
Proc. Indian Acad. Sci. A26 356-369 (1947) 

The vibration spectra of crystals-Part 11. 
I The case of diamond 

SIR C V RAMAN 
Department of Physics, Indian Institute of Science, Bangalore 

Received October 31, 1947 

Contents 

1. Introduction 
2. The eigenvibrations 
3. The valence forces 
4. Numerical evaluation of the eigenfrequencies 
5. Activity in light scattering 
6. Activity in infra-red absorption 
7. The spectroscopic facts 
8. Summary 

1. Introduction 

Of recent years, there has been a great accession of exact knowledge regarding the 
spectroscopic behaviour of crystals. Much of this knowledge has been gained by 
the method of investigation introduced by the present writer in the year 1928, 
namely, the spectral examination of the scattered radiations from crystals 
illuminated by monochromatic light. Valuable information has also come to 
hand from the study of luminescence spectra and of absorption spectra in the 
visible and ultraviolet regions at low temperatures. Considerable progress has 
also been made in the study of infra-red absorption by crystals. By working with 
thin films, and also by using the highest possible resolving powers, the inherent 
difficulties and imperfections of infra-red spectroscopy as applied to solids have 
been minimised. Critical investigations by these diverse methods concur in 
showing that the vibration spectrum of a crystal held at a sufficiently low 
temperature as observed in the infra-red region of frequency is effectively a line 
spectrum. From the fact that several procedures of experimental study which are 
wholly different in principle agree in their indications, it is clear that the spectra of 
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crystals are inherently of this nature and not by virtue of any particular method of 
observing them. 

The earlier theories of the subject which were based on ideas derived from the 
behaviour of elastic solids identified the atomic vibrations in a crystal with an 
immense number of "waves" of diverse wavelengths and frequencies assumed to 
be present in it. This hypothesis led to a conception of the nature of the vibration 
spectrum of a crystal radically different from that stated above, viz., that it is a 
continuous spectrum, both in the acoustic and in the infra-red ranges of frequency. 
That such a view gained currency was perhaps not surprising at a time when 
experimental knowledge of the spectroscopic behaviour of crystals was of a 
meagre description. It is, however, altogether inconsistent with the facts known at 
present as the result of recent research, as will be shown in this paper and the 
others following it. 

The case of diamond which we shall proceed to consider in detail is by far the 
most suitable test for any theory of the spectroscopic behaviour of crystals. For, it 
is the solid of the simplest structure and composition of which the vibration 
spectrum is amenable to theoretical calculation as well as to experimental study. 
Indeed, all the possible different methods of spectroscopic investigation-five in 
number-which can be applied to the study of a crystal have been successfully 
employed in the case of diamond. A further special advantage presented by 
diamond is that its vibration spectrum appears spread out over a wide range of 
frequency. This makes it possible with only instruments of moderate power to 
ascertain and establish the true nature of its spectrum unambiguously, while with 
the aid of more powerful instruments, it is possible to discover and demonstrate 
the finest details of its spectral behaviour. A further and notable advantage which 
arises from the high frequencies of atomic vibration in diamond is that the 
secondary effects due to thermal agitation are unimportant in its case even at 
ordinary temperatures. Such effects are markedly present in the majority of 
crystals and disturb the intrinsic simplicity of their spectra. 

2. The eigenvibrations 

As is well known, the structure of diamond may be described as consisting of two 
similar Bravais lattices of carbon atoms of the face-centred cubic type inter- 
penetrating each other. Each atom in one of the lattices is linked to four atoms in 
the other lattice by valence bonds along the four trigonal axes of symmetry of the 
crystal. The atoms in the two lattices appear in distinct layers in the octahedral as 
well as in the cubic planes. In the former set of planes, they are alternately nearer 
and farther apart, while in the cubic planes they are equidistant. This disposition 
of the layers is a consequence of the quadrivalence of the carbon atoms and is 
represelited in figure 1, for the octahedral planes and in figure 2 for the cubic ones. 
A, and A, rept'esent successive layers of carbon atoms belonging to one lattice, 
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Figure 1. Structure of diamond viewed perpendicular to a trigonal axis. 

