
Proc. Indian Acad. Sci. A42 111-130 (1955) 

Evaluation of the four elastic constants of some cubic 
crystals 

SIR C V RAMAN and D KRISHNAMURTI 
Memoir No. 76 from the Raman Research Institute, Bangalore 6 

Received September 15, 1955 

1. Introduction 

The mathematical theory of elasticity in its generally accepted form derives from 
a memoir by A L Cauchy presented to the Academy of Sciences at Paris in 1822. 
The analytical specification of the strains and stresses in elastic solids adopted in 
that theory expresses the strains in terms of the differential displacements of 
neighbouring points in the solid and the stresses in terms of the tractive forces on 
infinitesimal areas in the same location. The theory, however, does not make use 
of these representations with complete generality, but following Cauchy, adopts 
them in modified forms on the basis of arguments put forward by him and 
considered as authoritative ever since. But when one examines those arguments 
critically, they are found to be indefensible. This is particularly clear in regard to 
the representation of strains. In the most general case, we have nine components 
of strain, but Cauchy reduced their number to six by eliminating movements 
which he identified with rigid body rotations. Actually, however, the components 
thus eliminated are not rigid body rotations, but differential rotations which are 
of the same nature as those appearing in the deformation of solids by torsion or 
flexure andrhence, their elimination is not justified. Then again, Cauchy's 
reduction in the number of the stress components from nine to six is based on the 
idea that the angular momenta of the tractions taken about each of the co- 
ordinate axes and summed up should cancel out. But since the stresses are 
assumed to be in the nature of tractive forces and defined in terms of their 
magnitudes over infinitesimal areas, they have to be considered as acting on 

_ volume elements which are small enough to be regarded as particles and hence no 
consideration of angular momenta is called for. The reduction in number of the 
components of stress from nine to six has therefore no justification. Indeed, when 
once it is admitted that we have to retain all the nine components of strain, a 
similar step in regard to the components of stress follows inevitably. 

In a recent paper (Raman and Viswanathan, 1955) the Gonsequences of 
adopting the representations of stress and strain in elastic solids in their most 
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general form have been discussed in detail. It has been shown in that paper that 
Cauchy's assumptions result in restricting the cases which fall within its scope to 
homogeneous strains properly-so-called. The more general case of heterogeneous 
strains, including especially all cases of wave-propagation and static deform- 
atioqs in the nature of torsion and flexure, lie outside its scope. Nevertheless, the 
mathematical theor'y of elasticity has actually been applied to these cases and 
formulae have been obtained and the constants appearing in them have been 
evaluated experimentally. For example, the results of experimental studies with 
cubic crystals have been expressed in terms of three constants usually designated 
as Cll, C12 and C4, respectively. On the other hand, the more general theory 
shows that four constants designated as dl,, dl,, d,, and d4, are needed for the 
classes Oh and Td of the cubic system. Hence, by an examination of the 
experimental data for those cubic crystals of the Oh and Td classes which have 
been investigated with adequate precision by different methods, it should be 
possible to decide whether those data are expressible in terms of three constants 
only, or whether four constants are actually needed. It is the object of the present 
paper to present the results of such an examination. 

2. Some general remarks 

The determination of elastic constants of crystals can be made independently by 
static and dynamimethods. In the former case we naturally deal with the elastic 
constants under isothermal conditions and in the latter case under adiabatic 
conditions. The dynamic methods depend upon the determination of velocity of 
propagation of high-frequency waves of different types in the solid. Many of the 
recent determinations of the elastic constants of crystals have been made by these 
methods and it would seem that a high degree of precision has been attained in 
the resulting data. We shall accordingly make use of them in the evaluation of the 
elastic constants of the respective materials. 

The classical expression for the velocity of propagation in a cubic crystal in the 
older theory is given by equations of the type 

while in the corrected theory it is given by equations of the type 

pv2AX = Ax(d , , l2 + d4,(m2 + n2)} + (dl, + d4,)(AYlm + Azln). 

Thus in reducing the experimental data we make the following identifications: 

dll  = Cll; d,, = C4, and (dl, + d4,) = (C12 + C,,). 

It will be seen at once that if d,, = d,,, then the two theories lead to identical 
results. 
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Whereas in the older theory, if the wave-velocities had been measured for a 
sufficient number of directions the data resulting would suffice to determine the 
constants Cll, C12 and C,,, in the present theory it only enables us to evaluate 
the three quantities dl,, d,, and (dl, + d,,). Thus, at least one additional 
determination is needed by static methods yielding values for a different linear 
combination of the four constants. The most appropriate determination appears 
to be the bulk modulus the expression for which under the older theory is (C,, 
+ 2CI2)/3, whereas in the new theory it is (dl, + 2d1,)/3. While determinations of 
the bulk modulus are not easy, there is reason to believe that a degree of precision 
adequate for our present purpose has been readhed in the measurements made 
and reported from Bridgman's laboratory at Harvard. It is obvious that to utilize 
these data in conjunction with the determinations by the dynamic methods, it 
is necessary to assume that we are dealing in both cases with the same material 
and under the same physical conditions. Such an assumption would appear prima 
facie justifiable in the cases considered in the present paper, viz., crystallised solids 
of very simple chemical composition. The correctness of the assumption is 
reinforced by an intercomparison of the elastic constants determined by dynamic 
methods and reported by different authors from different laboratories. In general, 
these values do not differ more than can reasonably be ascribed to inevitable 
uncertainties in the experimental determinations. 

