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1. Introduction 

It is a fundamental problem in the physics of the solid state to determine the 
possible modes and frequencies of vibration of the atomic nucleii in a crystal 
about their positions of equilibrium. The importance of the problem will be 
evident when we recollect that there is scarcely any physical property of a solid 
which is not influenced in greater or less measure by the thermal agitation of the 
atoms, and that the existence of atomic vibrations (excited thermally or 
otherwise) comes into evidence in a variety of phenomena exhibited by crystals. 
We may, in particular, mention various optical effects observed with crystals, e.g., 
the scattering of light with altered frequency, luminescence and absorption 
spectra at low temperatures, which not only render the existence of atomic 
vibrations in them obvious, but also enable us to make precise determinations of 
their vibration frequencies, and even infer their geometric characters. 

An appropriate starting point for the inquiry is furnished by the well known 
result in 'analytical mechanics that all the possible small vibrations of a 
conservative dynamical system about a position of stable equilibrium may be 
represented as a superposition of certain modes of vibration designated as the 
normal modes of the system. In each such mode, the particles of the system 
execute harmonic vibrations with a common frequency characteristic of the 
mode, and all pass simultaneously through their positions of equilibrium at some 
particular phase of the vibration. The question arises for investigation, does the 
structure of a crystal possess any normal modes of vibration as thus defined, and 
if so, what are their frequencies? In seeking an answer to this question, it is 
obviously not permissible to make in advance any arbitrary postulate regarding 
the nature of the normal vibrations, since this is itself the subject-matter of the 
investigation. Further, it is essential that we assume the most general type of 
interaction possible between the atoms in the crystal which is consistent with its 
known structure and symmetry properties. Indeed, in an investigation intended 
to deduce results of general application, it is evidently undesirable to make any 
special postulates regarding the interatomic forces, viz., that they are only 
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operative as between contiguous atoms or that they are in the nature of central 
forces whose magnitude varies as some power of the distance. The introduction of 
arbitrary postulates and assumptions has indeed, as will be shown in this paper, 
led to misleading results in the past history of the subject. 

2. The Lagrangian equations of motion 

We denote the displacements of a chosen atom in a particular cell of the crystal 
structure from its position of equilibrium by thesymbols qxr,, q,,, q,,,, these being 
parallel respectively to the three mutually perpendicular co-ordinate-axes x, y 
and z. Here r is an index number indicating a particular atom amongst the p 
atoms in the cell of the crystal structure, while s is an index number indicating the 
particular cell in which the atom is located. The symbols q,,,, gyp,, q,,: have 
similar significance, except that p and a which are the at& and cell indices 
respectively are regarded as unspecified. The masses of the atoms are written as mr 
or mp. 

The kinetic energy T of the vibrations of the crystal is accordingly given by the 
summation over all possible values of p and a of theexpression 

The potential energy V of the displacements of the atoms from their positions of 
equilibrium is given by the summation of all the terms derived from the 
expression 

LKYPe 
2 xrs 'qxrs'qypa 

by making r, s, p, a run over all the possible values, as also by interchanging x, y 
and z. The dependence of the force-constants jointly on x, r, s and y, p, a is 
indicated by the indices attached to them. It is evident that 

Hence, since each distinct pair of co-ordinates appears twice over in the 
summation, we may replace the factor i by 1 in (2), it being understood that they 
are written together only once. The factor 3 is however retained for the terms 
which appear as the squares of the displacements. 

The equation of motion which must be satisfied by any particular co-ordinate, 
e.g., qxrs is 

If we assume that the vibration under consideration is a normal mode for the 
crpstal, the displacement-components of all the atoms must be of the form q sin at 
where the q's are real quantities depending on the atom chosen and the direction 
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of its displacement, while w is the same for all atoms in the crystal. On this basis 
the equation for q ,  becomes 

. The summation indicated on the right-hand side of (5) is to be understood as 
including the contributions due to all the displacement-components of all the 
atoms in the crystal with the single exception of the displacement qxrs under 
consideration which appears on the left-hand side of the equation. There would, 
of course, be a whole series of equations of this type for the x, y and z 
displacements of every atom in the crystal, and it is necessary that all these 
equations are simultaneously satisfied for the given value of w, for the vibration 
under consideration to possess the characters of a normal mode. 

