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1. Introduction 

The simplest example of the optical excitation of the vibrations of a crystal lattice 
is that afforded by the absorption of infra-red radiations by the crystal. In this 
case, the material vibrations of the lattice and the electromagnetic waves by 
which they are excited have the same frequency. When the incident radiations lie 
in the visible or ultra-violet region of the spectrum, they have a much higher 
frequency than the possible lattice vibrations, but may nevertheless excite the 
latter, as is shown by the fact that the light scattered by the crystal includes 
radiations of diminished frequency. The possibility of excitation in this case is due 
to the lattice vibrations altering the optical polarisability of the material of the 
crystal. In both cases, the excitation is essentially an optical process, as is clear 
from the fact that it occurs irrespective of the temperature of the crystal. That it is 
also a quantum-mechanical effect is particularly evident in the case of light 
scattering; the intensity of the lines appearing with diminished frequency in the 
spectrum of the scattered light is proportional to the Planck constant of action 
and varies but little with temperature, so long as this is moderate and the lattice 
vibrations are of sufficiently high frequency. 

That the lattice vibrations of a crystal may be excited by X-rays in much the 
same way as in the case of ordinary light has been suggested and supported by 
experimental evidence in a recent series of papers in these Proceedings.* It was 
there shown that the character of the resulting phenomena is different in the cases 
where the lattice vibrations lie respectively in the acoustic and the optical range of 
frequencies. This is to be expected, because in the vibrations of the acoustic class, 
the average electron density in the unit cell of the lattice varies periodically while 
its distribution within the cell remains nearly constant, while on the other hand, in 
the vibrations of the optical class, the mean electron density in the unit cell 

*Raman and Nilakantan, 1940,11,379-408. 
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remains approximately constant while its distribution within the cell varies 
periodically with time. The possibility of the vibrations of these two classes being 
induced by the incidence of X-rays therefore arises in different ways. In one case, it 
is the time-variation of the mean polarisability of the crystal and in the other case 
the time-variation of the structure amplitudes (Fourier components) of the 
electron density that is responsible for the excitation of the vibrations. It is not 
surprising therefore that the effects produced on the incident radiation differ even 
in respect of their geometric characters in the two cases. 

It is proposed in these papers to develop in mathematical form the ideas 
outlined in the papers quoted above. In this first instalment, the purely geometric 
aspects of the phenomena will be discussed, the important question of intensities 
being only touched upon incidentally. The fuller treatment of the latter will be 
given in part 11. 

2. The acoustic case 

From the remarks made above, it is evident that the cases in which the frequency 
of the lattice vibrations lie respectively in the acoustic and optical ranges must be 
considered separately. We shall proceed on the assumption that exchanges of 
energy and momenta take place between the incident X-radiation and the waves 
excited by it in the crystal, the substance of the latter otherwise taking no part in 
the phenomena. The conservation of energy and momentum requires 

I hv = hv' + hv* (1) 

v, V' and v* being respectively the frequency of the incident and scattered X-rays 
and of the excited gcoustic waves; A, A' and A* are the corresponding wavelengths. 
Equation (1) shows that the frequency of the scattered X-rays is diminished 
relatively to the incident X-rays by the frequency of the sound-waves excited in 
the process. As, however, v is far larger than v* we may in equation (2) take A = 1' 
without sensible error and proceed to solve it geometrically as shown in figure 1. 

With 0 as centre, we draw a sphere having a radius equal to 111. The particular 
radius 01 of the sphere which is parallel to the incident X-rays being marked out, 
we draw a second sphere with I as centre and 1/A* as radius which intersects the 
first sphere along the circle RR. It is evident that the generating lines of the cone 
ORR represent the possible directions of the scattered X-rays corresponding to 
the acoustic wavelength A*. The semi-vertical angle of this cone $ is given by the 
relation 

2A* sin $12 = A. (3) 
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Figure 1 

When I* is infinite, t,b vanishes and the cone of scattered X-rays collapses to a 
line along the incident ray. As A* diminishes however, the cone opens out, 
reaching its maximum semi-vertical angle when the wavelength of the acoustic 

, waves is the minimum physically possible in the crystal. In the case of a cubic 
crystal, this minimum wavelength would certainly be greater than the grating 
constant of the crystal, and it is clear from (3) that in any setting of the crystal, the 
directions in which the Bragg reflections by the crystal could be observed would 
lie outside the cone of monochromatic radiatioris scattered by it. The distribution 
of energy in the cone of scattered X-rays is a special problem into which we shall 
not here enter. It is obvious, however, that if the acoustic spectrum of the crystal 
has a concentration of energy at or near a particular wavelength which may be 
greater than the minimum possible, the scattered X-rays may be expected to show 
a concentration of intensity in the vicinity of a corresponding cone of rays. 

