlation for the binary
in the absence of atmospheric noise. Since the strengths of
different units are asymmetric the triple correlation is also asym-
metric and one has to extract the asymmetry in the best possible
way. This leads to the interesting question of finding those
regions of the four space which give better SNR for parity.
Perhaps a more interesting question is to ask what is the relative
importance of various features of the basic unit in determining
parity. In Karbelkar (1990a) all the emphasis was on the feature
E, i.e. the central region in the triple correlation transfer function.
Since various features have negligible overlap volumewise, a
superposition approximation for the signal and noise (of course
separately) holds in that once we know what effect each kind of
feature has one can figure out what weight function to use to get
better SNR. So we consider the following three cases: (a) SNR
due to the central feature alone [this was considered before
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Fig. 2. a Triple correlation for a binary. It consists of seven PSFTCs.
The ridges are shown slightly displaced for clarity. b The strengths of the
seven PSFTCs forming the TC for the binary

(Karbelkar, 1990a) in detail], (b) the SNR due to the correlation
ridges B, C and D, (c) the SNR due to the plateau feature A (long
exposure case!).

At this stage it is possible to anticipate the separation depend-
ence of the SNR for the parity detection using various features.
Consider only the E-features. These are located at seven places in
the triple correlation. Now, once the binary separation is slightly
greater than a speckle size the asymmetry due to these features
will be independent of the binary separation. As the binary
separation increases, however, the noise due to the other features,
which overlap with them, will decrease. The length scale for this
change is of the order of the seeing disk and can be neglected (as
one is interested in closer binaries). On the other hand, for other
features one expects strong dependence on the separation.
Consider the correlation ridges for example. As one is always
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interested in separations much smaller than the extension of
these features the signal will be proportional to the separation
(the proportionality need not be linear as we shall see). This is for
the following reason. We are interested in the asymmetry about
the center of the triple correlation which coincides with the
seventh PSFTC. The seventh PSFTC, therefore, does not con-
tribute to any asymmetry (even if it were not on the center it
won’t because it is symmetric in the strength of the binary
components). The other PSFTCs are away from the center and
contribute to the asymmetry. However, the contribution is much
less than their own strength because the part on one side of the
center balances a large part on the other side. Only the E-features
(due to the first six PSFTCs) are to the single side of the center of
the binary triple correlation.

2.2. Parity detection due to the feature E

In the triple correlation for the binary the E-feature appears at
seven places. The central one has a strength which is symmetric
in the fluxes of the component stars and thus does not contain
any parity information. As a consequence of the definition of the
triple correlation only two of the remaining six E-features con-
tain independent information. We choose the E-features of the
first and the fourth PSFT to obtain an antisymmetric parity
statistic. So our weight function of the first kind is shown in
Fig. 3. It has two ports where it takes nonzero values and these
ports have four volume equal to the feature. Note that though the
weight function is mainly designed to pick up contribution due to
the feature it also gets contribution from others. We label the
seven PSFTCs as shown in Fig.3. We can then denote the
contribution of a specific feature due to a specific unit: for
example, D; means the D-feature of the third unit which passes
through the port 2. The overlap of any of the features A — D with
the weight function results in an equivalent E-feature because the
weight function has the four volume equal to the feature E. This
is true as long as the binary separation is much smaller than the
seeing. Otherwise, the other features would have fallen off con-
siderably at the location of the two ports and the overlap would
be weaker than the E-features located at the ports.

The parity statistic is of the form

J‘dz Yd2ZW(Y, Z)Ty(Y, Z). (52)
The low light level variance is given by
2 J d2Yd2ZW(Y, Z)2Ty(Y, Z). (5b)

This result follows from the general results on Poisson fluctu-
ations. An application of the diagramatic rule (Karbelkar, 1990b)
for the variance yields a total of 33 terms for the averaged
squared modulus of a general triple correlation. These include a
sixth order term, nine fifth order terms, eighteen fourth order
terms and six third order terms. Because of the symmetry of the
weight function and the triple correlation the six lowest order
terms can be paired. This explains the factor two in the above
expression. For a general weight function there are two more
terms in this lowest order in intensities. If we had made no use of
the fact that only two of the peripheral six E-features are inde-
pendent and blindly used all the six asymmetric features then
these other two terms in the variance expression mentioned
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Fig. 3. The weight function used to emphasize the feature E

above would have made sure that the variance is nine times as
large thus leaving SNR unaffected (see Appendix A). To get the
signal we weight the port 1 by + 1 and the port 2 by —1 and add.
We must also multiply by the four volume of the ports and the
triple correlation density. Thus the parity signal due to the
E-feature is

