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1. Introduction

In part III' of this series of papers, we considered the Doppler effects and
coherence phenomena among the diffracted components oflight emerging froma
rectangular cell of a medium traversed by supersonic waves perpendicular to the
direction of the propagation of the incident plane wave of light. We showed, in the
case of a progressive supersonic wave, that the nth order diffraction component
which is inclined at an anglesin™* (—nA/2*) to the direction of propagation of the
incident light has the frequency v — nv*, where v and A denote the frequency and
the wavelength of the incident light while v* and 1* correspond to those of the
sound wave. In the case of the diffraction of light by a standing sound wave, we
got the interesting result that in any even order, radiations with frequencies
vE2rv¥, (r=0,1,2,....), would be present while in any odd order, radiations with
frequencies v.4 2r + I v*, (r=0,1,2,....), would be present. These results give a_
satisfactory interpretation of the cohcrence phenomena among the diffraction
components observed by Bir'. In the following, we show that our previous results
remain valid even if we consider a general periodic supersonic wave and that they
can be derived in'a simple and direct fashion. We have also presented in the
following, some general considerations of the problem on hand.

*C V Raman and' N S Nagendra Nath, Proc Indian Acad. Sci. (4), 1936, 3, 75.
'R Bir, Helv. Phys. Acta, 1935, 8, 591. "

593




- 594 | " CVRAMAN: ACOUSTICS
2. Doppler effect and coherence phenomena

The partial differential equatxon govemmg the propagation of hght in a medium
with time-variation and space-variation in its refractive index is

62¢ 62‘1’ i 4 32&” ”(x’ ya Z, t.) P ﬂ
ox? 6y2 oz% .c or?

if the frequency of the time-variation of u(x, y, z, t) is very slow compared to the
time-variation of the wave-function of light. This would be so in the case of the
propagation of light in a medium filled with sound waves for the frequency of the
variation of u(x, y, z, t) corresponds to the frequency of the sound waves present in
the medium, which is negligible compared to the frequency of light.

If we choose our axes of reference such that the X-axis points to the direction of
the propagation of the plane sound waves and the Z-axis points to the direction of
the propagation of the incident plane wave of light, we could ignore the
dependence of ¥ on y and write the differential equation as '

2y, P [u(x, t>]2 7y
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If u(x, t) did not depehd on time,  would have had the only time factor exp(2nivt)
where v is the frequency of the incident light. If we consider the time variation of
u(x,t), we can write Y as given by

. o ¥ =exp [2mvt]¢(x, z, t)

where ¢(x, 2, t) varies slowly in time compared to exp [2rivt]. On the conside-"
" ration that v* < v, we can show that

, ot
4nv% « [|4n*v*¢| and —2 4nv3¢),
With these considerations, we can consider the differential equétion
62¢ 62¢ 4n?

a + azz ? {”(x9 t)}2¢

and obtain y by the equatlon

V= =exp [2mvt]¢(x, z, t)

As the sound waves which travel along the X-axis are penodlc in spaoe and tlme,
we can regard p(x, t) to be also periodic in x and ¢ with the same periods in space
and time. It should be noticed that we do not restrict u{x, t) to be simply periodic
~ inxand ¢ but it may be a general periodic function of x and t, amenable to Fourier
analysis. Thus ‘

H(x + pA*, 1) = p(x,t)
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and .
u(x, t+ p/v¥) = u(x,t)

where p is any integer.

If we consider the differential equation in which u(x, £) has the above properties,
we see that ¢(x, z, ) should also be periodic in x and ¢ with the same periods in the
case we are considering. That is,

¢(x +pa*,z,0) = $(x,2,1)

¢(x, 2, + p/v*) = B(%,2,1).
Hence we can write the double-Founer expansmn of ¢(x, z, t) as

and

i Y. fo{z)exp (2nirx/A*)exp (2misv*e).

=00 —

Progressive sound waves: In the case of the progressive waves travelling along
the positive direction of the X-axis, we have the property that

Hx + pA*, 1) = p(x,t — p/v*)
where p is any number Thus
P(x + pA*,z,t) = ¢(x’2,t—P/V"‘) S M
Using the double-Fourier expansion, we can write (1) as o '
2.2 fl2) exp (2mirx/A*) exp (2misv*t) exp (2mirp)

=YY f.(2)exp (Znirx/l*) exp (2‘7tisv"‘t)kexp( — 2misp). ()]

‘Comparing the Fourier coefficients on each side of (2), we get
 fule)exp Qnirp) = f,4(2) exp(— 2risp).

