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A consideration of the possible free modes of vibration of the atoms in a crystal 
about their positions of equilibrium is, of necessity, the starting point in the 
theory of its specific heats and also for an understanding of its spectroscopic 
behaviour. We are concerned to discover the nature of the movements of the 
massive positively charged nuclei about the locations in which they are held in the 
crystal by the clouds of the mobile negative charges which surrounds and 
encompass them. A practicable approach to the problem is that based on the 
principles of the classical mechanics. 

A well known theorem states that all the possible small vibrations of a 
conservative dynamical system about a position of stable equilibrium may be 
represented as a superposition of certain modes of vibration designated as the 
normal modes of the system. The number of normal modes is equal to the number 
of degrees of dynamical freedom of the system, and in each such mode, the 
particles of the system execute harmonic vibrations wi.th common frequenky 
characteristic of the mode and their phases are all the same or opposite, in other 
words, they all pass simultaneously through their positions of equilibrium. It 
should be emphasised that this identity or opposition of phase is a fundamental 
feature of the normal modes. In the absence of such a phase-relationship, the 
possible movements of the particles would be infinitely varied and hence 
incapable of enumeration. j 

We have thus to answer the following questions. Do the atoms located in the 
structure of the crystal possess any normal modes of vibration having the stated 
characters? If so, what is the number of such modes and how is their number 
related to the number of atoms comprised in each unit cell of the structure? To 
find the answer to these questions, we make use of the fundamental property of a 
crystal that its structure comes into coincidence with itself following a unit 
translation along any one of the three axes of the lattice., Since each atom comes 
into coincidence with an equivalent atom in the next cell, all physical properties of 
the crystal determined by the atomic locations and the atomic interactions 
should also remain unaltered. It follows as a necessary consequence of this 



situation that a vibration having the characters of a normal mode should 
continue to be a normal mode following a unit translation. This can evidently 
happen in two ways. Equivalent atoms brought into coincidence can have 
identical amplitudes and phases of vibration. Alternatively, their amplitudes can 
be the same but all the phases are reversed. (In the latter case, the original phases 
are regained after a half-period and hence the normal mode is effectively 
unaltered.) 

The two alternative possibilities indicated above arise in respect of a unit 
translation along each of the three axes of the lattice. Since these are independent 
of each other, we have 2 x 2 x 2 = 8 different possibilities in all. In each of these 8 
possibilities, the amplitudes of vibration of the atoms in the cells adjoining a 
particular cell are the same as those of the equivalent atoms in that cell. Hence, if 
there are n atom's in each unit cell of the structure, their 3n equations of motion 
involving their interactions with the surrounding atoms which are assumed to be 
proportional to their relative displacements contain only 3n displacement co- 
ordinates. Hence the equations of motion can be completely solved, the solutions 
obtained giving us the frequencies and the ratios of the atomic displacements 
along each of the co-ordinate axes. 

Considering all the eight possibilities referred to above, we have 8 x 3n = 24n 
distinct solutions or normal modes of vibration. In 3n of these modes, the 
vibrations of equivalent atoms have the same phase in the adjoining cells, while in 
the remaining 21n modes, they appear with alternating phases along one or two 
or all three axes of the lattice. By the nature of the case, however, 3 out of the 3n 
modes have a zero frequency, in other words, represent simple translations. 
Hence we have only (3n - 3) normal modes properly so-called of the first species 
and 21n normal modes of the second species. 

The fluorite structure can be described as the result of the interpenetration of 
three similar rhombohedra1 ( = face-centred cubic) lattices, one of calcium atoms 
and two of fluorine atoms. Hence, in what has been stated above, we have n = 3, 
and the number of normal modes of vibration of the first species is, therefore, 6 
and of the second species is 63. The number of distinct frequencies of vibration 
would however be far smaller, by reason of the cubic symmetry of the entire 
structure and consequent degeneracy of the modes of vibration. The actual 
number of such frequencies and the modes of vibration exhibiting them can be 
readily derived in the following manner. We begin by considering the possible 
modes of vibration of each of the three lattices of atoms with which we are 
concerned. The eight possible alternatives regarding the relative phases of the 
atomic vibration in any one lattice give rise to 24 possible types of movement 
listed in a table on next page. 

