
Bull. Calcutta Math. Soc. 5 5-8 (1913-14) 

On the summation of certain Fourier series 
involving discontinuities 

C V RAMAN 

In a previous communication published in the Bulletin,* I gave a brief outline 
of a method which I had adopted for discussing the kinematics of a bowed 

' string in a detailed memoir on the subject which I had under preparation. 
Subsequently, whilst the memoir was being written, I noticed some points which 
were of great importance in the theory of the subject and which were not alluded 
to in the note published in the Bulletin of the Society. I propose now to 
supplement the first note by referring to the fresh results thus obtained. 

The treatment adopted for discussing the motion of a bowed string in detail 
is based on the following two dynamical principles: 

(1) The frictional force at the point of contact is a function of the relative 
velocity which decreases when the relative velocity is increased and becomes 
indeterminate when the relative velocity is zero. 

(2) The force required to maintain any given harmonic component of the 
motion with a specified amplitude is a function of the damping coefficient and 
may thus be regarded as small compared with the variation of frictional force 
due to a finjte change of relative velocity; this statement is however subject to 
the qualification that the point of application of the force should not coincide 
with a node of the given harmonic, and that the pressure with which the bow 
is applied is sufficiently large. 

When a steady state of vibration is reached under the action of the bow, the 
harmonic components in the frictional force at the point of contact and the 
forces actually required to maintain the motion must balance one another. This 
can only be reconciled with the principles set out in (1) and (2) above on the 
assumption that during a part of the motion, the relative velocity at the point 

*C V Raman, 'On some new methods in kinematical theory' 4, pages 1-4. 
To the references cited in the note may be added the following: 
A Harnack, Mathematische Annalen, Bd. 29, S.  486, 1887. 
F Lindemann, Philosophical Magazine, March 1880. 
Carslaw, Proceedings of Edin. Math. Soc. 1902. 
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of contact actually becomes zero, so that the frictional force in those stages falls 
below the maximum statical value. 

It is also seen from principle (2) that during those stages of the motion during 
which the relative velocity at the point of contact is not actually zero, its value 
would in any case be practically a constant quantity. But this result would not 
hold good with the same universality as the constancy of the velocity of the 
bowed point during the stages in which its movement is in the same direction 
as that of the bow. In fact, except in special cases, the velocity in the backward 
movement would be rigorously constant only when the damping coefficients of 
all the harmonics are vanishingly small compared with the other quantities 
involved. 

Assuming the rigorous constancy of the velocities of motion at the bowed 
point both in the forward and backward movements, we see that the condition 
(d2y/dt2) = 0 is satisfied generally at the bowed point. The kinematics of the 
motion can then be discussed on the lines indicated in my first note. If the 
bowed point divides the string in an irrational ratio, all the discontinuities in 
the velocity-diagram of the string are equal to one another and to (v, - vb), 
where v, and o, are the two velocities possible at the bowed point. If there are 
n such discontinuities on the velocity diagram of the string during the motion, 
the mode of vibration may be classified as belonging to the nth type. It is readily 
seen that the lines in the velocity-diagram are not more than (n + 1) in number 
at any instant, and that they always pass or would pass, if produged, through 
the (n + 1) nodes of the nth harmonic. These nodes are then points alternately 
of rest and of motion in one direction or the other. 

When the bowed point divides the string in a rational ratio, the form of the 
velocity-diagram may be derived from that of the corresponding irrational 
type by the following process: Taking the form of the velocity-diagram at any 
specified epoch in the irrational case, we have to analyse it into its Fourier 
components and then effect a summation of the series of components which 
have a node at the bowed point in the form of a subsidiary velocity-diagram 
for the specified epoch. Subtracting the ordinates of this diagram from the other, 
we get the actual velocity-diagram in which the harmonics having a node at 
th? bowed point are non-existent. 

Let the velacity-diagram of the string at a certain epoch in the corresponding 
irrational type of vibration consist of parallel straight lines inclined to the 
x-axis at an angle a, with discontinuities dl, d,, d3, etc., intervening at the points 
x = cl,  c2, c3, etc., respectively. Let this diagram be represented by the function 
&). Then 

where the value of A, is determined by the equation. 



SUMMATION OF FOURIER SERIES 

nnx 
4(x) sin-dx. 

1 

4(x) is equal to x tan a between the limits x = o and x = c,. From x = c, up to 
x = c,, &(x) is equal (x tan a - dl), and then changes to (x tan a - dl - d,), 
retaining this value up to x = c,, and so on. Integrating by parts, we have 

Since tan a is a constant, the second integral reduces to zero, and the equation 
may be written in the form 

nnc, A,= -- + d2 cos- + etc. . 
nn 1 I 

When n = 1, we have 

When n = s, A, may be written in the form 

The summation of the series C:Z ;" A, sin (nnx)/l of which A, sin (nx)/l is the 
leading term gives us the original velocity-diagram +(x) which consists of parallel 
straight lines inclined to the x-axis at an angle a and has a discontinuity dl at 
the point x = c,, a discontinuity d, at the point q, and so on. From this, it 
follows that the series 

of which A, sin (snx)/l is the leading term would similarly give us when summed, 
a diagram also consisting of straight lines inclined to the x-axis at the same 
angle a, the magnitude of the discontinuities in it being d,/s, d,/s, d,/s, etc., and 
the series being periodic for increments of x by the length 211s instead of by 21 
as with the original series. The positions of the discontinuities in the diagram 
thus derived are given by the abscissae obtained by subtracting from c,, c,, c,, 
etc., the nearest multiples of the length 11s. - 

Subtracting the ordinates of the diagram thus derived from the ordinates $(x) 

. (* of the original diagram, the resulting figure in which the sth, 2sth, 3sth harmonics, 
etc. are ail absent is seen to consist of straight lines parallel to the x-axis 
with intervening discontinuities. From the graph thus derived, the motion at 
any given point on the string can be drawn as a time-displacement diagram 
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with the greatest ease and simplicity by noting the times at which the successive 
changes of velocity occur at the point by the passage of the discontinuities over 
it. In the special cases in which the motion at the bowed point is a simple 
two-step zig-zag, the quantities c,,c,,c,, etc., are found to be merely multiples 
of the length l/s and the construction becomes particularly elegant. 

The treatment of the cases in which the velocity at the bowed point has a 
continuous variation, particularly during the stages of backward motion, is 
naturally far more complicated. It is however of great importance in regard to 
the musical applications of the subject. These variations of velocity occur owing 
to the harmonics not being elicited in the normal strength in which they are 
present in any of the standard types of vibration referred to in this note. It is 
not within the scope of this note to consider such cases in detail. 
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