Some further remarks are also necessary in this connection. Since the 
experimental values for the compressibility refer to isothermal conditions it is 
necessary to correct them to obtain its value under adiabatic conditions in order 
that a comparison might be possible with the adiabatic constants determined by 
dynamic methods. This correction is effected making use of the well known 
formula 

where x represents the compressibility, a the coefficient of linear expansion of the 
substance, T the absolute temperature, p the specific gravity of the solid and C, 
the specific heat of the solid in ergs per gram. The numerical values of the 
constants used in the calculation of this correction term have been taken from the 
Landolt-Bornstein Tables and the International Critical Tables. 

The compressibility determinations made in Bridgman's laboratory usually 
extended upto very high pressures. We naturally make use of the compressibility 
value for zero pressures computed by the investigators themselves from the 
experimental data. The values reported by Bridgrnan and Slater prior to 1946 are 
subject to correction by a constant term - 0.033 x lo-' kg- cm2 in the light of 
Bridgman's latest determination of the linear compressibility of iron. Since the 
compressibility as well as the other elastic constants are functions of temperature, 
it is necessary that the comparison should be made for their values at the same 
temperature, either as reported by the authors themselves or as reduced to the 
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same temperature from a knowledge of the variation of the elastic constants with 
temperature. 

In selecting the substances the data for which are discussed in the present 
paper, the choice has naturally fallen on those substances which have been 
frequently the subject of experimental study. It so happens that these substances 
also fall into well-defined groups being very similar in chemical composition and 
their crystal structure, e.g., NaCl, KCl, KBr, NaBr, LiF, MgO and AgCl, all of 
which have the rock-salt structure; diamond, silicon, germanium, zinc blende and 
fluorspar all of which again have closely similar structures and finally the metallic 
elements aluminium, copper, nickel and silver Chich have the face-centred cubic 
structure. In tabulating our final results we have arranged the substances in the 
order stated, in order to facilitate intercomposition of their elastic behaviour. 

3. Crystals with the rock-salt structure 

(a) Rock-salt-The elastic constants of NaCl were determined by Voigt first in 
1888 by the methods of torsion and flexure. Bridgman has also in 1929 
determined the constants by the same methods. With the development of 
techniques based on ultrasonic wave-propagation, several determinations have 
been made recently by numerous investigators namely, Bergmann, Rose, 
Durand, Hunter and Siegel, Huntington, Galt, Lazarus and Bhagavantam. The 
values reported by these investigators and the rdethods used by them are given in 
table 1. 

The values for C1, reported by the investigators who have used the static 
methods are distinctly higher than the values for the same constant obtained 
using dynamic methods, and this difference appears to be larger than can be 
reasonably ascribed to experimental errors. On the other hand, the values for C l l  
and C,, do not exhibit such a difference. The close agreement between the results 

Table 1 

Author Method ell c12 c44 

Voigt 
Bridgman 
Bergmann 
Rose (270" K) 
Durand (300" K) 
Hunter and Siegel 
Huntington (25" C) 
Galt (298" K) 
Lazarus (298" K) 
Bhagavantam (R.T.) 

Static 

Diffraction patterns 
Composite oscillator 

Pulse 

Ultrasonic 
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reported by the three investigators who have used the pulse technique indicate 
that this method yields precise results. Hence, the mean of the values reported by 
these three workers have been adopted here as the best values. 

The isothermal compressibility had been determined by static methods by a 
series of investigators, viz., Rontgen and Schneider, Madelung and Fuchs, 
Richards and Jones, Adams, Williamson and Johnston, Slater and Bridgman. 
Table 2 shows the values reported by the various authors. Of these, the most 
accurate are evidently those reported by Slater and Bridgman, and they have 
accordingly been adopted as correct. The values reported by Madelung and 
Fuchs refer to the pressure range 50-200 kg/cm2, those of Richards and Jones to 
the range 100-510 kg/cm2. The values of Slater and Bridgman quoted are for zero 
pressure 'always. 