Figure 2. Structure of diamond viewed perpendicular to a cubic axis. 

while B, and B, represent successive layers belonging to the other. 
In part I of this series of papers, we have already derived the nine possible 

eigenvibrations of diamond, and they may be readily visualised with the help of a 
model of its structure. Figures 1 and 2 above are also helpful in this connection. 
The principal oscillation of the structure is the one in which the atoms of each 
lattice move together in the same phase against the atoms in the other lattice 
moving together in the qpposite phase. It is a triply degenerate oscillation, and 
hence the direction of motion may be either normal or tangential to the atomic 
planes in either of the two figures, viz., up and down the printed page or 
horizontally across it. The other eight possible movements arise from the three 
pairs of possible alternatives; the oscillations may be of the octahedral or of the 
cubic planes of atoms; the ascillations may be normal or tangential to these 
planes; the oscillations may be symmetric, or antisymmetric, adjacent layers of 
the structure belonging to the two lattices moving in the same phase in the 
symmetric modes, and in opposite phases in the antisymmetric ones. Thus, for 



VIBRATION SPECTRA OF CRYSTALS-11 21 5 

instance, in the tangential symmetric oscillation of the octahedral planes, the 
layers A, and B, in figure 1 move together horizontally across the page against 
the layers A, and B, moving together in the opposite direction. Similarly, in the 
tangential antisymmetric oscillation of the cubic planes, the layers A, and B, in 
figure 2 move together horizontally across the page against the layers B, and A, 
moving together in the opposite direction. 

3. The valence forces 

The forces coming into play when the atoms in diamond oscillate are principally 
of two kinds, viz., those due to changes of bond-lengths and those due to changes 
of bond-acgles. The forces of the first kind are predominantly of greater strength, 
and this fact taken together with the geometry of the modes enables us readily to 
arrange them in a descending sequence of frequency as shown in table 1. We shall, 
to begin with, consider only the forces due to the changes of bond-lengths. It is 
immediately evident that they are absent in the tangential symmetric oscillation 
of the octahedral planes, as also in the tangential antisymmetric oscillation of the 
cubic planes described in the preceding paragraph. These two modes have 
therefore the lowest frequencies and are accordingly placed at the bottom of the 
table. On the other hand, the tangential antisymmetric oscillation of the 
octahedral planes, and the tangential symmetric oscillation of the cubic planes 
both involve large variations of bond-length. By referen~e to figures 1 and 2, it is 
seen that the changes of bond-length in each case are exactly the same as in the 
analogous movements of the two lattices against each other in mode I. 
Accordingly, these three modes have the highest frequency and are placed at the 
top of the table. The four modes in which the atomic layers move normally to 
themselves remain to be considered. It is readily seen that the symmetric and 
antisymmetric normal vibrations of the cubic planes would have identical 
frequencies owing to the disposition of the valence bonds and of the atoms in 
equidistant layers. On the other hand, the symmetric and antisymmetric normal 
oscillations of the octahedral planes are obviously different. A simple calculation 
based on the inclination of the valence bonds to the direction of movement shows 
that the symmetric oscillation would have a higher frequency than the 
antisymmetrical, while the normal oscillation of the cubic planes would have an 
intermediate frequency. 

In the final ordering of the modes, we have also to consider the forces due to the 
variations of the bond-angles. These differ notably in the modes VIII and IX in 
which bond-length variations are totally absent, as also in the modes I, I1 and I11 
in which they are of equal magnitude, and hence enable us to arrange them in the 
proper sequence of frequency. The tangential symmetric oscillation of the 
octahedral planes (mode IX) obviously involves variations of fewer bond-angles 
than the tangential antisymmetric oscillation of the cubic planes (mode VIII). It 



