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Abstract. We have searched for discrete refractive scattering
events (including effects due to possible non-multiple diffractive
scattering) at meter wavelengths in the direction of two close by
pulsars B0950+08 and B1929+10, where we looked for spectral
signatures associated with the multiple imaging of pulsars due
to scattering in the interstellar medium. We do not find any
signatures of such events in the direction of either source over a
spectral periodicity range of 50 KHz to 5 MHz. Our analysis puts
strong upper limits on the column density contrast associated
with a range of spatial scales of the interstellar electron density
irregularities along these lines of sight.
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ture

1. Introduction

Radio signals, during their passage through the interstellar
medium, are scattered due to the irregularities in the density
of free electrons (Scheuer 1968). Most often, signals from dis-
tant sources undergo strong and multiple scattering. This leads
to many observable effects such as the apparent angular broad-
ening of the source, temporal broadening of the pulse profile,
diffractive and refractive scintillations. The nature of interstel-
lar scattering at this limit and the effect on relevant observables
have been studied in detail by many early workers (Lee & Jokipii
1975; 1976; Blandford & Narayan 1985; Blandford, Narayan
& Romani 1984; Cordes 1986). Refractive alterations (by ir-
regularities larger than the relevant Fresnel scale) of diffraction
patterns sometimes lead to multiple images with angular sep-
arations larger than the diffraction broadening of the source
(Cordes & Wolsczan 1986; Cordes et al. 1986; Goodman &
Narayan 1989a,b).

If the refractive alterations become significant, then mul-
tiple imaging manifests itself in the form of periodic spectral
& temporal modulation of intensity with periods smaller than
the decorrelation bandwidth & decorrelation time, respectively.
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The probablity of multiple imaging occuring is low for a Kol-
mogorov spectrum of density distribution, and increases for
steeper spectra as they imply dominant refractice effects (see
Cordes et al. 1986 for details). However, for nearby sources,
refraction angles may become comparable with the diffraction
broadening even for relatively less steep density spectra. It is
also likely that the diffractive scattering of the signals from
some of the close-by sources is less ‘multiple’ in nature (with a
relatively small number of speckles), mimicing in some sense
the multiple imaging situation, where, with an unscattered ver-
sion of the signal, only a few delayed versions interfere. Also,
this may improve the detectability of a distinct signature ofsin-
gle or discrete refractive scattering events, where we receive,
only a few discrete (diffractive) bundles of rays that correspond
to different refracted (and correspondingly) delayed versions
of the signal. In such a case, it appears possible to probe the
properties (such as the size and density contrast) of the discrete
density-irregularities responsible for the refractive/diffractive
scattering, if the associated time delays can be measured.

2. Observations and analysis

We observed two near-by pulsars, B0950+08 and B1929+10
with the aim of detecting discrete refractive scattering events.
These observations were carried out with the Westerbork Syn-
thesis Radio Telescope (WSRT) with its pulsar backend,PuMa.
The WSRT consists of 14 dishes, each of 25-m diameter. For this
observation, the delays between the dishes were compensated,
and the signals were added in phase to construct an equivalent
single dish of about 94 m diameter, with an antenna gain of
about 1.2 K/Jy. Observations were conducted on 1999 Feb 22,
and 1999 Apr 28 at a centre frequency of 382 MHz, with a band-
width of 10 MHz. The signal voltages were Nyquist-sampled
and recorded at 20 MHz in both X and Y polarisation channels.
The data are quantized to represent each sample with 2 bits.

During the off-line analysis, we first performed “coherent
de-dispersion” (Hankins 1971), to remove the effect of inter-
stellar dispersion on the signals corresponding to the X and the
Y polarisation channels. The assumed dispersion measure val-
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ues were,2.9704 ± 0.0001 pc cm−3 for PSR B0950+08, and
3.1760 ± 0.003 pc cm−3 for PSR B1929+10. To minimise the
analysis time, we gated and coherently dedispersed only the por-
tion around the pulse (about 14% of the rotation period for PSR
B0950+08, and about 8% for PSR B1929+10). The width of the
gate was chosen on the basis of the known widths of the average
pulse profiles. The widths at 10% of the pulse peak intensity are
∼8% & ∼6% of the periods for B0950+08 & B1929+10 respec-
tively. The dispersion smearing within our band for both these
pulsars is much smaller than the width of the gate.