Se~20a 0y (ot — o) (f/kD* (NK*I*R*/ f*)
=2a,0,(0, —0)N3R?I*
~2N YN (N — AN ,)Ns, 6)

where A" =(aN,I?/16) is the photon count per speckle in an
exposure and Ny is the average number of speckles. The low light
level variance is

N3K*I*R*
f4
~4Qa3+Ta?o,+To a3 +203)NJI2R2. 7

Ve~2(da3+ 14020, + 140,03 +4a3)(f/kR)*

The approximation is in using order of scaling estimates for the
four volume of the E-feature and the triple correlation density.
Thus the SNR for parity detection using the E-feature alone is

SNRg= 4_ q¥*M2N2
3\/1t

x JVI‘/VZ(‘/VI_‘/VZ)
RN 3+TNEIN TN N I+2 4 3]V

®

The scaling is the same as that given in Karbelkar (1990a). The
numerical coefficient is provided by the Appendix A which evalu-
ates quantities of interest exactly. As the binary separation in-
creases we can see that the contribution to the noise from the
feature remains constant but that due to all other terms falls off.
The fall-off scale is, however, comparable to the seeing. We,
therefore, conclude that SNR due to the feature is weakly de-
pendent on the binary separation.

2.3. SNR for parity detection due to correlation ridges

Figure 2 shows regions of the (Y}, Z,) plane where correlation
ridges exist. For clarity the ridges are shown slightly displaced, in
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reality ridges like D, and D, for example, coincide in the region
common to both. We see nine strips in this plane where correla-
tion ridges from two or three triple correlation units overlap.
Because of the symmetry of the triple correlation only two (to be
precise 1.5) of these nine strips contain independent information.
To see this, consider a strip with equation Z = Y+ C,. Then from
the definition of the triple correlation the same strip appears at
Z=Cyand at Y=C:

jdeI(X)I(X+ Y)I(X+Z)=Jd2XI(X— Y)I(X)I[(X +C,)

©

i.e. if the coordinates on the first strip are (¥, Z= Y + C,) then the
same event is also written at (— Y, Z=C,). Figure 2 shows three
strips Sy, S, and S and their two copies each (denoted with a
single and double primes). Note that the strips S,, S, and S; have
the same orientation as the B feature. In fact, for the PSFTC
shown in Fig. 1 only one of the features B, C and D contains
independent information. Further reduction in the number of
ridges is due to the symmetry of the triple correlation under the
interchange of Y and Z. Because of this symmetry the strips 1 and
3 are identical for every realization. In the following we have used
all the three strips instead of using any one of the strips 1 and 3
and half of the second strip split lengthwise. Similar situation
arose in the case of the double correlation analysis (Karbelkar,
1990c) where it was shown that both these schemes give the same
SNR. In the present context also it can be shown that these
schemes give the same SNR. Although the weight function is
designed to emphasise B type feature it will also pick up contribu-
tion from the feature A. The weight function will also pick up
contribution due to the feature E. For the reasons given later in
Sect. 2.5 we need not consider it here. In Fig. 4a we show strips 1,
and 2 in greater details. The centers and the strengths of these
features are shown in the figure. We are interested in the leading
contribution in powers of binary separation b. Consider the strip
1 for example. The unit 1 contributes to this strip via the A-
feature. Now since the binary separation is assumed small one

489

can think of the contribution due to the A feature on the strip to
have effective center shown in the figure. In fact this is the center
of the overlap between the feature and the strip. The overlap is
equivalent to a feature B. In Fig. 4a the centers of such effective
features are shown by smaller dots and these are linked to the
centers of the original features by dotted lines. In Fig. 4b we see
the centers and the strengths of such effective B features. We are
interested in the asymmetry in these three strips. Because of the Y
and Z symmetry of the triple correlation the lower half of the
strip 1 is equivalent to the lower half of the strip 3 and so on.
Thus asymmetry about the origin is equivalent to asymmetry of
the individual strips about the —45° line passing through the
center. Figure 4c shows the effect of the special weight function
W (n) which is situated at a distance x away from the center of the
effective feature B(n). Only the contribution from the central
region between + x survives. So for a weight function of this kind
contribution depends linearly on the distance of the jump in the
weight function from the center of the feature under considera-
tion. It turns out that strips 1 and 3, which are identical have their
centers shifted from the —45° line in the sense opposite to that of
the middle strip which has its center shifted twice as much. This
motivates our weight function shown in Fig. 5. The asymmetry in
the triple correlation can be readily estimated when we note that
the shift in the centers of the strips are of the order of b. We get
the signal due to all the strips

n2N5IPR*b
SB’——i
J32°f

2
= NPPN N (N =N 3)B.