216 C V R A M A N :  PHYSICS OF CRYSTALS 

Table 1 

Descending order 
of frequency Degeneracy Description of mode 

3 Oscillation of the two lattices 

8 Tangential antisymmetric oscillation of the octahedral 
planes 

111 6 Tangential symmetric oscillation of the cubic planes 

IV 4 Normal symmetric oscillation of the octahedral planes 

V* 3 Normal antisymmetric oscillation of the cubic planes* 

VI* 3 Normal symmetric oscillation of the cubic planes* 

VII 4 Normal antisymmetric oscillation of the octahedral planes 

VIII 6 Tangential antisymmetric oscillation of the cubic planes 

IX 8 Tangential symmetric oscillation of the octahedral planes 

*Note-Modes V and VI have the same frequency. 

therefore now appears at the bottom of the table, with the latter immediately 
above it. The principal lattice oscillation (mode I) involves variations of all six 
bond-angles and is therefore placed at the top of the table, followed in order by 
the tangential antisymmetric oscillation of the octahedral planes (mode 11) and 
the tangential symmetric oscillation of cubic planes (mode 111) in which only 
three bond-angles and one bond-angle respectively vary sensibly. The nine 
eigenvibrations as thus finally arranged are shown in table 1. 

4. Numerical evaluation of the eigenfrequencies 

The descending sequence of frequency shown in table 1 is sufficient to enable the 
modes of vibration manifesting themselves in the spectrum of diamond to be 
individually identified. It is possible, however, to go further and make a numerical 
estimate of the frequency of each of the modes, thereby confirming the assihnment 
of the observed spectral frequencies to the different modes and placing their 
identification on a secure basis. We shall proceed to show how this may be done. 

In any eigenvibration, equivalent atoms have the same amplitude of motion, 
and since the masses of the two sets of equivalent atoms in diamond are the same, 
it follows that the atomic displacements are also the same. It is sufficient therefore 
to find the forces acting on any one atom in a given mode of vibration to ascertain 
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its frequency. The principal forces acting on each atom are (1) the force 
proportional to its own displacement, and (2) the forces proportional to the 
displacements of the four atoms with which it is linked by valence bonds. The 
displacements of the more distant neighbours would also give rise to fotces, but 
these would be smaller, and owing to the alternation of phase in successive layers 
would tend to cancel each other out. We may accordingly limit ourselves to the 
forces specified above, 

We denote the three force-constants with which we are concerned by P, Q and 
R. P is the restoring force on the atom under consideration arising from a unit 
displacement of itself aldng a cubic axis. Q alid R are the forces on the atom 
arising from a similar displacement of one of the atoms linked with it, Q being 
parallel to the displacement, and R perpendicular to it. P being taken as a positive 
quantity, it is evident that Q would be negative and that P/4 would be the order of 
magnitude of its numerical value or rather an upper limit for the same. For, the 
restoring force P may be regarded as due to the displacement of an atom 
relatively to its four nearest neighbours, though the more distant atoms may also 
sensibly contribute." Further, owing to the tetrahedral disposition of the valence 
bonds, R and Q would be nearly equal to each other. More definitely, it can be 
said that Q > R > 412. The upper limit Q for R would be reached if the forces 
arise solely from the variation of bond-length, but we know that this is not the 
case and that the variation of bond-angleshas also to be considered. The lower 
limit for R, namely Q/2, is set by the consideration that the forces due to variation 
of bond-angles would then be so large that modes IV, V, VI and VII in table 1 
would no longer form a descending sequence of frequency. The ratios P:Q:R are 
thus known a priori, at least approximately, from considerations based on the 
structure of diamond. 

Denoting the mass of the carbon atom by m, the frequency in wave-numbers by 
v and the velocity of light by c, we write 

4z2v2c2m = F, (1) 

where F is the operative force-constant, viz., the magnitude of the force acting on 
the atom per unit displacement. This is shown for each of the different modes in 
the second column of table 2. The formulae are readily derived by reference to the 
modes as described in table 1. We remark that P necessarily appears in each case. 
Q appears with a factor equal to the number of linked atom6 which move in the 
same phase as the atom under consideration, less the number moving in the 
opposite phase; the factor is - 4, - 2,0, + 2,0, - 2,0 and + 2 respectively for 
the modes as listed. The force-component R is perpendicular to a cubic axis and 
does not therefore appear in the frequency expressions for modes I, V and VI, the 
motion being along a cubic axis. In the remaining modes, the movement is along a 
body-diagonal or a face-diagonal of the cube, and R therefore appears in the 
formulae with a multiplying factor equal to the number of atoms effective in each 
case. A check on the formulae is obtained by putting Q = - P/4 and Q = R, when 
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Table 2. Calculated and observed eigenfrequencies of diamond 