3. The solution of the equations 

The clue to the discovery of the normal modes of vibration is furnished by the 
basic principle of crystal architecture which may be stated as follows: A crystal 
consists of sets of equivalent atoms ordered in such manner that each atom in a set is 
hoth geometrically and physically related to its environment in exactly the same way 
as every other atom of the same set. From this it follows that the force-constant 
which connects the displacements of any pair of atoms in the crystal is the same as 
that which connects the displacements of any other pair of atoms, provided that 
the two pairs of atoms can be simultaneously brought into coincidence by simple 
translations of the crystal lattice parallel to its axes. 

Consider now the equation of motion analogous to (5) for the rth atom in a 
different cell, say sf .  In writing it down, it is convenient to choose a running cell- 
index a' different from the a appearing in (5), but so related to it that the 
translations of the crystal lattice which would bring sf into coincidence with s 
would also bring a' into coincidence with a .  We have then 

Now the relation between s, a and sf ,  a' assumed above, taken in conjunction with 
the physical structure of the crystal, gives us at once the relations 

xrs - Kxrs - K Z  (7) 
KY$," = KYPaf 

xrst Y (8) 

between the force-constants appearing in (5) and (6). This identity of the force- 
constants appearing on both sides of the equations of motion of equivalent atoms 
suggests that their displacements in a normal mode of vibration are also related 
to each other in a simple way. Algebraically, it is evident that if there exists 
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between them a general relationship of the form 

it follows therefrom that when equation (5) is satisfied, equation (6) will also 
simultaneously be satisfied, and indeed also the similar equations for all the 
equivalent atoms of index r in the crystal. Further, if the general relations 
indicated in (9) subsist, they are sufficient to ensure that when the equations of 
motion of an atom of any chosen index number is a particular cell are satisfied, the 
equations of all the other equivalent atoms of the same index number in every 
other cell of the crystal lattice are also simultaneously satisfied; the latter is a 
necessary condition for the vibration to be a normal mode. 

4. Nature of the normal modes 

We shall now consider more closely the significance of the relations stated in (9). 
They may be written in the form 

Stated in words, the meaning of (10) is that the vibrations of the equivalent atbms 
in the crystal are quantitatively related to the vibrations of the other atoms 
forming their respective environments in an identical fashion. Prima facie, this is 
what we should expect, since equivalence of geometric position in the crystalline 
array of atoms necessarily involves an equivalence in the strength of the forces 
holding the atoms together as indicated in equatiohs (7) and (8), and hence should 
result also in equivalence in respect of dynamic behaviour in a normal vibration. 
To make the meaning of such equivalence clearer, we may return to equation (9) 
and take a case in which the cells s and s' occupy contiguous positions along one of 
the axes of the Bravais lattice. It follows that a and a' would similarly occupy 
contiguous positions along a parallel axis. Equation (9) thus signifies that the 
ratio of the corresponding displacements of any pair of contiguous equivalent 
atoms in the crystal lattice is a constant characteristic of the particular axis and of 
the particular normal mode under consideration. 