\/37.[1.5

Here B=kRb/f is the binary separation in units of speckle
diameter.

For this weight function the variance calculation needs to be
done to all orders to decide the low and high flux regimes. This is
done in Appendix B using a simple PSF model described there.

oy o0ty —0tp)

. (10)

N 2 3 3 2
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Fig. 4. a The weight function used to emphasize the correlation ridges. b The locations and the strengths of the equivalent B-features. ¢ An effective
B-feature B(n) with center a distance x away from the jump in the weight function w(#)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1990A%26A...238..485K&amp;db_key=AST

rTI99DARA ~ 72387 485K

490

Fig. 5. The weight function used to emphasize the feature A

The result is

Va=24q5( N+ N ;) N2 +4q5(N |+ N ,) N3

+§q4(JV1+JV2)4Nss+4‘13(JV1+-/V2)3N§' (1
We see that the transition to low flux goes through two steps. The
first transition occurs for objects fainter than 13™. The fourth
order contribution takes over from the sixth order contribution
which dominates at high light levels. The second transition
occurs for objects fainter than 20™. The third order contribution
dominates for lower light levels. The first occurs when a speckle
receives less than one photon in an exposure (13th magnitude)
and the second when all speckles together receive less than one
photon per exposure (20th magnitude). The SNR for parity
detection using these correlation ridges is

V2 i VAN = A

SNRy= B high flux 12a
B 3n1.5 (M1+W2)3 g ( )
2 N AN (N | =N
= qM”Z’—Z(—lZ—Z)B medium flux  (12b)
nt (N1 +H3)

__ q3/2N§/2M1/2—JV1JV2(JV1 —3{2) B low flux.

J3nts (N1 + A7)
(12c)

We note that for the objects of present day interest (brighter than
20th magnitude) and for close binaries the SNR due to the
correlation ridges is never better than the SNR due to the main
triple correlation feature E.

2.4. SNR for parity detection using the feature A

For +45° strips (parallel to the B-feature) other than the correla-
tion ridges the asymmetry starts in the cubic order in the binary
separation. If we approximate the near center strength of an
effective B-feature by its peak value then for a general +45° strip
contributions due to various triple correlation units cancel in the
first order in b. One has to retain the quadratic near peak
variation to get any asymmetry. Other reason for cubic asym-
metry is that when the binary separation is large the extensions
and the strengths of the features B and B’ (overlap of a feature A

and a 45° strip) differ in the second order in the separation. In
Fig. 5 we show a representative weight function of the third kind
designed to emphasise the asymmetry due to the feature A.
A straightforward calculation gives the signal for this weight
function

n2.5 k3 13 R6 b3

Njoy oy (o —aty)

SA=31.525.5 13

(13)
The variance, in principle, needs to be evaluated up to all orders.
However, contribution to the variance is positive in every order
so even if we consider only the third order contribution to the
variance:

Vas=15n2N3(a; +a,)3RS (14)
one gets an upper bound

16g3 2 M 2N\ N (N =N
SNR, < q 1 A (Ny 2) 3 (15)

NN +A4,)?

on SNR. We note that even this upper bound is no match to the
SNR due to the E feature for small binary separations. It is well-
known that for large separations parity is better determined by
using long exposure image. We, therefore, conclude that
although for large binary separations the parity may be better
determined by the A-feature it cannot be regarded as a genuine
high resolution feature. Numerical results in this paper assume 1”
seeing, 10 ms exposure time, 4 m telescope and 100 A bandwidth.

