
Proc. Indian Acad. Sci. A42 163-174 (1955) 

The nature of the thermal agitation in crystals 

SIR C V RAMAN 
Memoir No. 77 of the Raman Research Institute, Bangalored 

Received October 8, 1955 

1. Introduction 

The present memoir concerns itself with a problem of fundamental importance in 
the physics of the solid state, namely the determination of the nature of the 
atomic movements which constitute the thermal agitation in a crystal. It would 
be no exaggeration to say that on our taking the correct view of the nature of 
these movements depends the possibility of our understanding the physical 
behaviour of crystals aright, not only in the thermal field but also in diverse other 
fields, as for example their spectroscopic behaviour and the phenomena of X-ray 
diffraction in crystals. The problem is considered in this paper from two distinct 
points of view. The first method of approach is to examine the basic experimental 
facts in the light of fundamental physical principles and to draw the inferences 
following logically therefrom. The second method of approach is the analytical 
investigation of the problem on the basis of classical mechanics and the general 
principles of thermodynamics and the quantum theory. The result in either case is 
to show that the ideas undedying the well known specific heat theory of Debye 
and the lattice dynamics of Born and his collaborators are untenable. The picture 
of the thermal agitation in a crystal which emerges from the present investigation 
is fundamentally different from that postulated in the theories of Debye and Born. 

2. Some general considerations 

The identification on a quantitative basis of the thermal energy of a crystal with 
the energy of atomic oscillations rests on two fundamental ideas; (a) that the 
oscillators can be enumerated, their total number being three times the number of 
atoms comprised in the crystal; (b) that the energy of the oscillators is quantized 
and for any particular frequency has an average value which can be calculated 
with the aid of Boltzmann's theorem. We proceed to examine these ideas critically 
with a view to determine their precise significance as well as their implications. 

The first of the two ideas referred to above is based on the fundamental 
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theorem in classical mechanics which states that all the possible modes of small 
vibration of a system of connected particles are superpositions of a set of normal 
modes, the number of such modes being the same as the number of degrees of 
dynamic freedom of the system, and further that in each such normal mode all the 
particles of the system have the same frequency of vibration and oscillate in the 
same or opposite phases. In the present context, therefore, the term oscillator 
must be considered as referring to a set of atoms vibrating in a normal mode, all of 
them having the same frequency and the same or opposite phases of vibration. 

The second idea, namely that of averaging the energy of an oscillator, arises 
because of the chaotic nature of thermal agit'ation which involves energy 
fluctuations whose magnitude is determined by the frequency of the vibration. 
The theorem of Boltzmann which enables the average to be calculated is a 
description in statistical form of the behaviour of the individual units in an 
assembly consisting of an immense number of such units which are physically 
identical but differ in their energy states and being in a position to exchange 
energy with each other form a system in thermodynamic equilibrium. In the 
present context, the units are the oscillators defined in the preceding paragraph. 
Hence, if the application of Boltzmann's theorem is to be legitimate, it is necessary 
to postulate that in the crystal is present an assembly of this nature, viz., a great 
number of individual oscillators all of which vibrate with the same frequency but 
are in the different energy states permitted by the quantum theory. For each 
separate frequency of oscillation, a fresh assembly of that nature is needed to 
enable the energy for each individual frequency to be separately averaged. 

The foregoing theoretical picture of the thermal agitation agrees completely 
with the actual physical picture in the case under consideration. For, every crystal 
is itself an assembly of an immense number of similar and similarly situated 
groups of atoms, the internal vibrations of which can occur with one or another of 
the characteristic frequencies of the group. The energy of vibration of a group 
with any one of these frequencies may have any of the series of values allowed by 
the quantum theory and hence would vary from group to group in an entirely 
unpredictable manner within the crystal. Such a picture would be in perfect 
harmony with the basic notions of thermodynamics, but would be wholly 
irreconcilable with any theory which seeks to identify the energy of thermal 
agitation with the energy of regular wave propagation in the crystal. But this 
latter idea is precisely what forms the basis of the specific heat theories of Debye 
and Max Born. It follows that these theories are fundamentally misconceived and 
must therefore fail, together with all their consequences. 