We may apply the same arguments to cells contiguous to each other 
respectively along the second and third axes of the Bravais lattice. The three 
characteristic constants thus obtained need not necessarily be the same, and we 
therefore denote them by a, P, y respectively. Since the atomic displacements are 
real quantities and their phases in a normal mode are all either the same or 
opposite, the constant ratios a, P, y must be assumed to be real quantities which 
may be either positive or negative. If, starting from a particular cell, we move out 
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to another which is reached by u, v, w primitive translations in the positive 
directions along the three axes of the Bravais lattice, the amplitude of the 
vibration of corresponding atoms would be altered in the ratio a" /3" yw, while if we 
similarly proceed in the negative direction, we would reach a cell in which the 
amplitudes are altered in the ratio u-"P-"y -W. Hence, if a or /.? or y is numerically 
different from unity, we may, by proceeding sufficiently far in one direction or 
another from an arbitrarily chosen cell where the amplitude is small, reach cells 
where the amplitudes are larger than any assigned limit. Hence, the initial 
postulate that the vibration amplitudes are .everywhere small can only be 
sustained if the constants a, fl, y are numerically equal to unity, and are either 
positive or negative. We thus obtain the result 

The possible choices from amongst the alternative signs in the three equations 
(1 1) are evidently independent. We have therefore eight possible cases, all of which 
are covered by the following description: Equivalent atoms in the crystal have all 
the same amplitude of vibration, their phases being either the same or else opposite in 
successive cells of the lattice along each of its three axes. We may also describe the 
position as follows: The atomic vibrations repeat themselves exactly in a space- 
pattern of which the unit has twice the dimensions in each direction and therefore 
eight times the volume of a unit cell of the crystal lattice. We may interpret these 
statements physically by considering the well known result of coupling two 
exactly similar oscillators to each other, namely the appearance of two types of 
vibration in which the oscillators have the same phase and the opposite phases 
respectively. In other words, the dynamic behaviour of a crystal is a three- 
dimensional analoguefof the case of two coupled oscillators. 

5. Enumeration and description of the modes 

We have now to consider the question whether the relations stated above in 
equation (1 1) uniquely determine all the p'ossible normal modes of the atomic 
vibrations in a crystal. The readiest way in which we can satisfy ourselves that this 
is the case is by considering the question from a physical point of view. The 
significance of equation (11) can be stated in the following manner: I n  every 
normal mode of vibration, the ehergy of the vibration is the same for every individual 
cell of the crystal lattice, while the amplitudes have eithw the same signs or else have 
alternately opposite signs in the successive cells. The two parts of the proposition 
are complementary and taken together characterise the normal modes com- 
pletely. It is easy to see that no vibration in which either or both of these 
characters is departed from can be a normal mode, If, for example, the energy of 
the vibration were to vary from cell to cell, it would be obviously not possible for 
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such a state of affairs to continue permanently in a homogeneous structure. 
Energy would be progressively transferred from the cells having the greater 
energy to those having less, and the nearer the cells are to each other, the more 
rapidly would this process occur. A normal vibration is, by definition, perfectly 
time-periodic and hence, the equality of the energy of vibrations in the different 
cells is a necessary feature of it, and this in turn is only possible if equivalent atoms 
have the same amplitude of vibration. It only remains therefore to consider the 
question of the phases. Here, again, the definition of a normal mode allows only 
two alternatives, namely a positive or a negative amplitude. The effect of 
reversing the phase of the vibration of the atom without altering its amplitude is 
to change the sign of the term contributed by it to the equation of motion of every 
atom in the crystal, leaving its magnitude unaltered. From this, it follows that 
equations (5) and (6) cannot be simultaneously satisfied unless all the correspond- 
ing atomic displacements have the same signs in the two equations or 
alternatively have all the opposite signs. These requirements are satisfied by the 
eight dispositions indicated by equations (1 I), but not by any other conceivable 
arrangement of positive and negative amplitudes of equal magnitude over the 
cells of the lattice. 

