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2. Doppler effect and coherence phenomena 

The partial differential equation governing the propagation of light in a medium 
with time-variation and space-variation in its refractive index is 

if the frequency of the time-variation of p(x, y, z, t) is very slow compared to the 
time-variation of the wave-function of light. This would be so in the case of the 
propagation of light in a medium filled with sound waves for the frequency of the 
variation of p(x, y, z, t) corresponds to the frequency of the sound waves present in 
the medium, which is negligible compared to the frequency of light. 

If we choose our axes of reference such that the X-axis points to the direction of 
the propagation of the plane sound waves and the Z-axis points to the direction of 
the propa'gation of the incident plane wave of light, we could ignore the 
dependence of + on y and write the differential equation as 

If p(x, t) did not depend on time, + would have had the only time factor exp(2nivt) 
where v is the frequency of the incident light. If we consider the time variation of 
Cl(x,t), we can write $ as given by 
, $ = exp [2nivt]4(x, z, t) 

where +(x, z, t) varies slowly in time compared to exp [2nivt]. On the conside- 
ration that v* << v, we can show that 

With these considerations, we can consider the differential equation 

a24 a2# 4x2 - + - = - 7 {Ax, t)I24 ax2 az2 

and obtain $ by the equation 

$ = exp [2nivt]4(x, z, t). 

As the sound waves which travel along the X-axis are periodic in space and time, 
we can regard p(x, t) to be also periodic in x and t with the same periods in space 
and time. It should be noticed that we do not restrict p(x, t) to be simply periodic 
in x and t but it may be a general periodic function of x and t, amenable to Fourier 
analysis. Thus 
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and 

where p is any integer. 
If we consider the differential equation in whkh ~ ( x ,  t) has the above properties, 

we see that 4(x, z, t )  should also be periodic in x and t with the same periods in the 
case we are considering. That is, 

8 4(x + PA*, z, t )  = 4(x, z, t )  
and 

4(x, z, t + plv*) = 4 ( ~ ,  2, 0. 

1 Hence we can write the double-Fourier expansion of &(x, z, t )  as 
m w z z frJz) exp (2nirx/A*) exp (2nisv*t). 

- w  -m 

Progressive sound waves: In the case of the progressive waves travelling along 
the positive direction of the X-axis, we have the property that 

where p is any number. Thus 

4 ( ~  + PA*, z ,  t )  = 4x9 z, t - plv*) 

Using the double-Fourier expansion, we can write ( 1 )  as 

C x frs(z) exp (2nirx/A*) exp (27tisv*t) exp (2nirp) 

= x x frs(z) exp (2nirx/A*) exp (2nisv*t) exp ( - 2nisp). 

Comparing the Fourier coefficients on each side of (2), we get 

f,,(z) exp (2nirp) = frs(z) exp ( - 2nisp). 

This could be true only if 

f,(z) = 0 when r # - s. (3) 

The condition (3) restricts the number of terms in the Fourier expansion of 4, so 
that 

m 

4(x, Z,  t )  = L(Z) exp (2nirx/A*) exp ( - 2nirv*t). 
- m  

Thus 
m 

$(x, 2, t )  = frS(z) exp (2nirx/A*) exp (2ni(v - rv*)t). 
-3D 

(4) 

If one considers the diffraction effects of $(x, z, t )  given by (4), it is fairly obvious 
that the nth order diffraction component will be inclined at an angle 
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sin-'(- nA/l*) with the incident beam of light and will have the frequency 
v - nv* and the relative intensity expression I f,,(z)12. 

Standing sound waves: In the case of standing waves, we have the property that 

p ( x+- p r , t ) = ~ ( x , t f $ ) ,  paninteger, D 

1 so that 

~ If we use (5) in the double Fourier expansion of + we get 
I C x f,,(z) exp (2nirx/A*) exp (2nisv*t) exp (nirp) 

= x x Js(z) exp (2nirx/A*) exp (2nisv*t) exp (nisp). 

Comparing the Fourier coefficients in (6), we get 

This means that f,(z) is zero unless r and s are both even integers or odd integers. 
Returning now to the Fourier expansion of 4, we could write it as 

m m 

$(x, Z, t) = x x f2,., 2s(~) exp (2xi2rx/A*) exp (2ni2sv*t) 
- m  - m  

m m 

+ f i r  + 1, zS + ,(z) exp (2ni2r + 1 x/A*) exp (2ni2s + 1 v*t). 
-03 - m  

~ Thus 

If one considers the dinraction effects of $(x, z, t) given by (7), it will be quite easy 
to see that the diffraction orders could be classed into two groups, one containing 
the even ones and the other odd ones; any even order contains radiations with 
frequencies, v, v f 2v*, . . . . , v f 2rv*, . . . . , and - any odd order contains radiations 

, with frequencies, v + v*, v f 3v*, . . . . , v f 2r + 1 v*, . . . . 
i ~ 
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3. The case when the disturbance in tlie medium is simple 
harmonic 

If we suppose that the variation in the refractive index of the medium is simple 
harmonic;plong the X-axis, it can be represented as 

CL(X, t )  = pO + p sin 2n(v*t - x/A*) 

in the case of a progressive wave, while'it will be of the form 

Ax, t )  = po - p sin (2nx/IZ*) sin (2xv*t) 

in the case of astanding wave, where p(x, t )  is the refractive index of the medium at 
height x and at time t, po is the constant refractive index of the medium when 
there is no sound wave and pis the maximum variation of the refractive index from 
10. 