3. The normal modes of vibration 

The normal modes of vibration of the atomic groupings in the crystal referred to 
above may be determined and enumerated without any difficulty. It is obviously 
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not permissible in this connection to regard the unit cell in the crystal structure as 
isolated from the rest of the crystal. For, any oscillation which occurs in a 
particular cell will necessarily communicate itself immediately to the surrounding 
cells and set the latter in vibration with the same frequency. Hence, to ascertain 
the normal modes of vibration, we have to consider vibrations extending over 
domains whose dimensions are at least as large as the range of the inter-atomic 
forces. Further, to ensure that the oscillations persist unchanged in character, it is 
necessary to assume that the oscillation in each of the unit cells included within 
such a domain is similar and similarly related to the oscillations in the cells 
surrounding it. 

Remembering that in a normal mode the oscillations of all the particles have 
the same frequency and the same or opposite phase, the foregoing requirements 
lead us to the following description of the normal modes of vibration: In any 
normal mode, the oscillations of equivalent atoms in adjoining cells have the 
same amplitude of vibration but their phases are either the same or the opposite 
in the cells adjacent to one another along one, two or all three of the axes of the 
lattice structure. Thus there are 2 x 2 x 2 or 8 possible situations. As a 
consequence of the identity of the amplitudes of vibration of equivalent atoms in 
all the cells which need to be considered, the 3p equations of motion of the p atoms 
in any particular cell contain only 3p unknowns. Accordingly, it becomes possible 
to solve the equations completely and determine the 3p normal modes and the 
corresponding frequencies of vibration. As there are eight different situations in 
respect of the phases of vibration, the equations of motion would necessarily be 
different in each of them. Accordingly we have 3p x 8 or 24p normal modes and 
frequencies of vibration. 

An alternative and convenient way of describing the normal modes is to 
consider a supercell of the lattice whose dimensions are twice as large in each 

' direction as the unit cell. Such a supercell would contain 8p atoms and the total 
number of degrees of freedom associated therewith would be 24p, and this is the 
same as the number of normal modes permissible. We may therefore describe 
these modes as the vibrations of the atoms comprised in the supercell. When this 
description is adopted, it becomes immediately evident that three of these modes 
would represent simple translations of the supercell and would therefore have to 
be excluded in enumerating the internal vibrations of the supercell. We have then 
left only (24p - 3) normal modes of vibration properly so-called. 

4. Wave propagation in crystal lattices 

As is well known, the classical theory of elasticity leads to the c~nclusion that 
three types of waves can be propagated in any given direction within a crystal 
with the velocities determined by the density of the material and certain linear 
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combinations of its elastic constants. The analysis which leads to this result 
regards the volume elements of the crystal as simple mass particles whose 
equations of motion can be written down in terms of the tractive forces arising 
from the elastic strains. Hence the theory and its consequences would cease to be 
applicable when these assumptions are invalid and the position would then have 
to be considered afresh from the atomistic standpoint. A formal investigation on 
the latter basis shows that only in the limiting case of very low frequencies and of 
correspondingly long waves are the results af the classical theory of elasticity 
valid. When we enter the region of the higher frequencies, the phase velocity and 
the group velocity diverge from each other and the very significant result emerges 
that the group velocity vanishes for (24p - 3) modes of vibration of the lattice. 
These modes are found to be identical with the (24p - 3) normal modes referred 
to in the foregoing section. 