3. Discussion

Superposition approximation: So far we considered SNR for
individual features like the central E-feature, the ridges and the
feature A. We mentioned that a kind of superposition approx-
imation enables one to consider these features independently.
The reason is the great difference in the four volumes of various
features. To be specific, if we take the four volume of the E-feature
as unity then the four volumes of the ridges and the A feature are
Ng and NZ respectively. Now let us go back to SNR due to the
feature E. The weight function used in this case had four volume
equal to that of the feature. The parity signal is purely due to the
E-feature and the noise comes from other features. For this
reason one is justified in attributing the parity signal to the
feature. Next, consider the weight function of the second kind
used to emphasize the feature B. In this case the signal not only
comes from the B-feature but also from the feature E. There are
two reasons why we did not consider the contribution due to this
feature in Sect. 2.4. The first reason is that its contribution is
negligible when compared to that of the feature B. To see this
consider the signal first. For concreteness we consider very low
fluxes where signal and variance are proportional to the four
volume involved. The contribution to the signal due to the E-
feature is proportional to its four volume. The feature B has N
times larger volume and although it suffers from “edge” effects
(due to extension larger than the binary separation) which, as
described in Sect. 2.4, subdue its contribution by a factor N$/2 its
signal is still N}/? times larger than that due to the E-feature.
Unfortunately, the variance does not suffer from any “edge”
effects and is larger by a factor Ny. In this case of very low fluxes
(fainter than 20™) the two features will have comparable SNR for
close binaries. For flux levels of interest in speckle interferometry
(between 13™ and 20™) the SNR due to the E-feature is larger.
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Even in this case one can arrive at the superposition approxima-
tion by redefining the weight function so that it excludes all E-
features. For example, we may leave holes in the weight function
at the locations of the E-features. This won’t affect the previous
estimates because the size of such holes is very much smaller than
the volume of the entire weight function. For similar reasons one
can omit the features B and E while considering parity due to the
feature A.

Fine tuning the weight function: In this paper we considered a
rather simple weight function. The weight function was either — 1
or + 1. It is certainly possible to improve the SNR by a smoother
variation of the weight function. Intuitively, we would expect the
optimum weight function to follow the signal. The weight func-
tion should be large where more signal comes from. However, we
also know that within the fall off scales the signal is more or less
uniform. Therefore, we do not expect a fine tuning of the weight
function to change the scalings with A4, Ng and B although
numerical coefficient may change a bit.

Effect of the Kolmogorov spectrum for the atmospheric in-
homogeneities: The effect of the larger scales (comparable to or
larger than the telescope pupil) in the turbulence is to tilt the
entire wavefront. The speckle pattern will have its instantaneous
centroid wandering. However, unlike the double correlation
method the triple correlation does not share this focal plane
motion of the speckle pattern. This is because the triple correla-
tion defined in Eq. (5) is invariant under shifts in the focal plane.

Acknowledgement. It is a pleasure to thank Rajaram Nityananda
for many useful discussions.

Appendix A: SNR calculations

Here we give the details of the SNR calculations described
qualitatively in the text. We are not concerned with correlation
effects due to secondary Airy rings in a real telescope so we use
Gaussian apodization in the pupil plane. The focal plane field
V(X)) is related to the pupil plane field ¢(&) by

W(X)=N}?

2mif T [izifXZU e XD p(£)e” (R,
R(X)=y(X)y*(X).

The PSF triple correlation is given by

(A1)

(RIX)RIX+Y)R(X+Z))=C(R(X))>{R(X+Y)){R(X+2Z))
HCRXDIWY (X + VY *(X +2)))?
HRX+YDIKY(X)Y XX+ 1))
HRX+ZDIYXW XX+ 1))

F22Y XWX+ Y W(X+YWH(X+2Z))
X Y(X+Z)Y*(X)). (A2)

In deriving this the assumed Gaussian statistics for the pupil
plane fields was used. The terms in this expression are the five
features A, B, C, and D (twice in that order) explicitly show their
statistical origin. We have modeled the atmospheric distortions
by a single scale Gaussian correlation function

Co(0)p*(&))=exp[—4£2/]

491
WX )*(X + Y)>—N°k212R2
167
x @ T(WRII4TDe “(RR/64 AN for Ry, (A3)

For the pupil plane fields, which are assumed to be Gaussian
random fields, higher order correlations have been broken down
in terms of second erder correlations with the help of the well
known pairing theorem for Gaussian random variables (Reed,
1962). Since the random pathlength deviation for an individual
ray is believed to be hundreds of wavelengths, in the pairing
theorem every pair must have one field and one conjugate field
(one starred and one without). In principle, pairs like ¥/, ¥, exists
but are exponentially small. Thus for the assumed statistics of the
fields we get the average PSF triple correlation

T (Y, Z)=Jd2X<R(X)R(X+ Y)R(X+2Z))

31,474 R6

_Nok IR {e—(k212/24f2)(Y2+22—YZ)
328f4

4 (RR2S2)(Y=Z)2 o~ (K212/96 f2)(Y +2)?