3. The optical case 

Equations (1) and (2) are equally applicable in the optical case, v* being now one 
of the characteristic optical frequencies of the crystal lattice and I* is the 
wavelength of the periodic stratifications of electron density resulting from the 
lattice vibrations of that frequency excited in the crystal by the incident X-rays. v* 
is, of course, much larger than in the acoustic case, but even so, it is small 
compared with the X-ray frequency. Hence, though the change of frequency in the 
act of reflection indicated by equation (1) is an essential part of the phenomenon, 
we may without sensible error take I = I' in equation (2). We shall, however, 
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retain the ascent in 2' to indicate that the vector 112' refers to the direction of the 
reflected X-ray. In the acoustic case, the vector 1/d* has an arbi,trary direction and 
an arbitrary magnitude subject to only a maximum limit, with the result that the 
vector 1/2' representing the direction of the scattered X-rays has an arbitrary 
direction lying within a certain cone. In the optical case, however, conditions are 
different, as we shall presently see, with the result that the vector 111' is restricted 
to specifiable directions and the observed effect is in the nature of a well-defined 
reflection and not an irregular scattering. 

We shall first consider the particular case in which the optical vibrations 
excited in the cells of the crystal lattice are everywhere of identical phase; in other 
words, the phase-waves of the lattice vibrations have ap infinite wavelength 
(A = a ) .  As already remarked, the possibility of optical excitation of the lattice 
vibrations depends on the fact that these vibrations produce time-periodic 
variations in the Fourier components of the space distribution ofelectron density, 
in other words, produce periodic pulsations of the structure amplitudes of the 
crystal. When A = co the wavelength of these pulsations is the same as that of the 
crystal spacings, or a harmonic thereof; and the wave-fronts also run parallel to 
the crystal spacings. Accordingly, we may write 

4 4 

whdre n is an integer (1,2,3,. . .) and lld is a vector normal to any chosen set of 
crystal spacings, its magnitude being the reciprocal of that spacing. Combining 
(2) and (4), we have 

Representing this graphically, (figure 2), we derive the formula 2d sin 0 = nd, 0 
being the glancing angle of incidence and of reflection. Equation (5) thus shows 
that when the phase-wave length A of the lattice vibrations is assumed to be infinite, 
the quantum reflection of X-rays with diminished frequency occurs under the same 
geometric conditions as the classical X-ray reflections. 

Figure 2 
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The case when A is finite corresponds to a lattice vibration in which the phase 
of the atomic vibrations alters progressively from cell to cell. The phase of the 
pulsation of structure-amplitude will therefore also alter from cell to cell, and in 
general, both the direction of the wave-fronts along which this phase is congtant, 
and the spacing between successive such wave-fronts will differ from the crystal 
spacings. These quantities are indicated by the vector 1/A* and the reciprocal of 
its magnitude. We may readily find the relation between A*, the lattice wavelength 
A and the crystal spacing d/n (see figure 3). 

Figure 3 

The crystal spacings are a set afequidistant planes marked d/n in the figure and 
the phase waves of the lattice vibrations are another set of planes marked A 
crossing them at an angle as in figure 3. It is evident that the planes along which 
the phase of the pulsations of electron density would be constant would be the set 
of planes crossing both diagonally and marked A* in the figure. The spacings of 
the three sets of planes are evidently cohnected by the vector relationship between 
their reciprocals (see note at the end of the paper). 

Combining (6) with (2), we have, in the most general case 

Equation (7) reduces, as it should, to equation (5) when A is infinite. It states the 
most general law of the quantum reflection of X-rays which may be put into 
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words thus: W e  combine vectorially the reciprocals of the crystal spacing and of the 
wavelength of the optical vibrations of the crystal lattice. The reciprocal of the 
resultant gives the spacing of the dynamic stratijicatiovs of electron density and its 
direction that of their normal: these dynamic stratijications give a geometric 
reflection of the X-rays with diminished frequency. 