To avoid breaking the thrgad of the argument, the detailed dynamical 
investigation which has been worked out by Dr K S Viswanathan is printed as an 
appendix to this memoir. It will therefore suffice here to comment on the 
significance of the results there derived by him. As is very well understood, it is the 
group velocity which is physically significant in all considerations regarding 
wave-propagation, since it is a measure of the rate of energy transport in the 
medium. The vanishing of the group velocity for the whole series of characteristic 
frequencies of atomic vibration signifies that there is no wave propagation in the 
real or physical sense of the term when we are considering oscillations in which 
the interatomic displacements play a significant role. It follows that consider- 
ations of the kind used in the classical theory of elasticity to ascertain the normal 
modes of vibration of a solid body of finite extension are entirely out of place in 
the atomistic problem. But it is precisely such considerations that are employed in 
the theories of Debye and Born to describe and enumerate the movements which 
they identify with the thermal agitation. Thus, even on the basis of the classical 
mechanics, the ideas underlying those theories are unsustainable and they have 
therefore to be laid aside as being completely unreal. 

5. The frequency spectrum of the thermal agitation 

We may sum up what has been said in the foregoing pages by the statement 
that the energy of the thermal agitation in a crystal may be identified with 
the energy of an immense number of atomic oscillatorsnhich together fill up the 
volume of the crystal, the individual oscillators being in the various states of 
excitation corresponding to each of the (24p - 3vrequencies common to them all, 
supplemented by the energy of the low frequdncy oscillations which the three 
omitted degrees of freedom represent. These (P4p - 3) frequencies correspond to 
modes of vibration which are related to the structure of the crystal in precisely 



definable terms. It will be seen that this description of the thermal agitation bears 
no resemblance whatever to that envisaged in the theories of Debye and Born; 
these authors identify the energy of the thermal agitation with the energy of waves 
in immense numbers traversing the crystal in all directions and having 
frequencies which are all different from one another, the energy of the wave of any 
particular frequency as well as the sum total of the energy of all the waves taken 
together being distributed uniformly over the volume of the crystal. 

It is noteworthy that in his fundamental paper of 1907 introducing the 
quantum theory of specific heats, Einstein derived his expression for tht average 
energy of an oscillator of given frequency assuming,. as is indeed necessary for 
applying Boltzmann's theorem, that the crystal is an assembly of an immense 
number of oscillators all having the same frequency but in different energy states 
and in thermodynamic equilibrium with each other. The theories of Debye and 
Born make use of Einstein's expression for the average energy of an oscillator, 
while on the other hand the frequencies of the waves with which they identify the 
thermal agitation are all different from each other. Thus it will be seen that there is 
no logical consistency in their approach to the specific heat problem. Further, the 
uniform distribution of the thermal energy through the whole volume of the 
crystal which such identification demands is irreconcilable with the fundamental 
ideas regarding the nature of the thermal energy of material bodies inherent in the 
Second Law of Thermodynamics, namely, that the distribution of the energy over 
the volume of the crystal should exhibit fluctuations which are the more violent 

a the higher the frequency of vibration. 
The foregoing comments do not by any means traverse all the arguments and 

assumptions on which the theories of Debye and Born are based. One of the basic 
objections to their method of approaching the specific heat problem is that since 
wave motions involve progressive changes of phase along the direction of 
propagation and may have any frequency assigned to them, they can neither be 
treated as normal modes nor enumerated. The theories of Debye and Born seek 
to escape this dificulty by postulating that the number of wave motions is 
identical with the number of degrees of freedom of the system, while the choice of 
wavelengths is determined by still another postulate, e.g., the so-called postulate 
of the cyclic lattice which is claimed to represe'nt the effect of the external 
boundary of the crystal. Since it is obviously impossible to formulate any 
boundary conditions for the atomic movements at the external surface of a 
crystal, the procedure is clearly artificial. But that it is also fallacious becomes 
evident when we remark that the characteristic modes and frequencies of the 
atoms in the interior of the crystal are determined exclusively by the structure of 
the crystal and by the interatomic forces whose range is exceedingly small and 
hence there exists no justification whatever for the assumption which is inherent 
in the postulate that these modes and frequencies are influenced by the presence 
of an external boundary. 
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6. The spectroscopic behaviour of crystals 

It is not proposed in this memoir to discuss how the ideas set forth in it impinge on 
various aspects of crystal physics. We shall however make a brief reference to 
those cases in which facts already well established illustrate the validity of the 
conclusions reached in it. 