F (operative Q = - P/4 Q = - P/5 Q = - P/6 Observed 
Mode force-constant) R = 2413 R = 2Q/3 R = 2413 frequency 

cm-' cm-I cm-I cm-I 
I P -4Q 1332 1332 1332 1332 

I1 P - 2Q - 2R 1276 1282 1287 1250 
I11 P - 4R 1216 1230 1240 1232 
IV P+2Q-4R 1018 . 1057 1087 1149 

V & VI P 942 993, 1031 1088 
VII P-2Q+4R 860 925 973 1008 

VIII P+4R 544 678 770 752 
IX P + 2Q + 2R 385 573 , 688 620 

P =  6.28 6.975 7,536 x lo5 dynes per cm 
Q = - 1.57 - 1.395 - 1.256 -do- 
R = - 1.047 - 0.93 - 0.837 -do- 

the frequency comes out as the same for the first three modes, as zero for the last 
two and as a descending sequence for those between. 

Table 2 makes a comparison of the observed frequencies with those calculated 
on the basis of the P:Q:R ratios shown at the head of each column, the 
corresponding numerical values of P, Q and R which give the frequency of the 
first mode as 1332cm-' being shown below. It will be seen that there is good 
agreement between the figures appearing in the last two columns, thus supporting 
the identification of the modes with the observed spectral frequencies, as well as 
the theoretical approach on which the calculations are based. The agreement is, 
of course, not perfect, but this is only to be expected, since the forces have been 
ignored which arise from the more distant atoms. The fact that Q comes out as 
- P/6 and not as - P/4 is a clear indication that such forces are small, but are not 
negligible. This interpretation of the discrepancies between the figures shown in 
the last two columns of table 2 is completely confirmed by an investigation of 
K G Ramanathan (1947) appearing elsewhere in these Proceedings. The dy- 
namics of the problem has been very fully worked out by him, taking account of 
no fewer than 28 atoms in the equations of motion. 

5. Activity in light-scattering 

We shall now consider the activity of the various modes of vibration in light- 
scattering. Equivalent atoms in the structure have the same phase in mode I, 
while they are alternately in opposite phases in successive layers in the other 
modes. The changes of optical polarisability therefore add up for mode I, while 
they cancel out ( to  afirst approximation) in the other modes. Mode I is therefore 
active in light-scattering, while the others are not. 
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Table 3. Theoretical activity of the eigenvibrations 
(For explanation see text) 

Light scattering Infra-red absorption 
Frequency 

Serial order cm-' 1st order 2nd order 1st order* 2nd order 

I 1332 Active Strong Inactive Inactive 
I1 1250 Inactive Strong Inactive Very weak 

111 1232 Inactive Very strong Inactive Very weak 
IV 1149 Inactive Strong. Inactive Weak 

V & VI 1088 Inactive Weak Inactive Strong 
VII 1008 Inactive Very weak Inactive Strong 

VIII 752 Inactive Inactive Inactive Inactive 
IX 620 Inactive Inactive Inactive Inactive 

*Note-The entries in the fifth column of the table assume that the electronic structure of diamond 
has octahedral symmetry. For a discussion of the infra-red activity of the first-order arising when this 
is not the case, see section 7. 

In the second approximation, the non-linear dependence of the optical 
polarisability on the atomic displacements has to be considered. It is evident that 
if the increase in optical polarisability due to the approach of two atoms is 
different from the decrease due to their recession by an equal amount, the effects 
of the successive layers would not cancel out completely, leaving a residue which 
passes through a complete cycle of changes twice during each oscillation and has 
therefore twice its frequency. Superposition of two modes with different 
frequencies would, in addition, yield a residual effect with a summational 
frequency. In considering the magnitude of such effects, it is useful to regard the 
valence bonds themselves as the units which are optically polarisable. We 
represent each bond as having an ellipsoid of polarisability of its own. The 
tetrahedral grouping of the ellipsoids in the crystal secures its optical isotropy in 
the non-oscillating state. Alterations of bond-lengths during a vibration produce 
changes in the axial dimensions of the ellipsoids, while variations of bond-angle 
would alter their orientations. Only major changes could be expected to give 
observable second-order effects. Accordingly, we are justified in assuming that 
only changes of bond-length would give such effects. The strength of the effects 
would be determined principally by the absolute magnitude'of the variations of 
bond-length, and only to a lesser extent by the number of bonds so varying. 