In the modes listed as (2), (3), (4) and (5), theoscillations alternate in phase as we 
proceed from layer to layer. The directions in which the layers of atoms oscillate, 
viz., normal or tangential as the case may be, are fixed by the symmetry of the 
structure. The symmetry also determines the degeneracies shown against the 
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Description of the modes Degeneracy 

1. Simple translations 
2. Oscillations normal to the cubic planes 
3. Oscillations tangential to the cubic planes 
4. Oscillations normal to the octahedral planes 
5. Oscillations tangential to the cubic planes 

Total 24 

respective modes. The free modes of vibration of the fluorite structure would 
evidently by superpositions of the movements or oscillations of the three lattices, 
these being geometrically similar but with amplitudes and phases relative to each 
other which are dynamically permissible. Taking first the simple translations of the 
three lattices, one of them reduces to a simple translation of all the three lattices 
together, and the other two give us the modes of oscillation pictured in figures 1 
and 2 below respectively, each of which is three-fold degenerate. In the oscillation 
pictured in figure 1 the calcium atoms all move together in phase, while the 
fluorine atoms move together in the opposite phase. In the oscillation pictured in 
figure 2, the calcium atoms remain at rest, but the fluorine atoms oscillate with 
the two lattices in opposite phases. 

Figure l. Oscillation of the calciums against the fluorines. 
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Figure 2. Oscillations of the fluorine atoms with the two lattices in opposite phases. 

Likewise, the mode of oscillation of the cubic layers of atoms normal to 
themselves listed as (2) in the table resolves itselfinto three modes. In one of them, 
adjoining layers of fluorine and calcium atoms move in opposite phases. In 
another, they would move in the same phase. In the third mode, the calcium 
atoms would remain at rest and the layers of fluorine atoms would oscillate 
against each other. These three modes of vibration are shown diagrammatically 
in figures 3(a), (b) and (c) respectively. Each of these modes would have a 
degeneracy of 3. The corresponding modes of oscillation tangential to the cubic 
layers are shown diagrammatically in figures 3(d), (e) and (f ). Each of them would 
have a degeneracy of 6. 

The oscillation of the octahedral layers normal to themselves listed as (4) in the 
table would likewise divide up into three modes. In one of them, the three 
adjacent layers containing the calcium and fluorine atoms would move together 
in the same phase, the phase of all the three together reversing from one set of 
three layers to the next set. In another mode, the fluorine layers would move 
together in one phase and the calcium layers intermediate between them in the 
opposite phase. This movement again would reverse its phase in the next adjacent 
set of layers. In the third mode, the fluorine layers alone would oscillate in 
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Figure 3. (a), (b), (c), (d), (e) and (f): Oscillations of the cubic layers of atoms. 
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Figure 4. (a), (b), (c), (d), (e) and (f): Oscillations of the octahedral layers of atoms. 
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opposite phases, the intermediate calcium layer remaining at rest. This movement 
again would reverse in phase as we pass from one set of three layers to the next. 
Each of these three modes would have a degeneracy of 4. They are represented in 
figures yo), (b) and (c) respectively. The three corresponding tangential modes are 
represented in figures 4(d), (e) and (f ). They have each a degeneracy of 8. The 
degeneracies of all the fourteen normal modes when summed up give 69 to which, 
on adding the three omitted translations, we obtain 72 as the total. 

Summary ' 

It is shown that the fluoride structure has 14 different frequencies of vibration 
corresponding to the same number of normal modes with degeneracies of 3,3,3, 
6,3,6,3,6,4,8,4,8,4 and 8, besides three translations, making up a total of 72 
degrees of freedom. The normal modes have been described and represented 
diagrammatically. 
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