The relations stated in (11) enable us to reduce the number of independent 
equations ofthe type (5) which have to be solved from an infinite set to just 3p 
equations for each of the eight distinct cases arising therefrom. The constants 
appearing on the left-hand side are, of course, different in each of the 3p equations 
of each set. The terms appearing on the right-hand side of each equation may be 
grouped into sets in which each of the (3p - 1) co-ordinates involved appears 
multiplied by what is technically an infinite series. Physical considerations, 
however, indicate that these series should be convergent and summable. Each of 
them may therefore be replaced by a single new constant. In other words, for each 
of the eight distinct cases arising from (8), we may frame a set of 3p equations 
connection the 3p co-ordinates, the constants appearing in them having new 
values. The solution of the sets of equations thus obtained would enable both the 

, normal modes (viz., the ratios of the atomic displacements) and the normal 
frequencies to be evaluated. 

It thus becomes evident that the number of normal modes and normal 
frequencies for each of the eight cases arising from (8) is 3p. In other words, we 
have 24p normal modes and normal frequencies, which is the same number as the 
degrees of freedom of the 8p atoms whose vibrations form the repeating pattern in 
space. It should, however, be remembered that we have started from the 
assumption that the crystal as a whole is at rest. Its centre of gravity must 
therefore remain fixed, and this gives three conditions of constraint which would 
reduce the number of solutions by 3. Thus in all, we have only (24p - 3) normal 
modes and frequencies of vibration. The individual cell of the crystal lattice is the 
unit of the repeating pattern in space for (3p - 3) of these modes, the atoms in the 
cell vibrating against each o-ther. The repeating pattern in space for the remaining 
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21p normal modes is the super-cell already considered which has twice the 
dimensions and eight times the volume of a unit cell of the lattice. 

It is possible to give simple geometric descriptions of the eight different types of 
normal modes arising from equation (1 1). The modes described by a = 1, p = 1, 
y = 1 may be pictured as oscillations with respect of each other of the p 
interpenetrating Bravais lattices of atoms of which the crystal is built up. There 
would be ( 3 p  - 3) such modes, while the other 3 degrees of freedom of these 
lattices may be identified as simple translations of the entire crystal which we have 
already excluded from the scheme. The remaining 21p normal modes may be 
pictured as oscillations relative to each other of the alternate planes of equivalent 
atoms in the crystal. If for example, a = 1, fi = 1 and y = - 1, the alternate planes of 
the atoms containing the a and p axes and intersecting the y axis would oscillate 
against each other. If a = 1, p =  - 1, y = - 1, the alternate planes of atoms 
passing through the a axis and cutting both the fi and y axes would oscillate 
against each other. If a, p, y are all negative, the oscillating planes of atoms would 
intersect all the three axes at the appropriate angles. In the case of a cubic crystal, 
for example, the oscillating planes of atoms would be those respectively parallel 
to the cubic, dodecahedra1 and,octahedral faces of the crystal. 

6. Nature of the atomic frequency spectrum 

The result which emerges from the foregoing discussion is that the vibration 
spectrum of the crystal consists of a set of discrete monochromatic frequencies which 
may be described as arising from the vibrations against each other of the atoms 
located in the units of an 8-cell super-lattice. In deducing this result, we have 
regarded the crystal as a three-dimensionally periodic structure infinitely 
extended in space, and ignored the existence of any external boundary. This 
procedure appears justified. For, in the equations of motion of an atom, the terms 
contributed by the other atoms in the crystal must necessarily be assumed to form 
a convergent series, in other words, their influence on its motion reaches a 
limiting value when the size of the crystal is increased indefinitely. Hence, the 
presence or absence of an external boundary can make no sensible difference to 
the modes of the atomic vibrations in the interior of the crystal. 