The activity of the various eigenvibrations has been assessed and shown in the 
fourth column of table 3 on the basis of the foregoing considerations. Modes VIII 
and I X  do not involve changes of bond-length and should therefore be inactive. 
Mode VII is a normal oscillation of the octahedral layers involving changes of 
three bond-lengths out of every four, but these changes are very small. 
Accordingly, this mode should exhibit only a very weak second-order activity. 
Modes V and VI are normal oscillations of the cubic planes in which two out of 
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every four bonds vary in length, but the changes are definitely larger than in 
mode VII. Their activity should therefore be greater than that of mode VII. In 
mode IV, only one bond out of every four varies, but the entire motion is along 
this bond, and the change in its length is therefore considerable. Accordingly, this 
mode should be strongly active. In the three remaining modes of highest 
frequency in the table, the bond-length variations are large, but the number of 
bonds varying is different, being four in mode I, three in mode 11, and two in 
mode 111. The individual variations in bond-length are greatest in mode 111, less in 
mode I1 and least in mode I. Accordingly the second-order activity in light- 
scattering should be strongest in mode 111, less In mode 11, and least in mode I, 
though very considerable in all three cases. 

The second-order activity is essentially dependent on the absolute magnitude 
of the atomic displacements and unless these are large, their results would be of 
negligible intensity. The atomic displacements are determined by the consider- 
ation that the energy of vibration is hv for a single excitation and 2hv for a double 
excitation. The amplitudes of vibration would be very small and the second-order 
effects, therefore wholly unobservable if this energy be distributed over the entire 
volume of the crystal or even over a large number of lattice cells. We may remark 
further, that since the elastic vibrations of a crystal extend over its whole volume, 
they cannot exhibit any second-order activity in light-scattering. The first order 
activity is also cancelled out completely by optical interference except in the very 
special case of a coherent reflection. 

6. Activity in infra-red absorption 

To simplify the discussion of the activity of the modes in infra-red absorption, we 
shall here restrict ourselves to the case in which the electronic structure of 

. diamond can be assumed to possess octahedral symmetry. The distribution of 
electron density has then a centre of symmetry at the point midway between every 
pair of linked carbon atoms. Since, further, the carbon atoms have equal masses, 
these points would continue to be centres of symmetry of the electron distribution 
in mode I, which would therefore be inactive to all orders of approximation. The 
remaining modes (11 to IX) would also be inactive but for a different reason, viz., 
that the phase of the vibration is reversed at each successive layer of atoms and 
the effects of successive layers would therefore cancel each other out in thefirst 
approximation. 

We have now to consider whether the oscillations of the atomic layers in the 
modes I1 to IX would give rise to electric moments in the individual layers large 
enough to give an observable second-order effect of double frequency. The 
tetrahedral symmetry of diamond ensures that the atomic nuclei are also the 
centres of distribution of the negative electric charges surrounding them. But 
when the layers of atoms oscillate normally to themselves and the neighbours on 
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either side of each layer do not move symmetrically with respect to it, the 
tetrahedral symmetry of distribution of charge would evidently be disturbed. As a 
result, each atomic plane would become an oscillating electric double layer, 
thereby giving rise to an observable second-order infra-red activity. A tangential 
oscillation of the ,atomic layers would, however, not be effective in the same 
manner or to the same extent. If, further, as in modes VIII and IX, the valence 
bonds only tilt but do not stretch, no appreciable dipole moments could develop. 
The relative activities of the various modes can be assessed on the basis of these 
considerations and are shown in the last column of table 3. We may remark that 
modes V and VI are normal oscillations of the cubic planes, while modes IV and 
VII are those of the octahedral planes. In mode VII, the closely adjacent atomic 
layers approach and recede from each other, while the more distant ones remain 
at the same distance. In mode IV, the situation is reversed, viz., the closely 
adjacent layers remain at the same distance apart from each other, while the more 
distant one recedes and approaches. In these circumstances, it is clear that 
mode VII should exhibit greater infra-red activity than mode IV, as shown in the 
table. 

