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1. Introduction 

The fundamental property of the atomic structure of a crystal is that it comes into 
coincidence with itself following a unit translatioh along any one of the three axes 
of the lattice. Hence the normal modes of atomic vibration characteristic of the 
structure of a crystal should satisfy a similar requirement; in other words, they 
should remain unaltered following such a unit translation. From this, it follows 
that the atomic modes of vibration satisfy the following rule: in any normal mode, 
equivalent atoms in the structure have either the same amplitude and the same 
phase, or the same amplitude but alternating phases, along the axes of the lattice. 
In the MgO structure, we have two interpenetrating face-centred cubic lattices of 
Mg and 0 atoms respectively, Applying the rule stated, it should be possible to 
deduce the normal modes of vibration of this structure purely from symmetry 
considerations. One could also go further and obtain explicit formulae for the 
frequencies of the normal modes in terms of the interatomic force-constants. We 
shall, in what follows, carry out the programme here indicated. 

2. Vibrations of a face-centred cubic lattice 

The three unit translations in a face-centred cubic lattice are parallel to the three 
edges of the primitive rhombohedra1 cell of the lattice. These edges are found by 
joining an atom at a cube corner with the three atoms at the centres of the three 
adjoining cube faces. The various modes of normal vibration of the lattice given 
by the rule stated above are found by choosing one or another of the eight 
possible combinations of the phases of these three atoms relative to the phase of 
the atom at the cube coraer and continuing the scheme to the more distant atoms 
in the lattice. It is then found that the possible modes of vibration may be 
described either as movements of the cubic planes of atoms in the crystal or as 
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movements of the octahedral planes of atoms; in either case, the alternation of 
phase along an axis results in the alternate planes of one or the other species 
moving in opposite phases. Since we have three sets of cubic planes and four sets 
of octahedral planes, the movements of these planes normal to themselves would 
give three and four normal modes respectively, but only two distinct frequencies. 
We have also to consider the movements of the planes parallel to themselves, and 
as there are two possible directions of movement in each case, we obtain six and 
eight such normal modes respectively, but here again only two additional 
frequencies by reason of the symmetry of the crystal. Thus, in all, we have only 
four distinct frequencies of vibration. In the foregoing we left out of consideration 
the case in which the phases of movement of the three atoms at the face-centres 
and of the atom at the cube corner are the same. This corresponds to a simple 
translation of the unit rhombohedra1 cell carrying eight atoms at its corners. The 
24 degrees of freedom of movement of these eight atoms are thus distributed as 

* follows amongst the possible movements of the lattice. 

Table 1 

Degeneracy 

Vibrations of the cubic planes normal to themselves 3 
Vibrations of the cubic planes tangential to themselves 6 
Vibrations of the octahedral planes normal to themselves 4 
Vibrations of the octahedral planes tangential to themselves 8 
Translations of the unit cell 3 

Total degrees of freedom 24 

3. The vibrations of the MgO structure 

In the MgO crystal, the Mg and 0 atoms occupy the points of two similar face- 
centred cubic lattices interpenetrating each other. These are so disposed that each 
Mg atom is surrounded by six equidistant 0 atoms, and each 0 atom is 
surrounded by six equivalent Mg atoms. In the cubic planes of the structure the 
Mg and 0 atoms appear together, while in the octahedral planes they appear 
separately but in equidistant planes, each plane of Mg atoms having two planes of 
0 atoms and each plane of 0 atoms having two planes of Mg atoms situated 
symmetrically on either side of it. This arrangement has interesting consequences 
regarding the possible vibrational modes of the structure, as we shall presently 
see. 

Table 1 would represent equally well the schemes of vibration of the Mg atoms 
and of the 0 atoms. Hence, the interactions of these atoms with each other would 
result in a modification of the frequencies of vibration without altering the 
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geometry of the modes. since the cubic planes contain both Mg and 0 atoms, 
each of their movements would split into two modes: in one of the two modes, the 
Mg and 0 atoms in a cubic plane would oscillate in the same phase and in the 
other they would oscillate in opposite phases. The situation would be a little 
different with respect to the atomic layers parallel to tbe octahedral faces. In view 
of the disposition of Mg and 0 atoms in these layers, it is evident that the 
oscillations of Mg and 0 layers would occur independently of each other, the Mg 
planes remaining at rest when the 0 planes oscillatq and vice versa. The three 
translations or the unit cells would also split into two. The movement of the Mg 
and 0 atoms in opposite phases would give ii triply degenerate normal mode, 
while their movement in the same phases would represent a residuum of three 
translations. 