The optical vibrations of a crystal lattice have well-defined frequencies, as is 
shown by the sharpness of the lines observed in the spectrum of the light scattered 
by the crystal. The fact that the frequency shifts observed in light scattering have 
not so far been found to depend appreciably on the angle of scattering is also 
significant and shows that the lattice frequenciesare approximately independent 
of the lattice wavelengths. Regarding the observed frequencies as due to the 
characteristic vibrations of the unit cells in the lattice, it is evident that the 
frequency as observed with an actual crystal would be N-fold degenerate, N being 
the number of lattice cells in the fragment of crystal used. Actually, the N 
frequencies should be regarded as forming an aggregate which is densest at the 
frequency corresponding to an infinite lattice wavelength ( A  = a) and rapidly 
thins out as A diminishes. These considerations enable us to understand the 
effects to be expected on the basis of equation (7). A can always be considered as 
large compared with d/n. Hence, the effect of its appearance in the right- 
hand side of equation (7)  on its scalar magnitude is a small quantity of the first 
order. It serves, however, to alter the orientation of the wave-fronts of the 
dynamic stratifications with respect to the crystal spacings. Indeed this would be 
its only effect if the vectors 1/A and n/d are mutually perpendicular, as the 
resultant of their addition would then be practically n/d. In the limiting case when 
A is infinite, equation (7) shows that the quantum reflection appears under the 
same conditions as the classical reflection and coincides with it in position. It is 
also then of maximum intensity, as the N-fold aggregate of optical frequencies of 
the lattice is densest for infinite values of A. As the crystal is tilted away from the 
setting for the ordinary Bragg reflection, equation (7)  shows that A must diminish 
in magnitude, and the intensity of the quantum reflection must therefore fall off in 
proportion to the diminished density of the aggregate of frequencies for smaller 
values of A. As we shall see presently, the quantum reflection also then separates 
out from the Bragg reflection and can be observed by itself. 

4. Geometric law of quantum reflection 

The geometric interpretation of equation (7) is facilitated by first considering a 
case in which the vector 1/A besides being small compared with n/d is 
perpendicular to it and lies in the same plane with it as the incident X-rays. In this 
case, it is evident that the result of combining 1/A and n/d vectorially is to tilt the 
reflecting planes in the plane of incidence with respect to the crystal spacings but 
without any alteration of these spacings. If therefore we consider a case in which 
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the crystal-spacings are so inclined to the incident monochromatic X-rays that 
they canfot give a Bragg reflection, in other words, when 

they would nevertheless give a quantum reflection according to the formula 

where d' has the same magnitude as the crystal spacing d, but its direction has 
been altered so as to satisfy the vectorial relation (9). This relation indicates that 
the incident X-rays give a reflection with diminished frequency in the plane of 
incidence even when the Bragg reflection is not possible, and that the direction in' 
which it appears with reference to the incident X-rays is unaffected by the setting of 
the crystal, though as remarked above, its intensity would fall off rapidly as the 
crystal is turned awayfiom the Bragg setting. 

Equation (9) is represented graphically in figure 4 for two cases in which the 
crystal has been turned away from the Bragg setting in one direction or the other. 

Figure 4 

In both cases, the direction of the reflected ray OR is the same and is given by the 
trigonometric formula 

2d sin jKB + 4) = nl ,  (10) 
where 0 and 4 are the glancing angles of incidence and reflection with respect to 
the crystal spacings. 

The postulate made above which results in the formulae (9) and (lo), namely, 
that the vectors 1/A and l /d are perpendicular to each other, physically 
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interpreted, means that the lattice-waves excited by the X-rays have wave-fronts 
perpendicular to the crystal spacings giving the quantum reflection. There is good 
reason to believe that this must be actually the case with most crystals. For, the 
atomic vibrations which are effective in altering the structure-amplitude of any 
particular spacing are those in which the displacements are normal to the crystal 
spacing. If the lattice wave-fronts are parallel to the crystal spacings, the phase of 
the atomic vibrations would alter as we pass from one spacing to the next, 
whereas if they are perpendicular to the crystal spacings, the phase of the 
vibration would change along the crystal spacings but not perpendicular to them. 
The forces brought into play between the neighbouring cells of the lattice by such 
phase-changes would obviously be much greater in the former case than'in the 
latter. Accordingly, the N-fold aggregate of frequencies would be spread out over 
a much wider range of frequencies when A and d are parallel than when they are 
perpendicular. So far as the reflection of X-rays is concerned, therefore, we would 
be justified in considering only the case where A and d are perpendicular and 
ignoring the case where they are parallel. Equation (10) could then be regarded as 
the generally valid geometric law for the quantum reflection of X-rays with 
diminished frequency. 

