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1. Introduction 

In this second paper of the series, we consider the problem of evaluating the 
specific heats of the four metals aluminium, copper, silver and lead, making use of 
the theoretical ideas set forth in an earlier paper in these Proceedings.' The 
metallic atoms in all these four cases are located at the equivalent points of a 
simple Bravais lattice of which the unit cell is a rhombohedron. Accordingly, all 
the normal modes of vibration are of the second kind, namely, those in which the 
successive atoms along one, two or all the three axes of the lattice oscillate with 
equal amplitudes but with opposite phases. By simple inspection of a model of the 
structure, it can be seen that the twenty-one possible normal modes of this kind 
group themselves into only four distinct modes with 3, 6, 4 and 8 as their 
respective degeneracies. These may be described in simple geometric terms: 
oscillations of the atoms in the cubic planes along the normals to those planes 
(degeneracy 3); oscillations of the atoms in the cubic planes tangential to those 
planes (degeneracy 6); oscillations of the atoms in the octahedral planes normal to 
those planes (degeneracy 4); oscillations of the atoms in the octahedral planes 
tangential to those planes (degeneracy 8). Accordingly, the specific heat of these 
metals is obtained by a summation of the Einstein functions for the frequencies of 
these four modes multiplied by,their respective degeneracies. To this must be 
added the contribution arising from the spectrum of vibrational frequencies with 
a statistical weight of three arising from the three translations of the unit cell with 
the 8 atoms at its comers. This contribution appears as an integration of Einstein 
functions taken over a continuous spectrum of frequencies, the upper limit of 
frequency in the integration being the lowest of the four characteristic 
frequencies. 

2. Evaluation of the characteristic frequencies 

Each of the atoms in a face-centred cubic lattice has twelve nearest neighbours, 
six second neighbours, twenty-four third neighbours and twelve fourth neigh- 
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bours. The six constants needed to determine the force on any one atom resulting 
from the displacement of another atom reduce, by virtue of the symmetry of the 
structure, to three constants in the case of the nearest neighbours, two constants 
for the second neighbours,four constants for the third neighbours and so on. 
Thus, even if only the first three sets of neighbours are considered, the equations 
of motion of an atom would involve nine force-constants arising from the 
displacements of the surrounding atoms. In the absence of any knowledge 
regarding the magnitudes of these nine constants, it is not possible to evaluate the 
four frequencies which we need to know. In the case of diamond dealt with in an 
earlier paper in the Proceedings, it was possible to proceed on the basis of its 
known spectroscopic behaviour and to make an independent evaluation of the 
eight characteristic frequencies of vibration of its structure. It is obvious that a 
different procedure has to be adopted in the case of the metallic elements. 

What we have to ascertain are the frequencies of vibration of the atomic layers 
lying respectively in the cubic and octahedral planes normally or tangentially to 
themselves. It is evident that the frequencies of such vibration would depend on 
the integrated effect on any one layer of the movements of the neighbouring 
layers. Various considerations indicate that the force acting on any layer would 
be determined principally by the.disp1acements relatively to that layer of the two 
neighbouring layers lying one on either side of it. By way of justifying this 
statement, we remark that the first, second and third neighbours of any one atom 
are mostly to be found either in the same layer or in the two adjacent layers. For 
instance, in the cubic layers'all the twelve near neighbours, four out of the six 
second neighbours and sixteen out of the twenty-four third neighbours are to be 
found thus located. Likewise, in the octahedral layers all the twelve near 
neighbours, all the six second nearest neighbours and eighteen out of the twenty- 
four third neighbours are to be found thus located. Hence, the frequencies of 
oscillation with which we are concerned may as afirst approximation be evaluated 
on the basis that the forces on any one layer arise only from the displacements 
relative to it of the two neighbouring layers, one on either side of it. 

For the same reasons as those explained above, the forces which determine the 
velocities of elastic wave propagation in the cubic and octahedral directions 
would likewise be determined as a first approximation by the displacements 
relative to any layer of the two neighbouring layers one on either side. Hence, we 
are in a position to establish simple but approximate relationships between the 
characteristic frequencies of vibration of the lattice and the velocities of 
propagation of elastic waves (longitudinal or transverse as the case may be) in the 
directions normal to the cubic and octahedral planes respectively. This relation 
may be written as below: 

2 Velocity of long elastic waves 
Characteristic frequency = -. 

a Twice the distance between adjacent layers' 

The correctness of the formula is easily verified by comparison with the case of 
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a simple linear lattice, viz., a string under tension loaded with identical mass- 
particles at equidistant intervals. 

3. Numerical results 

The foregoing approximate relationships between the velocity of propagation of 
elastic waves along the octahedral and cubic axes and the characteristic 
frequencies of a face-centred cubic lattice enable us to evaluate the latter for those 
crystals for which the elastic constants have been determined with precision. The 
published determinations make use of the three constants C,,, C12 and C4, 
contemplated in Voigt's theory. The four velocities we are concerned with are the 
square roots of C1,/p, C4Jp 

In the cases of aluminium2 and ~ o p p e r , ~  the values of C,,, C12 and C4, are 
available over a wide range of temperatures from the very lowest upwards. They 
exhibit a progressive diminution with temperature, which at first is slow but 
accelerates at high temperatures. In the cases of silver4 and lead,5 however, 
determinations of the elastic constants only at room temperatures are available 
and we shall make use of them. 

Table 1. Characteristic frequencies in wave-numbers. 