Thus, the structure would have only nine different frequencies of vibration, 
while the number of normal modes would be 45 which together with the residuum 
of the three translations would account for the 48 degrees of freedom of 
movement of 8 atoms of magnesium and 8 atoms of oxygen when added together. 
The description of the modes of vibration corresponding to each of the nine 
different frequencies is entered in the second column of table 2, while their 
respective degeneracies are shown in the third column of the table. These 
degeneracies are the same as shown in table 1, but they now total up to 48 instead 
of 24 as in tho former table. 

The modes have been shown in the first column of table 2 in the order of the 
magnitude of their respective frequencies suggested by the approximate formulae 

Table 2 
- - - - -- - - 

S1. No. Description of mode Degeneracy 

VI 
VII 

Oscillation of the Mg and 0 atoms in opposite phases 
Tangential oscillations of the cubic planes, Mg and 0 

atoms having opposite phases 
Normal oscillations of the cubic planes, Mg and 0 atoms 

having same phases 
Normal oscillations of the octahedral planes of 0 atoms 
Tangential oscillations of the octahedral planes of 0 

atoms 
Normal oscillations of the octahedral planes of Mg atoms 
Tangential oscillations of the octahedral planes of Mg 

atoms 
Normal oscillations of the cubic planes, Mg and 0 atoms 

having opposite phases 
Tangential oscillations of the cubic planes, Mg and 0 

atoms having same phases 
Translations 

Total degrees of freedom 48 
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of the dynamical theory to be given presently. But this arrangement is subject to 
revision on the basis of a more accurate evaluation of those frequencies. It will be 
noticed that at the top of the table listed as mode I appears the triply degenerate 
oscillation of the Mg and 0 atoms in the structure moving against each other in 
opposition of phase. It will also be noticed that next to it in the descending order 
of frequency appear the tangential and normal modes of oscillation of the cubic 
layers of atoms. These are listed in the table as modes I1 and 111, while two other 
modes of oscillation of the cubic layers in which the phases of movement of the 
Mg and 0 atoms are different appear at the bottom of the table as VIII and IX 
respectively. The oscillations of the octahedral layers of atoms appear in an 

' 

intermediate position as IV, V, VI and VII respectively. 
a 

4. Dynamical theory: First approximation 

The normal modes of atomic vibration in a crystal remain unaltered when a unit 
translation is given to the structure along any one of its three axes. Accordingly, it 
'is sufficient to write down and solve the equations of motion of the atoms 
contained in any one unit cell of the structure. The features of the vibration 
deduced therefrom would equally well describe the possidle atomic movements in 
the other cells of the structure. In the present problem, therefore, we have only to 
frame the equations of motion of a magnesium atom and of an adjoining oxygen 
atom in the structure for each of the possible wodes of vibration deduced from the 
geometry of the structure. Their solution would give us the frequencies of those 
modes of vibration. 

The forces acting on an atom which determine its movements are those arising 
from the displacements of other atoms in the crystal by reason of their mutual 
interactions. We shall proceed on the assumption that the interactions between 
any two atoms are determined by their relative displacements measured from the 
positions they occupy when at rest in the crystal. The forces of interaction may be 
expected to be greatest between atoms which are near neighbours and to diminish 
rapidly in respect of those atoms which are further and further removed from 
each other. 

The nearest neighbours of each magnesium atom in the MgO structure are six 
oxygen atoms. These are situated in pairs, one on either side along the x, y and z 
axes of the structure. Likewise, each oxygen atom has six magnesium atoms as its 
nearest neighbours arranged in a similar fashion. We shall, in the first 
instance, proceed to work out the dynamics of the vibrations taking into account 
only the interactions between each magnesium atom and its six neighbouring 
oxygen atoms and vice versa. It is clear that two force-constants which we shall 
denote as a and f l  respectively would suffice to specify these interactions. The 
constant a refers to the interaction between an Mg atom and an 0 atom arising 
from their relative displacement along the direction of the cubic axis on which 
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they both lie. The force resulting from such displacement would be parallel to the 
direction of the displacement. The constant P refers to the interaction arising from 

. a relative displacement transverse to the line joining the two atoms and parallel to 
one of the other two cubic axes. In this case as well, the resulting force would be 
parallel to the direction of such displacement. 