Table 2 

Author Temp. x in lO-'kg-' cm2 
- - 

Rontgen and Schneider R.T. 
Madelung and Fuchs 0" C 
Richards and Jones 20" C 
Adams, Williamson and Johnston R.T. 
Slater 30" C 
Bridgman 30" C 

75" C 

These values are however subject to correction by a constant term - 0.033 
x 10-'kg-l cm2 in the light of Bridgman's latest determination of the linear 
compressibility of iron. After making this correction and using the known value 
of g at Harvard, the isothermal compressibility of rock-salt comes out as 42.62 
x 10- l3  cm2/dyne at 30" C. The value of the compressibility at 25" C is found by 
linear interpolation from the values reported by him at 30°C and 75" C. This 
correction when effected leads to a value of x (isothermal) = 42.44. The difference 
between the isothermal and adiabatic ,compressibilities can be calculated from 
the formula given earlier. For rock-salt, the numerical values used in the formula 
are: a = 44 x p = 2.168; C, = 0.2078 cal/gm. The value of the adiabatic 
compressibility at 25' C is found to be 39-68 x 10-l3 cm2/dyne. Hence the bulk 
modulus comes out as 2.52 x 10' dynes/cm2. On the other hand, the value for 
the bulk modulus calculated from the formula (C, , + 2C12)/3 comes out at 2.45 
x 10'' dynes/cm2 the difference clearly being greater than can be explained in 
terms of experimental errors. The average values of the dynamically determined 
constants used in the calculation are: Cll = 4.877; C,, = 1.232; C,, = 1.269 
x 10" dynes/cm2, while the four constants evaluated in the manner already 
explained come out as dl, = 4.88; dl, = 1.34; d,, = 1.27; and d,, = 1.16 x 10" 
dynes/cm2. 
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(b) Potassium chloride-The elastic constants of KC1 have been determined by 
static methods by Voigt, Forsterling and Bridgman. The later workers who have 
determined the elastic constants by the dynamic methods of ultrasonics are 
Durand, Galt and recently Lazarus. Their values appear in table 3. 

It will be notided from table 3 that the values reported by the different authors 
are in much less satisfactory agreement amongst themselves than in the case of 
rock-salt. The values for C12 in particular appear rather erratic and this is 
probably due to the fact that measurements usually involve the determination of 
linear combinations of Cll  and C12 and since C12 is much smaller of the two, 
errors of measurement would influence its determined value very noticeably. 
Voigt gives C12 to three significant figures but his value is undoubtably an error. 
As in the case of rock-salt we shall assume as a definitive value the mean of the 
measurements by the pulse method at 25" C. 

Table 3 

Author Method cil c12 c44 

Voigt R.T. Static 3.75 0.198 0.655 
Forsterling R.T. 3.88 0.640 0.65 
Bridgman 30" C 3.70 0.8 1 0.79 
Durand R.T. Composite oscillator 4.00 0.6 0.625 
Galt 25" C Pulse 3.98 0625 0.62 
Lazarus 25" C 4.095 0.705 0.630 

The static measurements of compressibilities by different authors shown in 
table 4 agree remarkably well amongst themselves. "We shall here accept the 
measurement by Slater as corrected by Bridgman to be the most reliable. This 
comes out as 56.27 x 10- l3  dynes- ' cm2 at 30' C and after correction using the 
temperature coefficient given by Slater, the value at 25" C is found as 56.14 
x 10- l3 cm2/dyne. From this the adiabatic compressibility at 25" C is calculated 
using the following values for KC1 in the corfection formula. 

Table 4 

Author Temp. x in lo-' kg-'cm2 

R6ntgen and Schneider - 56 
Madelung and Fuchs 0" C 55.1 
Richards and Jones 20" C 53.0 
Slater 30" C 552 
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a = 36 x p = 1.992; and C, = 0.1661 cal/gm. The adiabatic compressi- 
bility is found to have a value 53+62 x 10-13. Hence the bulk modulus at 25OC 
comes out as 1.865 x 10" dynes/cm2. 

The mean values for C,,, C12 and C,, adopted are 4.038, 0.663 and 0.628 
x 10' ' respectively. The bulk-modulus calculated using the classical expression 

( C , ,  + 2C12)/3 comes out as 1.788 x 10" dynes/cm2, which is definitely smaller 
than the experimentally determined value. The values found for the four elastic 
constants of the new theory are respectively: dl, = 4.038; dl, = 0.799; d,, = 0.628; 
d45 = 0.512 x 10' dynes/cm2. 

(c) Potassium bromide-Static measurements of the elastic constants have been 
reported by Bridgman. Using the pulse technique Huntington and Galt have 
independently determined the constants at room temperature. The values are 
given in table 5. 

Table 5 

Cll c12 c44 
Author Method x 10" dynes/cm2 

Bridgman 30" C Static 3.33 0.58 0.62 
Huntington 25" C Pulse 3.45 0.54 0.508 
Galt 25" C 3.46 0.58 0.505 

The compressibility measurements have been made by Richards and Jones, 
and Slater independently and the values reported are 6.5 x kg-' cm2 at 
20" C and 6.57 x kg-' cm2 at 30" C respectively, being in good agreement 
with each other. Using the temperature coefficient given by Slater, the isothermal 
compressibility at 25' C on calculation is found to be 66.78 x 10-l3 cm2 dyne-'. 
The adiabatic compressibility is found using the correction formula given earlier. 
The values adopted for KBr are: a = 41 x loe6; p = 2.756; C, = 0.1033 cal./gm. 
x ( ~ ~ ~ ~ ~ ~ ~ ~ ~ ,  comes out as 62.99 x 10-l3 cm2/dyne and hence the bulk modulus is 
1.588 x 10" dynes/cm2 at 25OC. 