This could be true only if
‘ Ji2)=0 whenr# —s. 3)

The condition (3) restricts the number of terms in the Fourier expansion of ¢, so
that

(%, 2, 1) = i f.s(z)exp (27zirx//l*) exp (— 2mirv*t).
Thus v »
Y(x,z,t)= f: f,s(z) exp (2mirx/A*) eXp (2ni(v - rQ’?)t).v 4

If one considers the diffraction effé’cts of Y(x; z,t) given by (4), it is fairly db\}ious
that the nth order diffraction component will be inclined at an angle
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in~! (—ni/A*) with the incident beam of light and will have the frequency
v —nv* and the relative intensity expression | f,(z)]>.

Standing sound waves: In the case of standing waves, we have the property that

' | ,
u<x+~’-’—;-—,t)=u(x,ti§%;), p an integer,  ©

pA* P
¢(x+ 55 ) ¢<x,z,ti2*> &)
If we use (5) in the double Fourier expansmn of ¢ we get

Z Y. fus(2)exp (2mirx/A*) exp (2misv*t) exp (rirp)

=)y f(2)exp (21urx/l*)exp (2misv*t)exp (msp) ©6)
Comparmg the Fourier coefficients in (6), we get

so that

fr(2) exp (irp) = f,,(2) exp (misp).

This means that f,,(2) is zero unless r and s are both even integers or odd mtegers
‘Returning now to the Fourier expansion of ¢, we could write it as

o

Poz)= Y 3 for 24(2)exp (2i2rx/A¥) exp Qmi2sv*t)

-0 -

' [
+ 2
-~ -

- g8

Sare 1254 1(;) exp (2ni2r + 1 x/A*) exp (27i2s + 1v*t).

Thus

00

wxzo=§ 3 an 240) XD (2mi2rx/2¥) expl2mi(s + 25v*)e

-

¥

2 2 Sarver,2041()exp (2mi2r + 1x/4%)

x exp (2mi(v +2s + 1v¥)t. UK

If one considers the diffraction effects of Y(x, z, t) given by (7), it will be quite easy
to see that the diffraction orders could be-classed into two groups, one containing
the even ones and the other odd ones; any even order contains radiations with
frequencies, v, v + 2v*,....,v £ 2rv¥,...., and any odd order contains radiations
with frequencies, v+ v*, v+ 3v¥,...., v+ 2r + 1v¥,....
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3. The case when the disturbance in the medium is simple
harmonic -

If we suppose that the variation in the refractive index of the medlum is simple
harmomc.along the X-axis, it can be represented as
Wx,t) = o + psin 2n(v¥t — x/A%)
in the case of a progressive wave, while ‘it will be of the form
u(x, t) = po — psin (2mx/A*)sin Qnv*t)

in the case of a standing wave, where u(x, t) is the refractive index of the medium at
height x and at time ¢, u, is the constant refractive index of the medium when
there is no sound wave and u is the maximum variation of the refractive index from
Ho-

Progressive wave: To obtain the wave functlon for the emerging wavefront of
light, we have to solve the differential equation

2 2
Tt e e

= [A + 2 {exp(i(bx —g)— exp( —-i'(bx —-¢&)} ]¢ @®

where b=2n/l* £=2mv¥, A = -—41: 2ud/A? and B=8rn 2,.1/2% omitting the
second order term with coefficient u2.

We have shown in the previous section that ¢ can be developed as a Fourier
series in x and t as

_i fA2)exp (2mirx/A*) exp(— 2mirv*e)
-or |

i SA2)exp (irbx)exp (— ire). - -

Substituting the Fourier series (9) in the differential equation (8) and comparing
the Fourier coefficients we obtain the equation

2
‘ (:lf;n_(A +bzn2)fn=£(fn—l _fn+1)-

Puttmg f,,(z) = exp(— iupyz)P,(2) where u= 21:/). we obtain

2
dd‘gn 21 _ﬂ—bz 2¢"———(¢n 17 ¢n+l)'
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Putting z =\(21m)’ 10¢, we obtain

d2 d 2% | | |
2 d;;.._zwo d‘i;n fW¢n=—y0ui(¢,,-1—¢n+1)

As U, bemg the refractive index of the medium, is in the nexghbourhood of unity

and u is in the neighbourhood of 10~ 5, we can omit the ﬁrst term on the left hand
51de and consider the dlﬂ‘erentxal equatlon

d¢ ' in?1?