We denote by m, and m2 the masses of the Mg and 0 atoms respectively. t,, q, ,  
5, and e2, q,, 5, are the displacements of the Mg and 0 atoms under 
consideration respectively along the x, y and z axes. The forces acting on these 
atoms are found by multiplying the displacements of the interacting atoms 
relatively to each of them by the appropriate fbrce-constants and adding them up. 
The equations are then solved by writing 

e tl  = x1 sin wt, q1 = y1 sin wt, etc., 

and eliminating the quantities x,, y,, etc., which represent amplitudes. An 
expression is then obtained which gives oZ in terms of a, and the masses m, and 
m,. We shall consider in turn the different modes of vibration indicated by table 1 
as possible for a face-centred cubic lattice. 

The first case we shall consider is that in which the Mg atoms and 0 atoms 
oscillate as groups along the x-axis. The equations of motion are then . 

and 

where KO is an abbreviation for (2a + 48). Proceeding as already indicated, we 
obtain a quadratic equation for wf., the solutions of which are 

where f i  is the reduced mass given by the formula l/p = l/m, + l/m2. The first 
solution represents mode I in table 2 above, while the zero frequency represents 
the translations appearing at the foot of that table. 

The next case is that of the tangential oscillation of the cubic layers of atoms 
which are parallel to the yz plane along the y-axis. The alternate layers oscillate in 
opposite phases. The equations of motion are: 

and 
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The solutions of these equations are: 

The alternative signs appearing in formula (2) give the frequencies of vibration w2 
and w, respectively. The higher frequency w2 refers to the case in which the Mg 
and 0 atoms appearing in the same yz planes move in opposite phases. The lower 
frequency w, represents the case in which the Mg and 0 atoms appearing in the 
same yz planes move in the same phase. u2 and 91, refer respectively to the modes 
listed as I1 and IX in table 2. From formula (2) it is evident that 

0; = w: - 0:. 
The third case we shall consider is that in which the cubic layers of atoms in the 

crystal lying in the yz planes oscillate normally to themselves along the x-axis, the 
alternate layers being in opposite phases. The equations of motion are: 

d2t1 
m 1 ~  - Koti - (KO - 8B)t2 

and 
d2t2 

m2-p  = -(KO - 88)tI- Kot2. 

The solutions of these equations are: 

The alternative signs appearing in the formula give the two frequencies of 
vibration w, and a,. The higher frequency w, represents the case in which the Mg 
and 0 atoms which appear in any yz plane oscillate in the same phase, while the 
Mg and O atoms adjacent to each other in adjoining yz layers vibrate in opposite 
phases. The lower frequency w, refers to the case in which the Mg and 0 atoms 
which appear in the same yz planes move in opposite phases, while the Mg and 0 
atoms which are nearest to each other in adjacent yz layers oscillate in the same 
phase. w, and w, refer respectively to the modes listed as I11 and VIII respectively 
in table 2. From the formula (3), it is evident that 

o f  = w: - w:. 

We have next to consider the oscillations of the octahedral layers of atoms 
normally or tangentially to themselves. The Mg and 0 atoms are liochted in 
separate octahedral layers which alternate and are equidistant from each other. 
Hence, when two layers of Mg atoms oscillate in opposite phases, the layer of 
oxygen atoms midway between them remains at rest, and vice versa. A single 
equation of motion determines the frequency of oscillation for the magnesium 
atoms, while another such equation yields the frequency for the oxygen atoms. It 



618 c v R A M A N :  PHYSICS OF CRYSTALS 

is also evident that when the interactions only with the nearest neighbours are 
I considered, the frequency for oscillations normal and tangential to the octahedral 

planes would not be different. We obtain 

for the modes listed as' IV and V in table 2 and 

for the modes listed as VI and VII in table 2. 