Adopting the mean of the values given by Galt and Huntington the bulk 
modulus in terms of the classical formula (Cil + 2C12)/3 is found to be 1.525 
x 10" dynes/cm2, thus differing from the actually observed value corrected for 
the adiabatic nature of deformation. 

The values adopted for the elastic constants are Cl l  = 3.455, C,, = 0-56, 
C,, = 0.507, while the four constants evaluated in the manner explained are 
dl = 3.455; d12 = 0.655; d,, = 0.507; d,, = 0.412 x 10' ' dynes/cm2. 
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(d)  Sodium bromide-The static measurements of the elastic constants are due to 
Bridgman, while they have been determined by Bhagavantam using ultrasonic 
methods. 

Table 6 

Author Temp. ell c12 c44 

Bridgman 30" C 
Bhagavantam R.T. 

The values reported by Bhagavantam differ appreciably from those of 
Bridgman. However, we shall take for our calculations the values determined by 
dynamic methods as usual, since the identification of the constants of the new 
theory with that of the older theory is by identifying the two wave-equations. 

The compressibility determinations in the case of NaBr have been made by 
Richards and Saerens at 20°C, the value being 5.4 x 10-6kg-'cmz in the 
pressure range 100-510kg/cmz, and by Slater at 30°C who reports a zero 
pressure value of 4.98 x kg-' cm2. The isothermal compressibility at 30' C 
is found to be 50.762 x 10-l3 cmz/dyne. Correcting this to the adiabatic value we 
get x~,,~,,,,~~, as 47.576. The values used in the calculation of the correction term 
are: a = 43 x p = 3.2 13; Cp = 0.1 178 cal/gm. The bulk modulus value hence 
comes out as 2.102 x 10" dynes/cmz whereas according to the classical theory 
this value should be 1.936 x 10" dynes/cm2. 

The values of the elastic constants according to the new theory are: dl, = 3.87; 
dl, = 1.22; d,, = 0.97; d,, = 0.72 x 10" dynes/cmz. 

(e) Lithium fluoride-The elastic constants of LiF have been determined by 
dynamic methods by Bergmann, Huntington, Sundara Rao and Seshagiri Rao 
and their values are shown in table 7. 

Table 7 

Author Method c11 c12 c44 

Bergman R.T. Diffraction patterns 12.0 4.41 6 4  
Huntington 25" C Pulse 9.74 4.04 5.54 
Sundara Rao R.T. Ultrasonic 11.9 4.58 5.42 
Seshagiri Rao R.T. 11.9 5.38 5.34 

It will be noticed that there are notable divergences between the values 
reported by different investigators though they all use ultrasonic methods. A clue 

' to the origin of these differences is to be found in the differences in density 
reported by the different investigators in their respective papers. The density of 
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LiF calculated from the lattice spacing and known atomic weights is 2.627, while 
Huntington, Seshagiri Rao and Sundara Rao give the density as 2.295,2.635 and 
2.601 respectively. The value found in Landolt Bornstein Table is 2.640. As the 
value reported by Seshagiri Rao corresponds to this, we use his data in our 
calculations. 

The compressibility of LiF has been determined by Slater as 15.3 
x kg- cm2 at 30" C and in a redetermination Bridgman has corrected this 
value and gives it as 14.95 x kg-' cm2. The isothermal compressibility at 
30" C is accordingly 15.21 5 x 10- l3 cm2 dyne- '. The following values are used in 
the correction term for adiabatic compressibility; a = 36 x p = 2.64; and 
C, = 0.373 cal/gm. The adiabatic compressibility comes out as 14,357 x 10- l3  

and hence the bulk modulus as 6.965 x 10" dynes/cm2, while the bulk modulus 
using the data of Seshagiri Rao and the classical formula (C,, + 2C12)/3 is found 
to be having'a different value of 7.55 x 10" dynes/cm2. Using the values of 
Seshagiri Rao in our calculation we find the following values for the four elastic 
constants. dl, = 11.9; dl, = 4.5; d,, = 5.34; and d,, = 6.22 x 10" dynes/cm2. 

(f) Magnesium oxide-The elastic constants of MgO have been determined 
dynamically by Durand and by Bhagavantam and their values are shown below. 

Table 8 

Author c11 C13 c44 

Durand 30°C 28-92 8.77 14.47 
Bhagavantam R.T. 28.6 8.7 14.8 

Their values agree fairly well and the slight difference in the value of C,, 
might be due to experimental errors. No static determinations of the elastic 
constants appear to have been made. 