Mode Degeneracy Aluminium Copper Silver Lead 

Average 21 1 207 182 177 117 54 

Table 1 shows the four characteristic frequencies calculated in the manner 
explained above. In the cases of aluminium and copper, the values are given at 
absolute zero as also at room temperature, while in the case of silver and lead, 
only room temperature values are given. Multiplying the frequencies by the 
degeneracies of the respective modes, then adding up and dividing by 21, we get 
the arithmetical average of the four frequencies. This is shown at the foot of the 
table in each case. 

As the elastic constants diminish with increasing temperature but not all in the 
same manner, it is not altogether surprising to find that one of the calculated 
frequencies for aluminium actually increases instead of diminishing with rise of 
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temperature. However, both for aluminium and for copper the arithmetical 
average shows a noticeable fall at room temperature as compared with the value 
at the absolute zero. 

4. Calculation of the specific heats 

The expression for the thermal energy of the crystal is given by the formula 

where N is the number of lattice cells contained in the volume of the crystal u der 
consideration. Differentiating this with respect to T, we obtain the specific he j t of 
the crystal at any given temperature. In evaluating the same, we make use of the 
tabulated values of the well-known functions appearing in the expressions. 

The values of the specific heat have been plotted as functions of the absolute 
temperature in the lower of the two graphs in figures 1, 2, 3 and 4 which refer 
respectively to the four metals. As usual, the abscissae are the absolute 
temperatures, and the scale of ordinates for the specific heat appears on the left- 
hand side of the figure in each case. The upper graph in each figure is the effective 
average frequency determined from the calculated specific heat in the manner 
already explained in the previous papers. The scale of ordinates for this frequency 
appears on the right-hand side of the figure in each case and is expressed in wave- 
numbers. 

It will be noticed that at the upper end of the temperature range in each of the 
four cases, the effective average frequency of the atomic oscillators deduced from 
the calculated specific heats is respectively 210, 182, 1 17 and 55 cm- '. It will also 
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Figure 1. Specific heats of aluminium. 
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Figure 2. Specific heats of copper. 
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Figure 3. Specific heats of silver. 

be noticed that these are equal respectively to the arithmetical average of the 
four characteristic frequencies of each metal shown at the foot of table 1. The 
effective average frequency falls off quite slowly as the temperature goes down 
and hence in the upper part of the temperature range, the arithmetical average 
frequency determines the course of the specific heat curve. Hence any assumption, 
however arbitrary, regarding the nature of the atomic vibration spectrum would 
give the specific heat correctly in this part of the range, provided it gives the same 
arithmetical average for the atomic vibration frequencies. It is only the steeply 
falling part of the specific heat curve that is sensitive to the precise nature of the 
assumed vibration spectrum and can furnish reliable information regarding its 
true complexion. 
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Figure 4. Specific heats of lead. 

- 

'Effective averoge frequency 
- 
- 

fi - 

Calculated specific heat 

0 Experimental observation 

evaluation 

I I 

5. Discussion of the results 
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In part I of the present series of  paper^,^ an analysis of the results of specific 
heat determinations by Giaque and his collaborators for these four metals was 
presented and graphs were reproduced showing the effective average frequency as 
a function of the temperature. These graphs, unlike those appearing in the present 
paper, do not appear as nearly horizontal lines in the upper part of the 
temperature range in each case, but exhibit a plateau* in the middle part of the 
range and then slope down to lower values at the upper limit of the range. It is to 
be inferred from these consequences deduced from the actual specific heat 
determinations that the atomic vibration frequencies are themselves not 
independent of the temperature, and that they (or at least their arithmetical 
averages) diminish progressively as the temperature rises. 

The experimentally determined specific heats7** have been plotted alongside of 
the graphs of the calculated specific heats in figures 1,2,3 and 4 of the present 
paper. In view of the remarks made above, it is to be expected that the observed 
specific heats would lie above the calculated ones in the upper part of the 
temperature range. It will be noticed from the figures that this is actually the case. 
The deviations are fairly conspicuous in the case of aluminium and copper, but 
are less conspicuous in the cases of silver and lead. The characteristic frequencies 
for aluminium and copper were calculated from the low-temperature elastic 
constants, while for silver and lead the frequencies were calculated from the 
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*The plateau frequencies are 206,167,113 and 50 cm- ' respectively for aluminium, copper, silver and 
lead. These are somewhat smaller than the arithmetical average frequencies, as is to be expected. 
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elastic constants at room temperature. The closer approximation actually found 
between the observed and the calculated specific heats for silver and lead at the 
higher temperatures is therefore to be expected. 

Having regard to the method used for evaluating the four characteristic 
frequencies, and remembering also that in the present theory we have totally 
disregarded the anharmonicity of the atomic oscillators, the general agreement 
between theory and observation over the entire range of temperatures exhibited 
by figures 1 to 4 may be considered satisfactory. However, it is to be remarked 
that the observed specific heats are sensibly lower than the calculated ones in the 
range of temperatures where the specific heat curve slopes steeply down. This is 
noticeable in the cases of all the four metals and indicates that the characteristic 
frequencies as determined by the present approximate method need revision. We 
shall return to this in the third paper of the series. 

6. Summary 

The specific heats of the four metals aluminium, copper, silver and lead which 
crystallise as face-centred cubic lattices are evaluated in terms of the four 
characteristic frequencies of vibration of such a lattice, these latter being 
determined by an approximate method which relates them to the elastic 
constants of the crystal. The results thus derived are discussed and compared with 
the experimentally determined specific heats. 
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