7. The spectroscopic facts 

The spectroscopic behaviour of diamond has been very thoroughly investigated 
at Bangalore with the result that we have a wealth of experimental results at our 
disposal. The data for the spectral frequencies obtained by different methods have 
been set together in parallel columns and represented in the form of a chart 
(figure 3). For lack of space, the chart omits reference to the infra-red emission 
spectra. These, however, closely follow the corresponding absorption spectra. 

The scattering of light-Spectroscopic studies made prior to 1943 had revealed 
that diamond exhibits in light-scattering a frequency shift of 1332 cm- ',evidently 
representing our mode I. Following on the publication of his theory (Raman 
1943), the present writer confidently ventured to predict that diamond should also 
exhibit a second-order spectrum with other frequency shifts explicable as octaves ' 

and combinations of its eight fundamental frequencies. An experimental 
investigation undertaken by Dr R S Krishnan soon afterwards confirmed this 
prediction. A detailed report on his latest findings appears in a paper by Dr R S 
Krishnan (1947) appearing in these Proceedings. His earlier papers (1944, 1946) 
on the subject also contain valuable experimental material to which the reader is 
referred. It will suffice here to remark that these publications clearly establish the 
discrete character of the vibration spectrum of diamond indicated by the present 
theory. Of particular signijlcance is the notable intensity of the second-order 
spectrum in relation to that of thefirst-order, which clearly demonstrates that the 
energy of the high-frequency oibvations in the crystal is not diffused through it in the 
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Figure 3. Spectral frequencies in cm-' as observed by various methods. 

form of a "wave", but is concentrated in extremely small regions comparable in 
volume with its lattice cells. The interesting fact that the octave of the 1332 line is 
not the most intense one in the second-order speotrum - being, in fact - the third in 
order of intensity - finds its explanation in the theoretical considerations set out in 
section 5 of the present paper. Dr R S Krishnan's earlier spectrograms did not 
reveal the octave of mode VII. The theoretical prediction that it should appear in 
the second-order spectrum though only with a very small intensity has, however, 
been confirmed in his most recent investigations. 

Infra-red absorption-All diamonds without exception exhibit an infra-red 
absorption in the region of frequencies between 1560cm-' and 2470 cm-', the 
strength of which shows no appreciable variation from specimen to specimen. It is 
therefore clearly a fundamental property of diamond. The existence of such 
absorption and its spectral characters are explained by the theoretical consider- 
ations set out in section 6 of the present paper. The two prominent peaks in hfra- 
red absorption appearing at 2010cm-' and 2170cm-' are clearly the octaves of 
the fundamental frequencies 1008 and 1088. 

A study of the crystal forms of diamond from a new point of view (Raman and 
Ramaseshan 1946) has shown clearly that the crystal symmetry of diamond is, in 
general, only tetrahedral, though some diamonds undoubtedly possess the higher 
or octahedral symmetry of structure. The fact that the great majority of diamonds 
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exhibit infra-red activity of the first order ceases to be surprising in the light of this 
finding. The striking variations in the strength of such activity in different 
specimens also find their natural explanation in the interpenetration of the 
positive and negative tetrahedral structures which is also clearly indicated by the 
crystallographic evidence. From our present point of view, these facts are chiefly 
interesting since infra-red activity of the first-order makes the fundamental 
frequencies themselves accessible to observation. The three columns marked (I), 
(11), (111) in figure 3 represent results typical of those observed with different 
diamonds. 