The compressibility of MgO has been determined by Madelung and Fuchs and 
by Bridgman. The former investigators report varying values with the different 
specimens they used, while Bridgman usin$ a clear single crystal has reported the 
value of 5,904 x kg- cm2 at 30" C. The isothermal compressibility at 30" C 
is hence 5.988 x 10-l3 cm2/dyne. The values of the constants appearing in the 
correction term are: a = 13.3 x p = 3.576; C, = 0.2297 cal/gm. The adiaba- 
tic compressibility comes out as 5.847 x 10-l3 and hence the bulk modulus as  
17.10 x 10" dynes/cm2. 

We shall make use of the mean of the two dynamic determinations for the 
purposes of our calculation, i.e., Cl l  = 28.76; C12 = 8.74 and C,, = 15.14. The 
compressibility calculated using the formula (C,, + 2C12)/3 is found to be equal 
to 15.41 x 1011 dynes/cm2, being distinctly different from the observed and 
corrected value of 17.10 x 10". The elastic constants according to the new theory 
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are as ,follows: dl, = 28.76; dl, = 11-27; d,, = 15.14; d,, = 12.61 x 10' 
dynes/cm2. 

(g) Silver chloride-The elastic constants of AgCl have been recently determined 
using the pulse method by Arenberg (1950). The values have been reported for 
two different specimens and show good agreement between themselves. However, 
it is stated by him that the values from one of the specimens are to be preferred 
and they are given as Cll  = 6.05; C12 = 3-64. C,, = 0.624 x 10' ' dynes/cm2. The 
compressibility of fused and solidified AgCl has been determined by Richards and 
Jones, while Bridgman has studied the case of AgCl with compressed powder. 
The isothermal bulk-modulus value of 4.12 x 10' ' obtained by extrapolating 
Bridgman's data to zero pressure agrees well with the value of 4.17 
x lo1' dynes/cm2 reported by Richards and Jones. Adopting the value due to 
Bridgman and using the vahes a = 30 x p = 5.5; and C, = 0.0875 cal/gm. 
for AgCl, the adiabatic bulk modulus is found to be 4.338 x 10" dynes/cm2. 
According to the classical formula (C,  , + 2C12)/3 this value comes out as 4.444 
x 10" dynes/cm2, being different from the value given above. The four elastic 
constants according to the new theory are: dl, = 6.05; dl, = 3.482; d,, = 0.624; 
d45 = 0.782 x 10, dynes/cm2. 

4. Crystals with the diamond-like structure 

(a) Diamond-The elastic constants of diamond have been determined by the 
ultrasonic wedge method by Bhagavantam and Bhimasenachar (1946). The 
following are tlie values reported by them. C,, = 9.5 x 10' 2; C12 = 3.9 x 1012 
and C,, = 4.3 x 1012 dynes/cm2. The compressibility has been determined first 
by Adams and again by Williamson in the same laboratory, the values being 0.16 
x 10-l2 and 0.18 x 10-l2 cm2/dyne respectively. The latter value is reported to 
be preferred since better material was used in the determination by Williamson. 
This gives a value of 5.56 x 1012 dynes/cm2 for the isothermal bulk modulus. The 
correction for the adiabatic bulk modulus is negligible. Using this value of 5.56 
x 1012 and the reported values for thcelastic constants the values of the four 
elastic constants are calculated. They are: dl, = 9.5; d12 = 3.59; d4, = 4.30; and 
d,, = 4.61 x 10' dynes/cm2. 

(b) Germanium-The elastic constants of Ge have been determined by ultrasonic 
methods by Bond and, others, Fine and McSkimin and their values are shown in 
table 9. 

All the determinations have been made in the Bell Telephone Laboratories and 
McSkimin and Fine have studied the variations of the constants with tempera- 
ture. The values show good agreement between themselves. The values due to 
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Table 9 

Author Method CI 1 Clz c44 

Bond and others 25°C Pulse 12.90 4.84 6.69 
Fine 25°C Composite oscillator 13.16 5.09 6.69 
McSkimin 30°C Pulse 12.88 4.825 6.705 

McSkimin are taken from the graphs given by him exhibiting the variation of the 
elastic constants with temperature. 

The compressibility of polycrystalline germanium has been deteqined by 
Bridgman at 30' C on two'occasions with different specimens and the values are 
13.78 x lO-'kg-' cm2 and 14.11 x lO-'kg-' cm2 and thelatter valueis said to 
be more reliable. The isothermal compressibility at 30°C is hence 14.358 
x 10-13cm2/dyne. The constants used in the correction term to find the 
adiabatic compressibility are: a = 5.5 x p = 5.323; C, =F 22.3 Joules/gm 
atom. The corrected value of the adiabatic compressibility is 14.308 
x 10-l3 cm2/dyne and hence the bulk modulus value is 6.989 x 10" dynes/cm2. 