5. Dynamical theory: Second approximation 

In the foregoing, we took into account only the interactions between the atoms 
which are nearest to each other. This enables a first approximation to be obtained 
in a simple manner for the frequencies of vibration and permits of their being 
arranged, at least provisionally, in an ordered sequence. There is no difficulty, 
however, in taking the interactions with more distant neighbours into account 
and finding more exact formulae. Besides the six neighbouring oxygen atoms, 
each magnesium atom has twelve magnesium atonis as next nearest neighbours 
located on the face-diagonals. It has also eight oxygen atoms as more distant 
neighbours located on the body-diagonals. Likewise, each oxygen atom has 
twelve oxygen atoms as next nearest neighbours and eight magnesium atoms as 
more distant neighbours. The movements of these neighbours relatively to the 
atom under consideration and the interactions arising therefrom have to be taken 
into consideration in framing its equations of motion and deducing therefrom the 
frequencies of its vibration. We shall consider in succession the various modes of 
vibration listed in table 2. 

Mode I.-In addition to the force-constants a and P already introduced, we 
have to consider a third force-constant y, which expresses the interactions 
between the magnesium atoms and the oxygen atoms located along the body- 
diagonals of the cubic structure. It is readily shown that the frequencies are given 
by 

K 
cot =- or colO=O, 

Cc 
(6) 

where K is an abbreviation for (2a + 4P + 8y). 
I 

Modes 11 and 1X.-In these modes, we have now to consider also the 
interactions of each Mg atoM with the twelve Mg atoms in its neighbourhood. 
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Likewise, we have to take into account the interaction of each 0 atom with its 
twelve neighbouring 0 atoms. The forces and displacements with which we are 
concerned in these interactions are parallel to each other and to one or another of 
the three cubic axes. Four of the atoms are located in each of the three cubic 
planes containing the atom under consideration. It emerges that in four cases out 
of the twelve, the force and the displacement are both perpendicular to the cubic 
plane in which the interacting atoms are situated, while in the remaining eight 
cases, they are both parallel to that plane. We have accordingly to introduce two 
new force-constants 8, and 4, for the interactions between the magnesium 
atoms, and likewise two other force-constants'8, and 4, for the interactions 
between the oxygen atoms. The equations of motion then take the form 

and 

Substituting 

q l = y l s i n o t  and q2=y2sinot  

and eliminating y, and y,, we obtain a quadratic equation which enables o;, , to 
be expressed in terms of the force-constants and the masses m, and m,. 

Modes 111 and VII1.-Only five out of the seven force-constants already 
introduced appear in the equations of these two modes. 

Substituting 

tl = x, sin ot and 5, = x, sin o t ,  

and eliminating x, and x,, we obtain a quadratic equation which gives mi, in 
terms of the force-constants and the masses m, and m,. 

Modes IV, V, VI and VI1.-We have now to introduce two additional force- 
constants $, and $,, which represent interactions in which the force and the 
displacement are mutually perpendicular, the displacement being along one 
cubic axis and the force along another cubic axis, while the interacting atoms lie in 
the plane defined by the two axes. $, refers to the case in which the interacting 
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atoms are both of magnesium, while 49, refers to the case in which they are both 
oxygen atoms. These force-constants appear in considering the movements of the 
octahedral layers either norm?lly or tangentially to themselves, by reason of the 
simultaneous movements along all the three cubic axes or along two cubic axes 
which need to be taken into account in these cases. The equations of motion for 
normal and tangential movements of a magnesium atom respectively are: 

and 
d 2 t 1  

m1-;ijrZ -(K + @ I  + 8 4 1  -4$'1)41. 

The frequencies are therefore respectively: 

and 

The equations of motion for normal and tangential oscillations of an oxygen 
atom are respectively 

and 

The frequencies are therefore respectively 

w: = (K + 4 0 2  + 8 4 2  + 8$2) 

m 2  
and 

6. Summary 

The fundamental property of a normal vibration indicated by the classical 
dynamics, viz., that the particles in the system oscillate with the same frequency 
and in the same or opposite phases, considered in relation to the three- 
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dimensionally periodic structure of a crystal, enables the possible modes of 
atomic vibration in a crystal to be uniquely characterised and enumerated. The 
simplicity and high symmetry of the structure of,MgO enables this procedure to 
be carried further and the modes of normal vibration to be completely described 
and explicit formulae obtained from their frequencies. It emerges that the 
structure of MgO has nine distinct frequencies of vibration. Expressions have 
been derived for these frequencies of these modes, both in the first and in the 
second approximation. 
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