An Einstein emphasized in his fundamental paper of 1907, the theory of the 
specific heats of crystals stands in the closest relation to their spectroscopic 
behaviour. In seeking to explain the data then available for the case of diamond, 
he made the simplifying assumption that all the oscillators in that crystal have a 
single common frequency. He recognized however, that in general a crystal would 
possess several characteristic frequencies and that the expression for its specific 
heat would involve a summation over them all. In the particular case of diamond, 
the (24p - 3) frequencies indicated by the present theory are reduced from 45 to 9 
in number by reason of the cubic symmetry of the crystal. One of these 9 
frequencies represents the triply degenerate oscillation of the two lattices of 
carbon atoms against each other, while the other eight represent either the 
longitudinal or the transverse oscillations of the layers of carbon atoms in the 
cubic and octahedral planes of the crystal. In numerous papers published in these 
Proceedings in recent years, it has been shown that all these nine frequencies can be 
ascertained by spectroscopic observation and that the specific heat ofdiamond can 
be successfully evaluated with the aid of the data thus obtained. 

But the case of diamond does not stand alone in this respect. In recent years the 
spectroscopic behaviour of numerous crystals have. been studied by diverse 
methods, e.g., the scattering of light, absorption in the visible, ultra-violet and 
infra-red regions of the spectrum, and in particular cases, also their luminescence. 
The whole of the evidence which has thus come to hand indicates that the 
vibration spectrum of a crystal consists of a discrete set of monochromatic 
frequencies and that where there is any departure from this state of affairs, an 
adequate explanation is forthcoming. 

7. X-ray diffraction in crystals 

That the atomic vibrations in crystals appear with precisely defined frequencies 
and with modes bearing a precise geometric relationship to the architecture of the 
crystal has a most important bearing on the subject of the diffraction of X-rays by 

- crystals. Here again, a particularly striking illustration is furnished by the case of 
diamond. When a plate of this crystal is traversed by a narrow pencil of X-rays 
and the resulting Laue pattern is recorded on a photographic plate, it is found 
that in addition to the usual Laue spots, other sets of sharply defined spots appear 
on the plate, corresponding to each of the monochromatic components in the 
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incident X-radiation. This phenomenon which was discovered in the year 1940 by 
Dr Nilakantan and the present writer using octahedral cleavage plates of 
diamond has since been thoroughly re-investigated at this Institute by Mr 
Jayaraman and the writer. The results are found to be in complete accord with the 
hypothesis that the incident X-radiation excites the triply degenerate oscillation 
of the two lattices of carbon atoms in the crystal against each other. These 
movements occur along the directions of the three cubic axes and as a 
consequence, all the lattice planes of the crystal are disturbed, giving rise to 
dynamic X-ray reflections by them. Three sharply-defined spots corresponding 
to each monochromatic component in the incident X-ray beam are demanded by 
the theory for the dynamic reflections by each of the (1 11) planes of the crystal, 
since these planes are equally inclined to the cubic axes. These reflections are 
actually observed in the directions indicated by the theory with suitable settings 
of the crystal. Other sets of lattice planes in the crystal also give dynamic 
reflections in the directions demanded by the theory, but since such planes are 
unequally inclined to the three cubic axes which are the dirgctions of movement of 
the atoms in the excited oscillations, they are not all equally conspicuous. 

Here again the case of diamond does not stand by itself, since analogous 
phenomena are also exhibited by other crystals. But it is not necessary here to 
enter into the details of these cases. 