It may be remarked also that the number of discrete frequencies observable 
would be very considerably diminished if the crystal belongs to a class exhibiting 
a high type of symmetry. For, in such a case, several of the modes of vibration 
reckoned as distinct in the preceding enumeration would possess identical 
frequencies. Taking for instance a crystal of the cubic system, we recognize that 
the symmetry of the crystal would result in the eight distinct sets of frequencies 
indicated by equation (8) being in effect reduced to four. In one set of normal 
modes, all equivalent atoms in the crystal move in the same phase: in three sets of 
normal modes, the equivalent atoms so moving lie in planes parallel to one or  
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another of the cube faces and the corresponding frequencies would therefore be 
the same; in three others again, planes of atoms parallel to the dodecahedra1 faces 
move in the same phase, and the corresponding frequencies will therefore be 
identical: in the eighth set, the planes of atoms moving in the same phase are 
parallel to the octahedral faces. The total number of distinct frequencies possible 
is thus reduced from (24p - 3) to (12p - 3). A further reduction will arise if the 
directions of movement of the atoms in normal modes reckoned as distinct in this 
enumeration are actually equivalent. For instance, the existence of a normal 
mode in which all the equivalent atoms oscillate parallel to one of the cube axes 
necessarily involves the possibility of two otheis having the same frequency. In 
these and other ways, a very considerable reduction in the number of distinct 
frequencies and consequent simplification of the vibration spectrum would result. 

7. Elastic vibrations of the crystal lattice 

As already remarked, the 24p degrees of freedom of the atoms contained in the 
cells of the super-lattice gives us only (24p - 3) normal modes of atomic vibration. 
The 3 degrees of freedom of translation of the super-cell left over in this 
enumeration must therefore be assigned to modes of vibration of a different 
nature. The natural assumption to make is that they represent the lower 
frequencies of vibration coming under the general description of elastic 
vibrations of the crystal lattice. On this basis, the elastic vibrations represent only 
one-eighth of the total number of degrees of freedom in the case of crystals 
consisting of a single Bravais lattice, one-sixteenth of the number when there are 
two interpenetrating Bravais lattices, and a still smaller proportion when there 
are three, four or more atoms in the unit cell, finally becoming a negligible 
fraction of the whole in crystals of even moderately complex structure. 

According to the classical theory of elasticity, waves of any frequency and of 
corresponding wavelength are possible within an infinitely extended solid, but 
specific modes of elastic vibration can only exist in a solid of finite extension, its 
shape and dimensions determining the modes as well as their frequencies. As we 
have seen, however, an atomistic approach gives a wholly different result, viz., 

' 
that the normal modes and frequencies are determined by the internal structure 
of the crystal, the form and dimensions of the external boundary being irrelevant. 
The apparent contradiction between these conclusions disappears when we 
notice that the classical theory of elasticity describes the low-frequency region of 
the vibration spectrum, while the atomistic theory describes the high-frequency 
end. The two types of vibration differ in important respects. In the atomic 
vibrations properly so called, the absolute and relative atomic displacements are 
throughout of comparable magnitude, while in the elastic vibrations, the 
translatory movements of the lattice cells are greater than the relative atomic 
displacements approximately in the ratio of the wavelength to the cell dimen- 
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sions. While the two types of vibration may possibly tend to resemble each other 
in a transitional range, we are not justified in extrapolating either theory into the 
region of frequency in which it is wholly inapplicable. 

The inappropriateness of the elastic solid theory in considering the high- 
frequency vibrations of a crystal lattice needs to be particularly emphasised. The 
theory is based on the idea that the material is a continuum having a uniform 
density and elasticity, whereas in reality, the crystal has a discrete atomistic 
structure. X-ray investigations show that the electron-density in a crystal is not 
uniform but is a triply-periodic function of position. The Fourier components of 
the electron density have noteworthy amplitudes, but they fall off with increasing 
order rapidly. The discontinuity of crystal structure is even more striking when 
we consider the mass-distribution. This is concentrated at the individual lattice 
points occupied by the atomic nuclei, and a Fourier ahalysis of the density 
distribution would therefore give component amplitudes which do not diminish 
with the order and each of which would by itself be greater than the average 
density of the crystal (by a factor of two in the case of a single set of atomic planes). 
This is a state of affairs very remote indeed from the uniform mass-density and 
elasticity assumed in the classical theory. Hence, only when the elastic 
wavelengths are large compared with the crystal spacings could we expect a 
concordance between the facts and the results of that theory. For smaller 
wavelengths and higher frequencies, the theory must fail, as is evident when we 
consider the behaviour of elastic waves in a medium exhibiting very pronounced 
stratifications of mass density or elasticity. If the Fourier components of space- 
variation of density were small, we would have selective reflections of the elastic 
waves analogous to the familiar optical or X-ray reflections by stratified media. 
The large amplitude of the Fourier components of mass-density however alters 
the situation radically, and it is readily shown that the bands of selective reflection 
of the elastic waves would broaden so greatly as to result in a complete cut-o$of the 
high-frequency region of the spectrum.* In the region of high frequencies, therefore, 
the ideas of the elastic solid theory are wholly irrelevant and inapplicable, and an 
atomistic approach to the theory becomes absolutely necessary. 