4 (K2R?[212)22 o~ (k212/96 2)(4Y2+22 - 4Y2Z)

+e~UER2/212)Y2 o~ (K212[96 f2) (422 +y2 - 4YZ)

+2e-(sz2/2f2)(Y2+Z2-YZ)e—(k211/96f2)(Y2+Zz—YZ)} (A4)

We see that the triple correlation for the binary is made of seven
PSFTCs whose strengths and locations are shown in Fig. 2. The
variance on the parity statistics can be represented by a dia-
gramatic rule (Karbelkar, 1990b). The exact evaluation of all the
orders is a tedious task and also unnecessary in many cases. We
have considered three weight functions which emphasize three
kinds of features in the triple correlation. The weight function of
the first kind emphasizes the E-feature which is the true triple
correlation feature. For this weight function we have already
worked out the variance in detail up to all orders. This calcu-
lation (Karbelkar, 1990a), although based on a simple model of
PSF, tells us that below 13th magnitude the dominant variance is
in the third order in the intensity. Thus we restrict ourselves to
the third order intensity calculations for feature E. The weight
function of the second kind, which emphasizes all the correlation
ridges, needs variance calculations up to all orders and this we do
using a simpler PSF model. The weight function of the third kind
emphasize the plateau region and we only set upper bounds on
its SNR. The result of these approximate calculations for the
weight functions of the second and the third kind shows that their
SNR is poorer than that due to the main feature (E) for binaries
near the diffraction limit of the telescope. For this reason it is not
necessary to calculate the variance for these weight functions on
the basis of detailed field calculations. So in what follows we
calculate the signal for all the weight functions on the basis of
detailed field calculations which take into account the edge
effects. Also for the weight function of the first kind we calculate
the variance as well but only in the lowest third order in the
intensity.

A.1. SNR for parity detection due to the feature E

The feature E appears at seven places with strength and the
locations shown in Fig. 2. As mentioned before, out of the six
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asymmetric elements it is enough to consider any two, as the
others do not contain any independent information. This follows
from the definition of the triple correlation. If one had chosen all
the six elements then the signal will be larger by a factor 3 while
the variance will be larger by a factor 9 thus giving the same
SNR. This is because the three third order terms in the variance

Zsz Yd2ZTR(Y, Z)W(Y, Z)[W(Y, Z)+ W(-Y, Z-7Y)

+W(=2, Y-2)] (AS)

contribute equally and each one of them contributes three times
what they would if only two elements were used. In general if the
weight function is so chosen that there is no replication of the
elements in the statistical sense then only one of the three terms
survives. This is the case for our choice of weight functions of the
first and the second kind. We choose the weight function of the
first kind shown in Fig. 3 so that it emphasizes the feature E, in
particular it has the same four-volume as the feature but is unity
within this volume. This weight function is chosen to be antisym-
metric so that one get a antisymmetric parity statistics. Though
this weight function is designed to emphasize the feature E it will
get contributions from other features as well. For example the all
pervading A feature due to all the PSF units will contribute. We
see that the signal is just the total contribution at the port 1
minus the total contribution at the port 2 while the variance is
the total contribution at both the ports (there is a factor 2). One
must multiply by the volume of the weight function and the triple
correlation density. This gives us the SNR [Eq. (7)] for the weight
function of the first kind.

A.2. SNR for parity detection due to the correlation ridges

As described in the text of the nine ridges containing correlation
ridges only three are independent. So our choice for the weight
function of the second kind is shown in Fig. 4a. As the strips 1
and 3 are statistically equivalent in the average sense we can
consider every strip individually. As mentioned in the text we are
interested in the asymmetry in centers of these strips with respect
to the —45° line passing through the flux center. When a feature
like A is multiplied by the weight function we get an equivalent
correlation ridge feature. Consider an equivalent feature B(Y, Z)
situated at the origin with the triple correlation density:

N3k*I*RS
328f4

- (kZRz/ZfZ)(Y—Z)ze —(k212/96 f2)(Y +Z)2

B(Y, Z)= (A6)