8. Summary 

The principles of thermodynamics and of the quantum theory indicate that the 
thermal energy in a crystal is identifiable with the energy of an immense number 
of atomic oscillators which have their frequencies of vibration in common but are 
in different states of excitation. Dynamical investigation of the problem shows 
that if the crystal contains p interpenetrating Bravais lattices of atoms, there are 
(24p - 3) frequencies of vibration common to all the oscillators. An investigation 
of the propagation of waves in crystal lattices shows that the results of the 
classical theory of elasticity are valid only in the limiting case of very low 
frequencies and proves further that the group velocity of the waves vanishes for 
(24p - 3) frequencies which may accordingly be identified as the characteristic 
frequencies of atomic vibration in the crystal. Since there is no wave-propagation 
in the real or physical sense except in the very lowest range of frequencies, the 
identification of the thermal energy with the energy of waves traversing the 
crystal in all directions and having frequencies all different from one another 
which forms the basis of the specific heat theory of Debye and of Born's lattice 
dynamics ceases to be justifiable. Other aspects of these latter theories are also 
examined and it is shown that the assumptions which they involve are untenable 
and that in consequence the theories have no claim to validity. The experimental 
results which confirm that the atomic oscillators have specific frequencies in 
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common and modes of vibration specifically related to the crystal structure are 
briefly set out. 

Appendix 

We shall consider the most general case of a crystal whose structure includes p 
interpenetrating Bravais lattices, all of which are geometrically similar and 
similarly situated in the crystal arrangement. An unit cell of the crystal will 
therefore contain p atoms whose masses we shall denote by m,, m,, . . . . m,. 

Since a crystal is triply periodic in space, any unit cell can be reached from any 
other cell of the crystal by the application of three primitive translations-or 
integral multiples of them. We denote the three primitive translations by the three 
vectors dl, d, and d,. In the same way, we denote the three primitive vectors of the 
recipi.oca1 lattice by b,, b, and b,. In what follows, the symbols s and a will be 
used to denote particular cells in the crystal structure while r and p will indicate 
particular atoms in the unit cell; X, Y, Z are three mutually perpendicular 
directions chosen as the coordinate axes along which the displacements of the 
atoms from their equilibrium positions' are resolved. We represent the 
displacement-components of any atom, say the rth atom in the sth cell, by means 
of the symbols q,,, gym, q,,. We can now write the equations of motion of the 
atoms in the sth cell and they take the form 

The force constant k$f: occurring in (1) expresses the proportionality existing 
between the x-component of the force acting on the atom (r, s) to thedisplacement 
in the y-direction of the atom (p,a) which gives rise to this force. 

Since the crystal is composed of p different Bravais lattices of atoms, we can 
reasonably expect a wave of a given wavelength and frequency to be propagated 
with different amplitudes inside the p different lattices. To solve the set of 
equations (I), we therefore assume solutions of the form 

qxrs = A, exp [i(ot - a-s)] x=X,Y,Z 
= A,,exp [(2xi/A)(vt - e-s)] (2) 

which are plane waves of wavelength A and circular frequency o propagating in 
the direction of the vector e of the crystal. If we resolve the wave-vector a along 
the three axes of the reciprocal lattice and write a = 0,b, + 02b2 + 0,b, then the 
equations (2) can alternatively be written as 

where s,, s, and s, are the components of s along the three Bravais axes of the 
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. crystal. Substituting the equation (2) in (I), we obtain 

Equations (3) are a set of 3p equations in the 3p amplitudes A,,, A,,, A,,, 
A,,, . . . . A,, of the waves. By eliminating the amplitudes from these homogeneous 
equations, we can obtain a determinental equation containing 3p rows and 3p 
columns whose elements are the coefficients of the various A,,'s in the equations 
(3). By expanding this determinant, we can rewrite this equation in the form 

in which so, s,, . . . . s sp  are functions of the coefficients of the amplitudes in the 
equation (3), and hence are also functions of the wave-vector of the waves. The 
roots of the equations (4) are consequently functions of the wavelengths of the 
waves, in other words, the waves are dispersive. Since an algebraic equation of 
degree 3p has 3p roots, for each value of a we obtain 3p permissible values for o 
which are the roots of (4). Thus there are 3p waves of a given wavelength moving 
in any direction of the crystal. 