One might, on the other hand, be tempted to carry over the atomistic approach 
which proves successful in the high-frequency region towards lower frequencies. 
To do this, one may assume that modes of vibration exist in which groups of 
atoms, as for example the super-cells considered earlier in the paper, oscillate 
within the crystal against other super-cells of the same kind, forming a repetition 
pattern of vibrations in which the space-unit is a giant cell having four times the 
dimensions and sixty-four times the volume of the unit cell of the crystal lattice. 
Pro forma equations of motion may even be framed for the oscillation of such 

*Cf. Scientific Papers of the late Lord Rayleigh, Vol. 111, Art. 142, Equation (74); Philos Mag. 24 145 
(1 887). 
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groups and the possible solutions discussed on the same lines for the atomic 
vibration, giving us eight sets of possibilities of the same kind as those given by 
(1 1); one of these, namely that in which all the super-cells vibrate in the same way 
should be excluded, as this would involve displacements of the centre of inertia of 
the entire crystal. The 8 x 3 or 24 degrees of freedom of oscillation of the super- 
cells contained in the giant cell would thus give us 21 modes of vibration, leaving 
as before, 3 degrees of freedom to be assigned to still lower frequencies of 
vibration. In the case of crystals of high symmetry, the number of distinct 
frequencies thus arising would naturally be reduced much below the maximum 
of 21. 

An approach of the kind suggested above is obviously lacking in rigour, since it 
leaves the movements of the individual atoms within the oscillating super-cells 
unspecified. It is however not without value, since it indicates that as we come 
down the scale of frequency, the vibrations in the lattice may tend to take on the 
character of group movements which are intermediate in character between the 
purely atomic vibrations occurring at the high-frequency and the purely mass 
movements at the low-frequency end. The configuration of the vibrating groups 
bears a specific relation to the structure of the crystal instead of, as in the elastic 
vibrations, being determined solely by the form and dimensions of the external 
boundary of the crystal. It is also clear that the frequencies of the group 
movements would be related to the size of the groups in much the same way as the 
frequency of elastic waves is related to their wavelengths. If such group 
oscillations exist, as seems not unlikely in the higher ranges of the elastic 
spectrum, the frequency distribution in the latter would tend to approach the 
discreteness characteristic of the atomic vibration spectrum, instead of being 
continuous as indicated by the classical theory of elasticity. 

8. Remarks on some earlier theories 

The close analogy between the vibration-spectra of molecules and of crystals 
indicated by the foregoing theory receives unmistakeable support from the 
results of the experimental investigation of crystal spectra by the several distinct 
methods to which reference has been made earlier in the paper. The results of the 
present theory are however in striking contrast with the ideas widely prevalent at 
the present time regarding the nature of the atomic vibrations in crystals. It is 
necessary, therefore, at this stage to make some critical comments on the earlier 
views which have found currency in the literature of the subject. 