It must be recognised, however, that there may be cases where the consider- 
ations set forth above cannot reasonably be expected to be valid. It may, for 
instance, be possible that the binding forces which hold the crystal lattice together 
are of such a nature that though the atomic vibrations are normal to the crystal 
planes under consideration, a change in the phase of such vibrations along the 
crystal planes may evoke forces and disturb their frequencies quite as much as a 
change of phase normal to them. In such a case, the postulate that the vectors 1/A 
and l/d are perpendicular may cease even to be approximately true. In such cases, 
that is, when the effective lattice-waves have an arbitrary inclination to the crystal 
spacings, an alternative principle suggests itself giving the selection rule for €he 
vector 1/A, namely, that the direction of the vector is such that its scalar 
magnitude necessary to satisfy equation (9) is a minimum. Such a principle would 
not be unreasonable in view of the remark already made that the frequency- 
aggregate of the optical vibrations becomes rapidly less dense for increasing 
values of A. It can readily be shown that this principle gives the same result as 
equation (10) when 8 and 4 are nearly equal to each other, that is to say when the 
setting of the crystal is not far from the Bragg position. More generally, however, 
it deviates from that result. 

Figure 5 represents equation (7) graphically for two cases in which the crystal 
has been turned away from the Bragg setting in one direction or the other, and A 
is chosen to have the minimum necessary length required to satisfy the equation. 
The direction of the reflected ray is OR, in one case and OR, in the other. It will 
be noticed that the effective resulting spacing is in one case greater than d/n, and 
in the other case less than d/n. At the correct Bragg setting, therefore, OR, and 
OR, become coincident. The geometric law of the quantum reflection is seen 
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Figure 5 

from figure 5 to be 

Equations (lo) and (1 1) give results which differ the *ore widely, the greater the 
difference between 8 and 4, but become identical when 8 = 4. It will be noticed 
that they correspond respectively to the results which have been found 
experimentally valid forthe cases of sodium nitrate and diamond. The divergence 
between the results given by the two formulae when 8 Z 4, and the fact that they 
have been derived on quite different considerations suggests that when the crystal 
is tilted away from the correct Bragg setting, the definition of the quantum 
reflection should progressively deteriorate. Such an effect is actually observed, 
but whether it is due solely to the cause stated or is due partly also to other 
disturbing effects, e.g., thermal agitation or the mosaic structure of the crystal, is a 
matter for further investigation. 

Summary 

When X-rays fall upon a crystal, the characteristic vibrations of the crystal lattice 
may be excited thereby, in much the same way as in the phenomenon of the 
scattering of light in crystals with diminished frequency, the excitation being a 
quantum mechanical effect. From the equations for the conservation of energy 
and momentum, the geometrical relations entering in this effect are deduced 
theoretically for the two cases in which the lattice vibrations fall within (1) the 
acoustic range of frequency and (2) the optical range. In the first case, the incident 
X-rays are scattered in directions falling within a cone having the incident ray as 
axis and with a semi-vertical angle 2sin-'A/2A* where A* is the minimum 
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acoustical wavelength. In the second case, we have a quantum-mechanical 
reflection of the X-rays with diminished frequency in a direction which generally 
follaws the geometric formula 2dsin4(8 + 4) = n3, where 8 and 4 are the 
glancing angles of incidence and reflection on the crystal spacings. For crystals 
with specially rigid bindings, the alternative formula d sin (8 + 4) = nr2 cos 4 is 
indicated as being more appropriate. In either case, the intensity of the reflection 
should fall off rapidly as 8 and 4 diverge. 

Note: Equation (6) may be very s~mpl)  derived from the construction shown in figure 3. The vector 
sum of the two sides of a triangle is equal to the third side. Dividing this equation by the area of the 
triangle, we get a vector relation between the reciprocals of the three perpendiculars from the vertices 
on the sides. 
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