We shall now consider any one of the 3p roots of the equation (4). If this is 
denoted by o,Z, then w: expressed as a function of the wave-vector a has the 
following properties: 

(i) o,Z is a periodic function of el, 8, and 8, with periods 271 for each one of these 
variables; 

(ii) o,Z is a real function of el, 8, and 8,; 
(iii) o,Z is an even function of the wave-vector a (i.e.), o:(a) = o,Z( - a). 

Condition (i) follows from the fact that the coefficients of the amplitudes in (3) 
are of the form 

1 k:;; exp [ia.(o - s)] or 
d 

and hence are periodic functions of el, 8, and 8, with periods 211 for each of them. 
The frequencies of the waves which are functions only of these coefficients are 
therefore also periodic functions of 81, 8, and 8,. 

Condition (ii) can easily be understood from physical considerations. Con- 
dition (iii) follows from the fact that the frequency of a wave of given wavelength 
and amplitude should be the same both for waves travelling in one and the 
opposite directions. Alternatively, these two conditions are consequences of the 
hermitian property of the coefficients of the amplitudes of the waves in the right- 
hand side of the equation (3). 
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Since o,Z is a periodic function of 81, 8, and 8, we can express it as a three- 
dimensional Fourier-series in the form 

where the summation extends over all integral values of n,, n, and n, from - oo 
to + oo. 

If we use a single symbol n to denote the triplet (nln2n3) we can rewrite (5) also 
in the form 

W: = A, exp (ia n) (6) 
n 

Since W: is real, the coefficients of exp i(n,B1 + n28, + n38,) and exp - i(nlOl 
+ n202 + n303) in (5) should be complex conjugates. Hence we have 

- 
A, = A _ ,  (7) 

Now by writing -a  for a in (6), we get 

Since from condition (iii), a:( - a) = 0: (a) we see by a comparison of (6) and (8) 
that 

A, = A _ ,  (9) 

Combinjng (7) and (9) we get 
- - 

A,=A- ,=A,  (10) 

or A, is real. 
We can therefore rewrite (5) as 

0; = A000 + 2CAn,n2n, cos (n191+ n292 + n393) 

= AOOO + 2C A, cos-a*n, (1 1) 
n 

where the summation now is over all lattice points on and above any one of the 
lattice planes dl = 0 or d, = 0 or d, = 0. 

We shall assume that the series obtained by differentiating term by term the 
sum on the right-hand side of (1 1)converges uniformly for all values of el, 8, and 
8, in the interval (0, 27~). Then, we have 

do, 20k- = -.2xA,e.n sin a-n. 
da 

Now, when 81, 8, and 8, each takes one of the values 0 or x, sinaen (i.e.) 
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sin(n,8, + n202 + n38,) is equal to zero. Hence if 

o , # O  

for these values of el,  8, and 03, we find from (12) that 

whenever 

When 8, = 0; 8, = 0; 8, = 0, it can be proved that three of the roots of (4) will 
become zero and hence the condition (13) is not satisfied. These are the limiting 
cases of elastic vibrations of long wavelength in the crystal and for them, since 
o k + O  as a-0 

and therefore the group and wave velocities became identical with the velocities 
of propagation of the elastic vibrations in the crystal lattice. 

The eight set of cases considered above now yield a total number of 24p 
frequencies. Leaving out of these the three degrees of freedom pertaining to pure 
translations and for which, as we have seen, the group velocity is non-zero being 
equal to its wave velocity, we get (24p - 3) frequencies for which the group 
velocity of the waves vanishes. The modes associated with these frequencies now 
possess a simple geometric description. By substituting the values of 0 or x for el, 
8, and 8, in (2'), it can easily be seen that in all the (24p - 3) cases referred to 
above, equivalent atoms in adjacent cells vibrate with the same amplitude and 
with the same or opposite phases along one, two or all three of the Bravais axes of 
the crystal. Since the group velocity is zero, any disturbance with these 
frequencies remains centred in the region of its origin. Further, the phase 
relationships for these (24p - 3) modes are exactly the same as those demanded 
for the normal vibrations of a connected system of particles. 
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