The well known and closely allied theories of Debye and Born on the atomic 
vibrations in solids were put farward about the same time (1912) in order to 
explain their thermal behaviour at low temperatures. As was shown earlier by 
Einstein in 1907, however, the frequencies of the atomic vibrations which 
constitute the thermal energy of a solid lie in the infra-red region of the 
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electromagnetic spectrum. It follows that the evaluation of the specific heat of a 
solid must depend on a knowledge of its spectroscopic properties in the infra-red 
frequency region. The experimental spectroscopic data for solids available in 
1912 were, however, of a very meagre description. This may have been the reason 
why Debye and Born sought a different path from that indicated by Einstein and 
endeavoured to calculate the specific heat of solids by identifying their thermal 
energy with the energy of elastic vibrations of all possible frequencies. However, 
recent spectroscopic studies with many crystals, including especially several of 
the simplest chemical composition, show this identification to be unjustifiable. 
For, they reveal numerous characteristic or monochromatic frequencies lying in the 
remotest infra-red, in other words, within just the region which was sought to be 
described as a continuous spectrum of elastic vibration frequencies. 

Both Debye and Born assumed that the normal modes of atomic vibrations 
have the same relation to the external dimensions of the solid as do the vibrations of 
the elastic type. This assumption is not, however, a reasonable one, since the 
modes and frequencies of the mass movements involved in elastic vibration and 
the modes and frequencies of atomic vibration depend on wholly different factors. 
These are the macroscopic properties and dimensions of the solid for the former, 
while for the latter they are the individual masses of the atoms and the manner in 
which they are arranged and bound together in the fine structure of the crystal. 
The considerations already set out above indicate that the external boundary of 
the solid can have no determining influence either on the normal modes or the 
normal frequencies of the atomic vibrations. On the other hand, the size and 
shape of the solid is the principal factor in determining the normal modes and 
frequencies of its elastic vibrations. 

It is thus evident that theoretical considerations and experimental facts alike 
compel us to reject the assumptions on which the Debye and the Born theories 
are based. 

9. Born's postulate of the cyclic lattice 

In the Born theory, the lattice structure of the crystal is formally taken into 
consideration on the basis of the so-called "Postulate of the Cyclic Latticew.* This 
postulate assumes the phase of the vibration to alter progressively along each of 
the axes of the Bravais lattice in such manner that the "phase-wavelength" is a 
sub-multiple of an arbitrary chosen length which is itself a large integral multiple 
of the lattice spacing. Thus, .for each axis, the number of possible phase- 
wavelengths is equal to the number of lattice spacings contained in the given 
length, and when all the three axes are considered, the total number of 

*Problems of atomic dynamics, by Max Born, 1926, p. 193. 
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possibilities becomes equal to the total number N of lattice cells contained in the 
assumed large volume of the crystal. When multiplied by 3p (the number of 
degrees of freedom of motion of the atoms in each cell), the total number of 
possibilities is increased to 3Np. Each of these is assumed to represent a possible 
normal mode of vibration with a corresponding frequency. Since the lengths of 
the "phase-waves" are assumed to the various sub-multiples of an arbitrarily 
assumed large multiple of the lattice spacing, they bear no simple relation to the 
crystal spacings themselves. Indeed, the phase-wavelengths postulated crowd up 
increasingly as they become smaller, and hence the vast majority of them have 
values intermediate between small integral multiples of the lattice spacing. It is not 
surprising therefore that the porn theory yields an immense array of frequencies 
which form a diffuse continuous spectrum and which correspond to the assumed 
practically infinite array of possible phase-wavelengths. 

From the statement made above regarding the Born postulatet, it will be 
evident that it is equivalent to taking the ratios a, jl, y considered in section 4 of 
the present paper as imaginary quantities, viz., 

a = jl = el*, y = eix. (12) 