Progressive wave: To obtain the wave function for the emerging wavefront of 
light, we have to solve the differentialLequation 

where b = 2n/A*, c = 2nvYt, A = - 4n2pg/A2 and B = 8n2pop/IZ2 omitting the 
second order term with coefficient p2. 

We have shown in the previous section that 4 can be developed as a Fourier 
series in x and t as 

a0 C fdz) exp (2nirx/IZ*) exp (- 2zirv*t) 
-02 

or 
cO 

fJz).exp (irbx) exp ( - ire). 
-00 

Substituting the Fourier series (9) in the differential equation (8) and comparing 
the Fourier coefficients we obtain the equation 

Putting fn(z) = exp(- iup0z)+,(z) where u = 2n/A we obtain 
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Putting z = ( 2 ~ ) -  'At, we obtain 

As por being the refractive index of the medium, is in the neighbourhood of unity 
and pis in the neighbourhood of we can omit the first term on the left hand 
side and consider the differential equation 

If there were no term on the right hand side, 4,, would be the Bessel function J,(t) 
or J, (2npz/A) satisfying the required boundary conditions. This follows as a 
consequence of Sonine's* theorem which gives that if 

then 4, could be developed as a series in Bessel functions as 

I 

Setting the boundary conditions that 

40(0) = 1 and 48(0) = 0, s # o 
we get 

4 . ~ )  = J,co. 
If n is not too great and A2/A*2p is small, we can approximate 

271pz 
4n(t) % J~I(<) = J , ( ~ ) .  

If the cell is bound by z = L at the emerging face, it will be easy to see that the 
relative intensity of the nth order diffraction component would be Ji(2npLlA). 

*N Nielsen, Handhuch der theorie der Cylindetjiunktionen, p. 286 (1904 edition). 
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The case of the standing wave: In this case we have to write +(x, z, t )  as given by 
w cd 

4(x, Z,  t )  = x fZr, 2 s e ~ p  (2ni2rx/A*) exp (2ni2sv*t) 
- m - w  

w w 

+ x x f2r + 1, Z s  + 1 exp (2ni2r + 1 x/A* exp (2ni2s + 1 v*t) 
- w - w  

OD 

= C gr(z, t )  exp (2nirx/A*). - m (10) 

Substituting ( lo)  the differential equation for + and comparing the coefficients, we 
obtain 

Putting z = (2np) - ' A t  we obtain 

Under the same considerations as in the previous paragraph, we will have to solve 
the equation 

I agn in2A2 
I 2---sinE(gn-1 at - g , + ~ ) = ~ p  

If n is not too great and A2/A*2p is small we can approximate 

g,(t, E )  R J,(< sin E )  = J ,  (2$ - sin 2nv't ). 
I 

But we have shown in part 1111, that 
w 

J2,(v sin E )  = z ( - y J, - ,(v/2)JN + ,,(v/2) exp ( i2r~)  
- 0 0  

w 
J2,+ ,(v sin E )  = - i x ( - )'J,-,(v/2)J,+,+ ,(v/2) exp(i2r + le). 

- w  

Hence, 
w w  

+(x, Z,  t )  R x ( - YJ, -, (v/2)Jr +,(v/2) exp (2ni2rx/A*) exp (2ni(v + 2sv*))t 
-00 - w  

03 w 

- i x ( - )';I,-,(v/2)Jr+,+ (~12)  exp (2ni2r + 1 x/A*) exp (2ni(v + 2s + 1 v*))t. 
- w  - w  

If one considers now the diffraction effects due to this emerging wave-front at 
z = L, it can be seen that an even order, say 2n, contains radiations with 
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frequencies v f 2rv*, (r = 0,1,2,. . . .), the relative intensity of the v f 2rv* 
sub-component being Jt,XnpL/A) Jf+dnpL/A) and an odd order, say 2n + 1, 
contains radiations with frequencies v f 2r + 1 v*, (r = 0,1,2,. . . .), the relative 
intensity of the v f 2r + 1 v* sub-component being J~-r(npL/A)J~+,+ l(npL/A). 

4. Summary 

The essential idea that the phenomenon. of the diffraction of light by high 
frequency sound waves depends on the corrugated nature of the transmitted 
wave-front of light, pointed out by the authors in their first paper, has been 
developed on general considerations in this paper. The results in this paper can be 
summarised as follows: 

(1) If progressive sound-waves travel in a rectangular medium normal to two 
faces and the direction of propagation of a plane beam of incident light, the 
incident light will be diffracted at the angles given by sin- ' (- nA/A*) and the light 
belonging to the nth order will have the frequency v - nv*. 

(2) If the sound waves are stationary, the incident light will be diffracted at the 
angles given by sin-' ( - nA/A*), and even order would contain radiations with 
frequencies, v, v f2v*, v f 4v*, . . . . , v f 2rv*, . . . . , and an odd order would 
contain radiations with frequencies v f v*, v f 3v*, v f 5v*, . . . . , v f 
2r+ lv*, ..... 

(3) A differential-difference equation has been obtained for the amplitude 
function of the diffracted orders whose approximate solution is satisfied by the 
Bessel Functions already obtained by the authors in their previous papers. 
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