In order to detect the signature of discrete refractive scat-
tering events, we looked for significant features in the Auto-
correlation (AC) function computed from the coherently de-
dispersed voltage series. Since the delay we expect is of the
order of microseconds (or less), there was no need to compute
the AC function over a very long delay range. We computed
the AC function of short stretches, each of length 102.4µsec
(211 sampled points), by computing the power spectrum and
inverse fourier transforming it back, after correcting for instru-
mental effects. There is also another important reason for re-
stricting the length of the AC functions to such a short length.
PSR B0950+08 is known to show significant short-time scale
features (microstructure) in its pulse window. The typical time
scale for these features is about 175µsec (Hankins 1972). Since
it is important to minimise the contribution of this microstruc-
ture to our AC function, we chose our transform lengths to a
value of 102.4µsec, which is smaller than the microstructure
time scale.

Since the input voltage time series is a “real-function”, the
power spectrum computed over 20 MHz would be (real &) sym-
metric about the ‘zero’ frequency. Any discrete feature in the
AC function manifests itself as a “fringe pattern” (or a peri-
odic modulation) in this power spectrum. Since the phase of
such a pattern is also of some interest, while taking the inverse
fourier transform we use only a one-sided power spectrum (say,
frequencies≥0), such that the AC function thus obtained con-
tains both, amplitude & phase, information (i.e. this AC func-
tion would be a complex function) associated with any spectral
modulation.

It should be emphasised here that we compute the auto-
correlation of the voltage series, and not the “detected” (i.e.,
intensity) series. It is easy to see that the fourier transform of
the latter would correspond to afluctuation spectrumof the in-
tensity, rather than theradio frequency spectrumwe wish to
study. This allows us not only to reduce considerably the ef-
fect of any intrinsic fluctuations like microstructure, but also to
measure more directly the time delays of interest.

Within the pulse window, autocorrelation functions were
computed by taking half-overlapping time sections of211

points. In order to improve the signal-to-noise ratio, all these au-
tocorrelation functions were added together with weights given
by the square of their individual signal-to-noise ratios (which is
estimated from the mean power in the power spectrum). Further-
more, we repeat this procedure over many pulses and average
all the individual autocorrelation functions, to compute the final
autocorrelation function.

2.1. Instrumental and other spurious effects

While computing the mean of the power spectrum, we made
sure to identify all the spurious interference signals, and to not
include them in the calculation. We replaced the spectral chan-
nel contributions affected by the narrow-band interference by
the value corresponding to the mean contribution from the unaf-
fected channels, so that they do not corrupt the autocorrelation
function estimation. It was very important to remove such con-
tributions. Otherwise they bias the mean estimations, and can
also introduce strong intermodulation products.

2.1.1. Instrumental response function

The estimations of two major instrumental effects which had to
be compensated for are an essential part of our analysis. The
two effects are related to, (1) the intrinsic band shape of the
instrument, and (2) thefront-end response. The reason for con-
sidering the front-end (signal path from the telescope up to the
first amplifier) as a separate entity is that a very significant frac-
tion of the system noise, contributed by the first amplifier, does
not sample the spectral response of the front-end. This means
that the spectral response estimated on the basis of the off-pulse
region of the data set can not be used to adequately correct for
the instrumental response to the sky/pulsar signal.

We model the instrumental response function as follows:

Bon(ν) = 〈Boff〉(ν)
[
1 +

(
Aon − 〈Aoff〉

〈Aoff〉
)

D(ν)
]

(1)

Here,Bon(ν) is the on-pulse bandshape as a function of fre-
quency (obtained for a given stretch of211 points),〈Boff〉(ν)
is the average off-pulse bandshape as a function of frequency,
Aon is the mean of the instantaneous on-pulse bandshape, and
〈Aoff〉 is the mean of the average off-pulse bandshape.D(ν) is
the front-end response function.