The elastic constants for 30" C could be more accurately and directly obtained 
from McSkimin's detailed data. Using his values we find that the bulk modulus 
value according to the classical formula should be 7.51 x 10" dynes/cm2. The 
four elastic constants are found to be dl, = 12.88; dl, = 4.04; d4, = 6.705; and d,, 
= 7.49 x 10' ' dynes/cm2. 

(c) Silicon-The elastic constants of crystalline silicon have been determined by 
McSkimin and others and subsequently in detail by McSkimin over a wide range 
of temperatures. The following values for the constants at 30' C are found from 
the graphs given by him. C,, = 16.56; C,, = 6.386; C,, = 7.953 
x 10'' dynes/cm2. The compressibility of polycrystalline silicon has been deter- 

mined over a wide range of pressures by Bridgman at 30°C and on extrapolating 
his values to zero pressure, the isothermal compressibility is found to be 9.92 
x lO-'kg-' cm2, i.e., 10.118 x 10-l3 dynes-lcm2. The following values are 
used in the correction term for adiabatic compressibility. a = 2.25 x 
p = 2.331; C, = 0.1712 cal/gm. On correction the adiabatic compressibility is 
found to be 10.11 x 10-l3 dynes-'cm2 and hence the bulk modulus as 9.89 
x 10' ' dynes/cm2. The value calculated using the formula (C,, + 2CI2)/3 is 
found to be 9.78 x 10" dynes/cm2. The four elastic constants calculated are: 
d l l  = 16-56; d12 = 6.56; d4, = 7.953; and d4, = 7.78 x 10" dynes/cm2. 

(d) Zinc blende-The elastic constants of zinc blende have been reported by 
Bhagavantam and Suryanarayana using ultrasonic methods. The constant C,, 
has however been obtained by them from static torsion experiments. The 
crystalline material used by them contained only 94% of zinc sulphide. The 
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following values are reported by them. Cll  = 10.79 x 10"; C12 = 7.22 x 10"; 
C,, = 4.12 x 10". These values are in disagreement with the values reported by 
Voigt from static methods, which are: Cll  = 9-43 x 10"; C12 = 5.68 x 10"; C,, 
= 4.37 x 10". 

The compressibility of a single crystal of zinc blende has been determined by 
Bridgman as 12.81 x kg-' cm2 at 30°C. This gives a value of 13.032 
x 10- dynes- cm2 at 30" C for the isothermal compressibility. The constants 
used in the correction term for adiabatic compressibility are: a = 6.7 x 
p = 4.102; and C, = 0.1146cal/gm. The corrected value of the adiabatic com- 
pressibility is found to be 12.97 x 10- l3 dynes- ' cm2, and hence the bulk 
modulus is 7.71 x 10" dynes/cm2. The bulk-modulus calculated from the 
formula (C, , + 2C1 ,)/3 using Bhagavantam and Suryanarayana's values is 
8.41 x 10" whereas Voigt's values give 6.93 x 10" dynes/cm2. 

In the calculation of the four elastic constants, we make use of Bhagavantam 
and Suryanarayana's values since they are for the major part obtained from 
dynamic methods. We obtain the following values for the constants. dl, = 10.79; 
dl, = 6.17; d4, = 4.12; and d,, = 5.17 x 10" dynes/cm2. 

(e) Fluorspar-The elastic constants of fluorspar have been determined using 
static methods by Voigt, and by Bergmann and Bhagavantam using dynamic 
methods. Their values are shown in table 10. 

Tabk 10 

Author Method CI I c12 c44 

Voigt Static 16.4 4-47 3.38 
Bergmann Diffraction patterns 16.76 4.72 3-69 
Bhagavantam Ultrasonic 16.44 5.02 3.47 

For our calculations we take here the mean of the values of Bergmann and 
Bhagavantam, i.e., Cl l  = 16.6; C12 = 4.87; and C,, = 3.58 x 10" dynes/cm2. 

The compressibility of CaF, bas been determined by Madelung and Fuchs at 
0" C and in the pressure range 50-200 kg/cm2 and the value reported by them is 
12.2 x lom7 kg-' cm2. Bridgman has also determined the compressibility at 
30" C and reports a zero pressure value of 12-06 x kg-' cm2, i.e., 12.267 
x 10- l3  cm2/dyne. The values used in the correction term are: a = 19.1 1 x 

p = 3.18; C, = 0.887 Joules/gm. The adiabatic compressibility value is found to 
be 11.914 x 10- l3 cm2/dyne and hence the bulk modulus is 8.39 
x 10" dynes/cm2. The bulk modulus value using the formula (Cll + 2C12)/3 is 
found to be 8.78 x 10'' dynes/cm2. 

The four elastic constants calculated are: dl, = 16.6; dl, = 4.29; d,, = 3.58; and 
d4, = 4.16 x loll dynes/cm2. 
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5. Metals crystallizing in the cubic system 

(a) Aluminium-The elastic constants of single crystals of aluminium have been 
determined using static methods of Goens. Recently Lazarus and Sutton have 
independently measured the elastic constants by ultrasonic methods. The values 
reported by all these investigators are shown in table 11. 