é” (¢n | S ¢n +‘1)’ o ﬂl*z ¢ll

If there were no term on the right hand side, ¢, would be the Bessel function J(&)
or J, (2muz/) satisfying the required boundary condmons This follows as a
consequence of Somne s* theorem whlch gives that if :

d¢..
d¢

(¢n S ¢n+ 1)=0’

then ¢, could be developed asa series in Bessel functions as

- ld)= ¢..(0)Jo(4‘)+Z[¢,. s(o)( )’¢..+s(0)]Js(€)

Settmg the boundary condmons that
V $o(0)=1 and ¢0)=0," s#0
we get

6u(&) = Ju3):

If n is not too great and 42/4*? is small, we can approximate

6.0 460, 222 ),

If the cell is bound by z = L at the emerging face, it will be easy to see that the
relative intensity of the nth order diffraction component would be J2(2muL/2).

*N Nielsen, Handbuch der theorie der Cylinderfunktionen, p. 286 (1904 edition).
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The case of the standing wave: In this case we- have to write ¢(x, z, t)as given by

- P(x,2,8) = z Z S, z,exp(21ti2rx/l*)exp(21:12sv*t)
2,

= i 9.z, t)exp(21urx//1*) o S o (10)

Sar 41,2541 €XP (21ti2r + 1x/A* exp (2mi2s ¥ 1v*t)

+

8M8<

Substxtutmg (10) the dlfferentxal equatlon for ¢ and comparmg the coefﬁments, we
obtain v : a

0%g, 4miuy 0g, 4n*n? 4n2u‘usina ’
R R A T )

Puttmg z = (27m) ‘AC we obtain

. dg, n* 2. L a
2110#66" T i = "'Hoﬂ'sme(Gn—l“gnn)-

l‘t a 62 .
Under the same cons1deratlons as m the previous paragraph we w1ll have to solve
the equation ‘ ‘

dg in%12
275—31118(911 1 gu+v1) Ho ”A*zg"

If n is not too great and A2/A*2y is small we can a prox:mate
p

Gn(f,ﬁ) J..(é sing)=J <2 Aﬂz sm21rv*t)

But we have shown in part III‘, that . |

Danlosing)= 3 (= FJu- o/, + f0/2) exp i2re)

Jons((vsing) = —i i (=Y Ju-r(®/2) 1 p 41 (v/2) exp (i2r + Le).

Hence,

00

YOz S 3 (= Voo, /2, +4(0/2) exp (2i2rse/3%) exp 2mi(y + 25v¥))

-0 -

0O

—i _Z i (- )'._I,_s(v/2)J,+,+ 1(v/2) exp Qmi2r + 1 x/A*) exp 2ni(v + 25 n 1v¥))t.

If one considers now the diffraction effects due to this emerging wave-front at
z=1L, it can be seen that an even order; say 2n, contains radiations with
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frequencies v+ 2rv*, (r=0,1,2,....), the relative intensity of the v+ 2rv*
sub-component being J2_(muL/2) J?, (nuL/A) and an odd order, say 2n + 1,
contains radiations with frequencies v +2r + 1v*, (r=0,1,2,....), the relative
intensity of the v+ 2r + 1 v* sub-component being J2_ (1mL/).).l,,+,+ 1(muLfA).

4. Summary

- The essential idea that the phenomenon of the diffraction of light by high

frequency sound waves depends on the corrugated nature of the transmitted

wave-front of light, pointed out by the authors in their first paper, has been

developed on general considerations in this paper. The results in this paper can be
summarised as follows:

(1) If progressive sound-waves travel in a rectangular medium normal to two
faces and the direction of propagation of a plane beam of incident light, the
incident light will be diffracted at the angles given by sin~ ! (— n/A*) and the light
belonging to the nth order will have the frequency v — nv*.

(2) If the sound waves are stationary, the incident light will be diffracted at the
angles given by sin™!(— ni/A*), and even order would contain radiations with
frequencies, v, v+ 2v¥, v+ 4v*,. ..., v+ 2rv*, ..., and an odd order would
contain radiations with frequencies v+ v*, v+ 3v¥, v+5v*...., v+~
r+1v*, ...

3) A differential-difference equation has been obtained for the amplitude
function of the diffracted orders whose approx1mate solution is satisfied by the
_ Bessel Functions already obtained by the authors in their previous papers.
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