In order to correct for the above, we pre-computed a high-
signal-to-noise ratio average off-pulse band shape function,
〈Boff〉(ν). We also pre-computed the functionD(ν) by invert-
ing the above equation and by estimating its suitably weighted
average as

D(ν) =

∑M
i=1

[
Bon(ν)
〈Boff〉 − 1

]
wi∑M

i=1 wi
2

(2)

here,M = (Nstr × Npul), with Nstr andNpul being the num-
ber of stretches in a pulse & the number of pulses considered
for the analysis, respectively andwi = [Aon/〈Aoff〉 − 1] is a
quantity proportional to the signal-to-noise ratio of the pulse in
the corresponding stretch.

Then, before computing the autocorrelation functions, we
compensated for the instrumental effects to obtain

Bon(ν) = [B′
on(ν) − 〈Boff〉(ν)] / [D(ν) 〈Boff〉(ν)] (3)

where,B′
on(ν) is the uncorrected power spectrum. The cor-

rected power spectrum,Bon(ν), is inverse fourier transformed
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Fig. 1. Autocorrelation function computed for PSR B0950+08. This
function is based on the analysis of 632 pulses observed at a centre
frequency of 382 MHz, with 10 MHz bandwidth. See text for details.

to estimate the autocorrelation as function of delayτ . The front-
end response function,D(ν), was determined using the pul-
sar observation itself, and a smooth functional form (with a
low-order polynomial) fitted to the estimate was used for the
correction described. This ensured that any fine-scale spectral
modulation in the pulsar signal was not removed as part of the
instrumental response.

3. Results

We analysed 632 pulses for PSR B0950+08, and 700 pulses for
PSR B1929+10. The final AC functions are normalised accord-
ing to the following procedure.

As described in Sect. 2, in each stretch, we haveN = 211

samples (102.4µsec). With the root-mean-square value (r.m.s.)
of the initial voltage time seriesσ◦, the r.m.s. of the noise in the
real and the imaginary parts of the normalised AC function is
σ =

√
2/N .

In our procedure, many such AC functions are added to-
gether. The number of AC functions in either the X or the Y
polarisation channel is given M as defined above. The final AC
function〈C(τ)〉 is computed by a weighted average given by,

〈C(τ)〉 =
∑M

i=1 Wi Ci(τ)∑M
i=1 Wi

(4)

whereCi(τ) is the AC function for theith stretch and the weigh-
tageWi (=wi

2) is proportational to the square of the signal-to-
noise ratio of the pulsar contribution in that 102.4µsec stretch.

The r.m.s. of the real and imaginary parts of the normalised
final AC function isσf = σ/

√
Meq =

√
2/(N × Meq),

whereMeq is the equivalent number of ACFs averaged (≤ M ).
If the weights for all the stretches are equal, thenMeq = M .

Figs.1 & 2 give thenormalised amplitude of the final (aver-
age complex) AC function for PSRs B0950+08 and B1929+10,
respectively. Note that the AC function resulting from this anal-
ysis has a null at ‘zero-delay’, i.e. the feature corresponding to

Fig. 2. Autocorrelation function computed for PSR B1929+10. This
function is based on the analysis of 700 pulses observed at a centre
frequency of 382 MHz, with 10 MHz bandwidth. See text for details.

the mean spectral contribution is removed. As our radio fre-
quency bandwidth is 10 MHz, in principle, we should be able to
measure any feature whose time delay is greater than∼100 ns.
However, due to a finite residual in the instrumental response
which remains uncompensated despite our detailed modelling,
the minimum delay for our ACF estimation is∼200 ns. As
we can see, there is no significant feature in the AC functions
beyond this delay. This indicates an absense of a) prominant
discrete refractive scattering events as well as b) non-multiple
diffractive scattering along both lines of sight.

4. Discussion

In our observations, we have looked for fine periodic spec-
tral structure across a bandwidth not very much wider than the
decorrelation bandwidth. Also, the data span used corresponds
to an interval smaller than the decorrelation time for diffractive
scintillations of both pulsars. Thus our analysis uses data over
at most a couple of diffractive scintles, and is therefore less
affected by any possible decoherence due to variation of the
diffractive phase from scintle to scintle. Considering the possi-
bility that the spectral modulation (which we have searched for)
could drift across the spectrum with time (although the drift is
expected to be small over our data span), we have also exam-
ined the average of ACF amplitudes alone (instead of its vector
equivalent) so as to avoid possible ‘dephasing’ of any other-
wise detectable ACF feature. Again, no significant feature was
apparent.