The accuracy in the measurements of Lazarus is greater than that of Sutton as 
is evidenced by the comments made by them in their respective papers. Moreover 
the purity of the specimens used by Lazarus and Sutton is given as 99.99% and 
99.93% respectively. In view of these facts we take Lazarus's values for the 
purpopes of our calculation. 

Table 11 

Author Method C I I  CI, c44 

Goens R.T. Static 10.82 6.22 2.84 
Lazarus 25" C Pulse 10.56 6.39 2.853 
Sutton 20" C Composite oscillator 11.29 6.65 2.783 

The isothermal compressibility of aluminium single crystals has been deter- 
mined by Bridgman as 13.38 x kg-' cm2 at 30°C and as 13.76 
x lo-' kg-' cm2 at 75" C. The value at 25" C on linear extrapolation comes out 
as 13.338 x kg-' cm2, i.e., 13.57 x 10-l3 dynes-' cm2. The following 
values for the constants are used in the correction term for adiabatic compress- 
ibility: a = 23.06 x p = 2.702; C, = 0.2129 cal/gm. The adiabatic compress- 
ibility is found to be 12-97 x 10-l3 dynes-' cm2 and hence the bulk modulus is 
7.71 x 10" dynes/cm2. The bulk modulus obtained from the values of Lazarus is 
7.78 x 10''. The values of the four elastic constants calculated are: dl, = 10.56; 
dl, = 6.29; d,, = 2.853; d,, = 2.953 x 10' ' dynes/cm2. 

(b) Copper-The elastic constants of copper single crystals have been deter- 
mined using the composite oscillator method by Goens and Weerts. Recently 
Lazarus, Long, and Overton and Gaffney have determined the constants using 
pulse methods. The values are shown in table 12. 

Table 12 

Author Method ctl c12 c44 

Goens and Weerts R.T. Composite oscillator 16.98 12.26 7.53 
Lazarus 25°C Pulse 17.1 12.39 7.56 
Long 300°K " 16.83 12.21 7.54 
Overton and Gaffney 300" K " 16.84 12.14 7.54 
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There is very good agreement between the three sets of values determined by 
the pulse method and hence for the purposes of our calculation we shall make use 
of the mean of these values. 

The compressibility of polycrystalline copper of high purity has been 
determined by Bridgman as 7.19 x kg-' cm2 at 30" C and 7.34 x at 
75" C. Hence the value at 300" K is found to be 7.173 x kg-' cm2, i.e., 7.283 
x 10- l3 dynes- ' cm2. The following values are used in the correction term for 
the adiabatic compressibility: a = 17.09 x p = 8-92; C, = 0.0919 cal/gm. 
The corrected value of adiabatic compressibjlity is 7.05 x 10- l3 dynes: ' cm2 
and hence the bulk modulus is 14.18 x 10" dynes/cm2, The average values of the 
elastic constants from pulse method are: Cll  = 16.92; C12 = 12.25 and C,, = 
7.55 x 10'' dynes/cm2. The bulk modulus using the formula (C,, + 2C12)/3 is 
found to be 13.81 x 10' ' dynes/cm2. The four elastic constants calculated 
are: dl, = 16.92; dl, = 12.81; d,, = 7.55; and d,, = 6.99 x 10" dynes/cm2. 

(c) Nickel-The elastic constants of single crystals of nickel have been deter- 
mined recently using the ultrasonic pulse method by Bozorth and others and also 
by Neighpours and others. Their values are given in table 13. 

Table 13 

Author 

Bozorth and others 2.53 1.58 1.22 
2.524 1.538 1.23 
2523 1.566 1.23 

Neighbours and others 2.528 1.52 1.238 

The average value of these at 25°C are: Cll  = 2.526; C12 = 1.551; and C,, 
= 1.23 x 1012 dynes/cm2. 

The compressibility of pure nickel has been determined by Bridgman at 30' C 
as 5.29 x kg-' cm2 and at 75" C as 5.35 x loy7. The value at 25" C is hence 
5.283 x 10-7kg-'cm2. The isothermal compressibility is, hence 5.355 
x 10-13dynes-' cm2. The values used in the correction term for adiabatic 
compressibility are: a = 13.15 x p = 8.9; and C, = 0.107 cal/gm. The 
adiabatic compressibility is found to be 5.239 x 10-l3 dynes'' cm2 and hence 
the bulk modulus is 19.09 x 10"dynes/cm2. The bulk modulus using the 
classical formula is found to be 18.76 x 10"dynes/cm2. The four elastic 
constants calculated are: dl, = 25.26; d12 = 16.01; d,, = 12.3; and d,, = 11.8 
x 10' ' dynes/cm2. 

(d) Silver-The elastic constants of single crystals of silver have been determined 
by Rohl using the classical static and dynsmic methods. The constants have been 
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recently determined by Bacon and Smith using the ultrasonic pulse method. The 
values are shown below. 