It is convenient to transform to coordinates £=1/2(Y—Z) and
n=1/2 (Y+Z) then

N3K4I*RS
328f4

e~ (ZK2R2/£2) 82 — (k212/24 £ 2)n2

B(n, &)= (A7)

where a constant Jacobian of the transformation is not relevant
as SNR cannot depend on a overall constant. The four-volume of
the B feature is

fdzndzéB(n, E)=2"5n2N3IPR* (A8)

One can integrate the B-feature density along ¢, ¢, and 7,

direction to get the projected line density F(#n) of a B-feature:
n!SN3kIPR*
\/3 275

For a B-feature with center #, away from the jump in the weight
function and strength y the contribution to parity is given by

F(n)= e pIe s, (A9)

nSN3kPR*
\/327.5

The effect of the weight function is a yield equal to the central
+1n, part of the feature as the remaining two sides cancel each
other. In Fig. 4b we show the features contained in all the strips
and their distance from the jump. Summing up all contributions
we thus get the contribution to the signal given by Eq. (10). The
third order variance is obtained by using Eq. (A8) which gives
variance due to one B-feature. This variance, however, is
not relevant for objects brighter than 20th magnitude and
Appendix B gives the variance for this weight function in all
orders based on the approximate PSF model.

y2n.w(n.) (A10)

Appendix B: variance for the weight function of the second kind

In this appendix we use a simpler model (following Karbelkar,
1990a) of the PSF-. First of all we consider a uniform seeing disk.
Within this we consider speckle-sized pixels and assume that the
intensities y; at the i-th pixel are statistically independent
Rayleigh (exponential) variables. In this notation discretised
version of the weight function of the second kind shown in Fig. 4a
for the central strip alone is
Win=Wiirayi+ey=Fadsc F,=sign[a,] (B1)
where the vector subscript represents the position of the i-th pixel
which is of the speckle size. First we consider the classical sixth
order variance. As mentioned in the text we let the binary shrink
to a point and using the specific form (B1) of the weight function
to get the classical variance

(g +03)® z Fj—in—n[<ﬂi#,g#k#12>—<l4il4,g><llkll12>]

ijkl

(B2)

Following Karbelkar (1990a) we assume that the intensities of the
speckles are distributed according to the exponential Rayleigh
statistics.
CUiu7>=A"*"nlm!d,;. (B3)
The total number of pixels within the seeing disk is Ng. The
indices i etc. are two dimensional. Their components i, and i, etc.
run from —1/2N$/2 to +1/2 N}/2. This range actually comes
from correlations which are nonzero only within a region of the
order of the seeing disk. Thus it follows that

F, _; =—2i,, (B4)
- J1 1
J1

1
ZFj_iFk_i=§N§.

ijk

(BS)
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This gives us the sixth order variance for the weight function of
the second kind

8
3 NEq® (N1 + N ) +ANZGH(N  + A5)°

8 36 6
~SNS‘I (N +A72)°. (B6)
The nine fifth order terms in the variance for a general third order
correlation reduce to

(o +°‘2)5 z <#i”jﬂk”l:um>Mjk[u/;'lm+4u/;im+4lem] (B7)

ijklm
when the symmetry W, =W, of the weight function is used.

This gives the fifth order variance
4NG+3INDP(N |+ N ) ~ANZG (N +A45) . (B8)

The nineteen fourth order terms in the variance, similarly, reduce
to

2(ay +a,)* Z ity Wi [2 Wi+ AWy + 2 Wi+ Wi .

ijkl

(B9)
This gives the fourth order variance
4
(3N§+84N§+3O4N5>q4(JV1+./V2)4
4
~§Ns3q4(/V1 +A45)*. (B10)

The third order contribution contains six terms which reduce to

2(ay +0p)? Z i) Wog L Wi+ Wi+ Was 1 (B11)
ijk

We get the third order contribution

(ANZ242N)G (N 1+ N 3)3~ANEGP (N + AN 5). (B12)

Since Ng is much larger than unity one need to retain only the
leading terms in the every order in g. We have considered only
one strip so we must multiply by 3 to get the variance due to all
the strips. This gives us the variance up to all orders

N3(12q5(N 1+ N 2)° +12¢° (N + 473)° +4gH( N +43)")
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FI2N2@A (N + A4)3. (B13)

We see that there are two transitions. The first is when the fourth
order variance takes over from the classical sixth order contribu-
tion. This happens when individual speckles receive less than one
photon in an exposure. The second transition occurs when the -
third order contribution dominates the fourth order. This
happens when the entire photon count becomes less than unity.
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