As already pointed out however, such an assumption would be illegitimate, since 
in any normal mode the phase of vibration must everywhere be either the same or 
the opposite, in other words, the only possible values of 4, +, x are either o or n, 
making a, jl, y equal to either plus or minus unity, as indicated in our equation 
(11). If, on the other hand, it be suggested that equation (12) does not refer to a 
normal vibration but only to a "wave" in the lattice, then before it could be used 
for calculating the possible frequencies of atomic vibration, it would be necessary 
to show that the real amplitudes obtained by superposing on it another "wave" in 
the opposite sense given by 

a = e-'4 jl = e-i#, y = e - i ~ ,  (13) ' 

would satisfy the requirements for a normal vibration. The result of superposing 
the "waves" represented by (12) and (13) would be to give a vibration of which the 
amplitude is proportional to the product cos (+Il) cos ($1,) cos (XI,) where I , ,  I,, 1, 
are the three cell index-numbers counted respectively along the three axes. As 
already renlarked, however, Born's phase-wavelengths bear no simple relation to 
the crystal spacings, and hence the product cos(+ll) cos(Jl1,) cos(xI,) and 
therefore also the energy of vibration would vary from cell to cell within the 
crystal. This is a state of affairs which cannot possibly exist in a normal vibration, 
and it follows that except when 4, $ and x are each chosen equal to o or x ,  the 

'~andbuch Der Physik, Zweite AuJlage, Article by Max Born and M Goppert-Mayer, 1933, 2412 
p. 642. 
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Born phase-waves do not correspond to any real or possible normal modes of 
vibration. Thus, it is evident that the whole immense arrays of atomic frequencies 
given by the Born theory are "manufactured" by his assumption of modes of 
vibration which are physically impossible and that they do not possess any 
physical meaning or significance. 

The Born postulate is in the clearest contradiction with the experimental facts 
observed in crystals. As an illustration, we may choose the case of diamond in 
view of the simplicity of its structure. The unit cell of the diamond lattice contains 
two atoms, and the Born theory would therefore yield a continuous spectrum 
with two optical and two acoustic branches, ana hence exhibiting (at the most) 
four diffuse peaks or maxima. On the other hand, according to the present theory, 
the atomic vibrations in the 8-cell super-lattice would have (2 x 24 - 3) or 45 
modes, but on account of the high symmetry of the crystal, the number of distinct 
frequencies would be reduced to 8. The highest of these frequencies represents the 
oscillation of the two interpenetrating lattices in the crystal against each other 
and appears as a sharp and intense line with a frequency-shift 1332 cm-' in the 
spectrum of the scattering of light by diamond. The remaining seven modes of 
lower frequency are longitudinal or transverse oscillations against each other of 
the planes of equivalent atoms in the crystal lying parallel to the faces of the cube 
and the octahedron. Several distinct methods of investigation of the lattice 
spectrum of diamond are available, the results of which are an independent check 
on each other. The spectroscopic studies of P G N Nayar* show the existence of a 
whole series of discrete frequencies from 1332cmW1 downwards, and the values 
for these frequencies as deduced from the scattering, fluorescence and absorption 
spectra are in complete agreement with each other. While Nayar's experimental 
results find a natural explanation on the theory set forth in the present paper, they 
are wholly irreconcilable with the Born postulate and its consequences. 

10. Summary 

Starting from the most general expression for the potential energy of the 
displacements of the atoms in a crystal from their positions of equilibrium, their 
normal modes of vibration are derived. It is shown that in all the possible modes, 
the equivalent atoms in the crystal have all the same amplitude of vibration and 
either the same phase or alternately opposite phases in the successive cells of the 
lattice along each of its three edges, The vibrations thus form a repeating pattern 
in space of which the unit has twice the dimensions and eight times the volume of 
the lattice cell. The vibration modes are closely analogous to that of a molecule 

*P G N Nayar, Proc. Indian Acad. Sci. 15 293 (1942). 
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with the appropriate symmetries and containing eight times the number of atoms 
included in the lattice cell. The spectrum thus consists of a discrete set of 
monochromatic frequencies, the number of which is finite and is further reduced 
when the crystal belongs to a highly symmetric class. The small residue of degrees 
of freedom not included in this description appears as quasi-elastic vibrations 
having specifiable low frequencies. \ 
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