Table 14 

Author Method c11 c12 c44 

Rohl R.T. Static etc. 11.9 8.94 4.37 
Bacon and Smith R.T. Pulse 12.4 9.34 4.6 1 

The compressibility of pure silver has been determined by Bridgman at 30' C as 
9.87 x 10-'kg-' cm2, i.e., 10.034 x 10-l3 dynes-' cm2. The constants used in 
the correction term are: a = 18.9 x p = 10.5; C, = 25.2 Joules/gm atom. The 
adiabatic compressibility is found to be 9.939 x 10-l3 dynes-' cm2 and hence 
the bulk modulus is 10.06 x 10" dynes/cm2. The value calculated using the 
formula ( e l l  + 2C12)/3 is found to be 10.36 x 10" dynes/cm2. The four con- 
stants calculated are: dl, - 12.4; dl, = 8.89; d,, = 4.61; and d,, = 5.06 x 10" 
dynes/cm2. 

6. Some finak remarks 

In table 15 the results for the individual cases given in the foregoing pages have 
been collected together. The columns Cll, C12 and C,, show the results of the 

Table IS. Elastic constants in 10" dynes/cm2 

Substance CI  1 CIZ  c44 d1 I ' d12 

NaCl 4.877 1.232 1.269 4.877 1.34 1.269 1.16 
KC1 4.038 - 0.663 0.628 4.038 0.779 0.628 0.512 
KBr 3.455 0.56 0.507 3.455 0.655 0.507 0.412 
NaBr 3.87 0.97 0.97 3.87 1.22 0.97 0.72 
LiF 11.9 5.38 5.34 11.9 4.5 5.34 622 
MgO 28.76 8.74 15.14 28.76 11.27 15.14 12.61 
AgCl 605 3.64 0.624 6.05 3.482 0.624 0.782 

Diamond 95 39 43 95 35.9 43.0 4 6  1 
Ge 1288 4.825 6.705 12.88 4.04 6.705 7.49 
Si 1656 6.386 7.953 16.56 6.56 7.953 7.78 
ZnS 10.79 7.22 4.12 10.79 6.17 4.12 517 
CaF, 16.6 4.87 3.58 16.6 4.29 3.58 416 

Al 10.56 6.39 2.853 10.56 6.29 2.853 2953 
CU 1692 12.25 7.55 16.92 12.81 . 7.55 699 
Ni 25.26 15.51 12.3 25.26 16.01 12.3 11.8 
Ag 124 9.34 4.6 1 12.4 - 8.89 4.6 1 506 
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ultrasonic measurements, while the columns dl,, dl,, d,, and d,, represents the 
constants as evaluated from the ultrasonic data in conjunction with the bulk 
modulus as determined by Bridgman and his collaborators after making all 
necessary corrections. The values of C,, and dl, are in each case identical; 
likewise those of C,, and d,,. But C,, and dl, are different and such difference is a 
measure of the failure of the three constant-theory to represent the actual elastic 
behaviour of the crystal. The difference between d,, and d,, also expresses the 
same situation in another way. 

Certain general features emerge from the table. For all the four alkali halides 
which are soluble in water, C12 is less than dl? and likewise d,, is less than d,,. 
This regularity of behaviour taken in conjunctlon with the reliability of the data 
in these cases makes it clear that these differences are real and justify us in 
concluding that the elastic behaviour of cubic crystals cannot be expressed in 
terms of three constants, but needs four. Diamond, germanium, zinc blende and 
fluorspar also exhibit a parallel behaviour which is the reverse of that shown by 
the four water-soluble alkali halides. In their cases, C,, is decidedly greater than 
dl,, while per contra d,, is less than d,, and these differences are numerically 
more striking than in the case of the alkali halides. Magnesium oxide for which 
the data are reliable exhibits a noteworthy behaviour; the differences between C,, 
and dl, and likewise between d,, and d,, are in the same sense as in the alkali 
halides but proportionately much larger. Differences of the same order of 
magnitude but in the opposite sense are shown by lithium fluoride. In the case of 
the metals crystallising in the face-centred cubic system, we also find differences 
between C,, and dl, and between d,, and d,,, but they are not always in the same 
sense. This is a feature which need not surprise us in view of the very great 
differences exhibited by these metals in other respects. 

7. Summary 

The belief that the elastic behaviour of cubic crystals can be described in terms of 
three constants rests on theoretical considerations which are examined in the 
paper and shown to be indefensible. The correct theory demands four constants 
for cubic crystals belonging to the 0, and T, classes. The experimental results for 
sixteen different crystals belonging to these classes for which the most precise data 
are available are critically examined and it is shown that the adiabatic bulk 
modulus as computed respectively from the observed velocities of ultrasonic 
wave propagation and from the static determinations of compressibility made at 
Harvard are in systematic disagreement. The data show very clearly that the 
elastic behaviour of these crystals cannot be expressed in terms of three constants, 
but needs four. The latter have been computed and tabulated. 
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