A full report on the infra-red absorption spectra of numerous diamonds is 
made by K G Ramanathan (1947) in a paper appearing in these Proceedings. It 
will suffice here to make a few remarks supplementing those contained in section 
6 of the present paper on the theoretical aspects of the subject. The small 
difference in structure which gives rise to the first-order activity in most diamonds 
would not make any difference in respect of the second-order activity. Hence no 
changes are necessary in respect of the entries in the last column of our table 3. If 
there were no interactions between the different normal modes, tetrahedral 
symmetry would result in making mode I active, the other modes remaining 
inactive in the first approximation. Actually, however, the differences between 
mode I and the other modes are due only to the differences in the phases of 
movement of the atomic layers. In view of this geometric similarity of the 
movements and the anharmonicity of the forces arising from the atomic 
displacements, a strong interaction between the different "normal" vibrations is 
inevitable. Such interaction would be the more powerful, the smaller the 
difference of frequency between mode I and the other mode under consideration. 
We need not therefore be surprised to find, as is actually the case, that the infra- 
red activity of mode I results in the modes with frequencies not very remote from 
it also showing an observable activity of the first-order. 

Emission and absorption by luminescent diamonds-The emission spectra of 
luminescent diamonds are of two different kinds, viz., "blue luminescence" and 
"yellow luminescence", and there are also two corresponding types of absorption 
spectra. These have their origin in electronic transitions which appear at 141 52 
and 15032 respectively and combine with vibrational transitions in the crystal, 
giving a spectrum stretching respectively towards longer wavelengths in emission 
and towards shorter wavelengths in absorption. The spectra are best studied with 
the diamond held at liquid air temperatures, the features observed in the spectra 
being then most sharply defined. The vibrational frequencies as determined from 
the emission and absorption spectra are practically identical. Indeed, these 
spectra exhibit a remarkable mirror-image symmetry about the electronic 
transition (A 41 52 or A 5032 as the case may be), in respect of both position and 
distribution of intensity, thereby affording a clear demonstration that they arise 
from thelcombination of the electronic and vibrational frequencies of the crystal. 

f 



224 c v R A M A N :  PHYSICS OF CRYSTALS 

The spectroscopic behaviour of no fewer than 28 diamonds in luminescence 
and absorption has been investigated in detail by Miss Anna Mani (1944). Her 
paper may be consulted for a full report on the subject including further details. 
One of her most interesting findings is that the vibration spectra accompanying 
the A4152 and A 5032 electronic transitions are strikingly different in respect of 
the distribution of intensity. The vibrational transitions accompanying the A 41 52 
transition are principally those lying in the upper or infra-red range of frequency 
and their overtones, while those accompanying the A5032 electronic transitions 
are principally the "elastic" vibrations of lower frequency. Hence, the "blue" 
luminescence and the corresponding absorption spectra are those which are 
important from our present point of view. Miss Mani has shown that the A4152 
transition is really a doublet, the width of the components as well as their 
separation varying with the specimen under study. Even at liquid air tempera- 
ture, the total width covered by the electronic transition is never less than 
20cm-' and may be as such as 50cm-'. This width necessarily appears in the 
spectra when the electronic frequency combines with the vibrational frequencies 
and hence obscures to some extent the monochromatic character of the latter. 
Even so, the discrete nature of the vibrational spectrum in the upper ranges of 
frequency is clearly manifest in the emission and absorption by "blue" 
luminescent diamonds when held at liquid air temperatures. The observed 
frequency differences are shown in our chart (figure 3). 

8. Summary 

Considerations based on the crystal structure of diamond enable its nine 
eigenvibrations to be arranged on a descending scale of frequency. The 
magnitude of the force-constants involved can also be defined within narrow 
limits. The numerical values of the frequencies evaluated on the basis of the 
theoretical formulae show a close agreement with the observed values. The 
geometry of the modes determines the changes in bond-polarisabilities and 
electron distributions produced by them, from which their activities in light- 
scattering and in infra-red absorption can be ascertained both in the first and in 
the second approximation. A comparison of the results with the experimental 
facts shows a striking agreement. The observed intensity of the second-order 
effects in relation to those of the first order indicates that the eigenvibrations are 
localised in volume elements comparable in size with the lattice cells of the crystal. 
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