We interprete ournull result as indicating an absense of
strong refraction gradients across the scattering screens. Our
results also suggest that the diffractive scattering is rather ‘mul-
tiple’, i.e. the diffraction image consists of a large number of
‘speckles’ or sub-images. While the former indication can be
understood simply as the result of a non-steep spectrum of den-
sity irregularities with an ‘inner scale’ much smaller than the
Fresnel scale, we attempt to quantify our conclusion using the
following simple-minded picture.
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Crossing of refracted ray bundles is a necessary condition
for multiple imaging (see Cordes et al 1986 for more details).
This condition is not met if the differential refraction across a
given transverse scale is less than its angular size as seen from
the observer’s location. Let us consider a refracting screen mid-
way along a pulsar sight-line, and assume that two wavefronts,
one of which is refracted significantly more (by, say, an angle
θ) than the other, describe the refractive effect of the scattering
screen over a transverse separation ‘a’. For a difference∆DM
in the electron column density sampled by the two paths, the two
wavefronts will cross if∆DM ≥ (8π/Lre)(a/λ)2, wherere is
the classical electron radius,L is the distance to the pulsar, and
λ is the wavelength of observation. For the situation described
here, it is easy to show that the geometric delay difference will
be equal to the differencial dispersion delay corresponding to
∆DM .

Fig. 3 shows the above mentioned limits on column density
contrast∆DM (in units of pc cm−3) associated with large-scale
irregularity as a function of transverse scale ‘a’ (in AU) for the
two pulsars, B0950+08 (solid line) and B1929+10 (‘dash’ line).
The distances to these two pulsars are assumed to be 120 pc and
170 pc, respectively. The vertical axis (right side) indicates the
associated relative delay (including the dispersion contribution)
for comparison with our measurements. The horizontal axis (top
side) is also marked with relative epochs (for the line of sight
to traverse a mid-way transverse distance ofa) corresponding
to a proper motion of 100 km/s. It would be instructive to com-
pare these limits on the structure function of dispersion measure
when suitable direct measurements of changes in DM in the two
directions may become available in future. It is also worth men-
tioning that the characteristic delay associated with diffractive
scattering of the two cases (B0950+08 & B1929+10) are 4.7 &
0.08µsec, respectively, and would translate to scattering disk
size of 0.8 & 0.12 AU, respectively. The Fresnel scale, for com-
parison, is∼ 10−2 AU.

It is worth mentioning that the power spectrum of irregulari-
ties in the direction of B1929+10 appears relatively steep (Bhat,
Gupta & Rao 1999) and hence the refractive effects can be ex-
pected to be dominant, relatively speaking. Also, the multipath
scale (defined by the apparent size of the scatter-broadened im-
age) when viewed in units of the Fresnel scale is an order of
magnitude smaller for B1929+10 than that for B0950+08, in-
dicating correspondingly weaker and less multiple scattering.
However, it is not clear as to how much of this apparent differ-
ence is due to the possible differences in the fractional distance
to the scatterer (i.e. the scatterer location may be at one end
in the case of B1929+10 instead of mid-way as we have as-
sumed). It should be emphasised here that the refractive effects
are highly episodic. So our (null) results on these two pulsars,
and the implied constraints (as in Fig. 3), while being indicative,
should be viewed as applying strictly only to the epochs of our
observations.

Fig. 3. Upper bounds to the structure function of dispersion mea-
sure. The solid line is for PSR B0950+08, and the ‘dash’ line is for
B1929+10. See text for details.

To summarise, radio signals emitted by very near-by sources
may be scattered by discrete refractive irregularities that al-
ter the diffraction patterns significantly, or may undergo ‘non-
multiple’ diffractive scattering. Finding distinct spectral signa-
tures of such events allows us to study the size and the density
contrast of such large-scale irregularities. We have looked for
such signatures in the signals from PSR B0950+08 and PSR
B1929+10, but found no corresponding ACF feature signifi-
cantly above the noise threshold (7σ) of 2×10−3 and1.3×10−3,
respectively. The absence of any such signature/event in the ob-
served data suggests useful limits on the structure function of
dispersion measure corresponding to a wide range of refractive
scales in the two lines of sight (as sampled at the epoch of our
observations).
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