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1. Introduction 

As is well known, Langevin showed that high frequency sound-waves of great 
intensity can be generated in fluids by the use of piezoelectric oscillators of quartz. 
Recently, Debye and Sears* in America and Lucas and ~ i q u a r d ~  in France have 
described very beautiful experiments illustrating the diffraction of light by such 
high-frequency sound-waves in a liquid. Amongst the experimenters in this new 
field, may be specially mentioned R ~ a r ~  of Ziirich who has carried out a 
thorough investigation and has p;blished some beautiful photographs of the 
effect. The arrangement may be described briefly as follows. A plane beam of 
monochromatic light emerging from a distant slit and a collimating lens is 
incident normally on a cell of,rectangular cross-section and after passing through 
the medium emerges from the opposite side. Under these conditions, the incident 
beam will be undeviated if the medium be homogeneous and isotropic. If, 
however, the medium be traversed by high-frequency sound-waves generated by 
introducing a quartz oscillator at the top of the cell, the medium becomes 
stratified into parallel layers of varying refractive index. Considering the case in 
which the incident beam is parallel to the plane of the sound-waves, the emerging 
light from the medium will now consist of various beams travelling in different 
directions. If the inclination of a beam with the incident light be denoted by 8, it 
has been found experimentally that the formula 

n A 
sin 8 = f - n(an integer) 2 0 

A*' (1) 

*P Debye and F W Sears, Proc. Natl. Acad. Sci. (Washington), 18, 409, 1932. 
' R  Lucas and P Biquard J. Phys. Rad., 3,464, 1932. 
'R BBr, Helo. Phys. Acta, 6, 570, 1933. 
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is in satisfactory agreement with the observed results, where f ,  and A* are the 
wavelengths of the incident light and the sound wave in the medium respectively. 
With sound waves of sufficient intensity, numerous orders of these diffraction 
spectra have been obtained, a wandering of the intensity amongst these orders 
has also been noticed by Bar* when the experimental conditions are varied. 

Various theories of the phenomena have been put forward by Debye and 
Sears,' by ~rillouin: and by Lucas and ~iquard." The f~rmer have not presented 
quantitative results and it is hard to understand from their theory as to why there 
should be so many orders and why the intensity should wander between the 
various orders under varying experimental conditions. In Brillouin's theory, the 
phenomenon is attributed to the reflection of light from striations of the medium 
caused by the sound waves. We know, however, from the work of Rayleigh that 
the reflection of light by a medium of varying refractive index is negligible if the 
variation is gradual compared with the wavelength of light. Under extreme 
conditions, we might perhaps obtain the Brillouin phenomenon, but the 
components of reflection should be very weak in intensity compared to the 
transmitted ones. As one can see later on in this paper, the whole phenomenon 
including the positions of the diffracted beams and their intensities can be 
explained by a simple consideration of the transmission of the light beam in the 
medium. Lucas and Biquard attribute the phenomenon.to an effect of mirage of 
light waves in the medium. In what way the relation (1) enters in their theory is not 
clear. The wandering of the intensities of the various components observed by 
Bar has not found explanation in any of the above theories. 

We propose in this paper a theory of the phenomenon on the simple 
consideration of the regular transmission of light in the medium and the phase 
chapges accompanying it. The treatment is limited to the case of normal 
incidence. The formula (1) has been established in our theory. Also, a formula for 
the intensities of the various components has been derived. It is found that the 
above results are io conformity with the experimental results of Bar.* 

2. Diffraction of light from a corrugated wave-front 

The following theory bears a very close analogy to the theory of the diffraction of 
a plane wave (optical or acoustical) incident normally on a periodically 
corrugated surface, developed by the late Lord Rayleigh. He showed therein that 
a diffraction phenomenon would ensue in which the positihs of the various 
components are given by a formula similar to (1) and their relative intensities are 
given by a formula similar to the one we have found. 

, *R Bar, Helv. Phys. Acta, 6 570, 1933. 
'P Debye and F W Sears, Proc. Nat. Acad. Sci. (Washington), 18,409, 1932. 

' 
'L Brillouin, "La Diffraction de la Lumiere par des Ultra sons", Acta Sci. et. Ind. 59, 1933. 
OR Lucas and P Biquard, J. Phys. et Rad., 3,464, 1932. 
'Lord Rayleigh, Theory of Sound 2, page 89. 
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Consider a beam of light with a plane wave-front emerging from a rectangular 
slit and falling normally on a $ane face of a medium with a rectangular cross- 
section and emerging from the opposite face parallel to the former. If the medium 
has the same refractive index at all its points, the incident beam will emerge from 
the opposite face with its direction unchanged. Suppose we now create layers of 
varying refractive index in the medium, say by suitably placing a quartz oscillator 
in the fluid. If the distance between the two faces be small, the incident light could 
be regarded as arriving at the opposite face with variations in the phase at its 
different parts corresponding to the refractive index at different parts of the 
medium. The change in the phase of the emerging light at any of its parts could be 
simply calculated from the optical lengths found by multiplying the distance 
between the faces and the refractive index of the medium in that region. This step 
is justified for jp(x, y, z)ds taken over the actual path is minimum, i.e. it differs 
from the one taken over a slightly varied\hypothetical path by a differential of the 
second order. So, the incident wave-front becomes a periodic corrugated wave- 
front when it traverses a medium which has a periodic variation in its refractive 
index. The origin of the axes of reference is chosen at the centre of the incident 
beam projected on the emerging face, the boundaries of the incident beam being 
assumed to be parallel to the boundaries of the face. The X-aiis is perpendicular 
to the sound-waves and the Z-axis is along the direction of the incident beam of 
light. If the incident wave is given by 

it will be 
AeZn'" { t  - Lb(x)/c) 

when it arrives at the other face where L is the distance between the two faces and 
p(x) the refractive index of the medium at a height x from the origin. It is assumed 
that the radii of curvature of the corrugated wave-front are large compared with 
the distance between the two faces of the cell. If p0 be the refractive index of the 
whole medium in its undisturbed state, we can write p(x) as given by the equation 

ignoring its time variation, p being the maximum variation of the refractive index 
from po. 

The amplitude due to the corrugated wave at a point on a distant screen 
parallel to the face of the medium from which light is emergiqg whose join with 

' the origin has its x-direction-cosine I ,  depends on the evaluation of the diffraction 
integral 
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where p is the length of the beam along the X-axis. The real and the imaginary 
parts of the integral are \I 

PI2 

I p 1 2  
{cos ulx cos (v sin bx) - sin ulx sin (v sin bx)}dx 

and 
PI2 

I-p12 
(sin ulx cos (v sin bx) + cos ulx sin (v sin bx)) dx 

where u = 241, b = 241* and v = ufiL = 2nC1L/jZ. 
We need the well-known expansions 

cos (v sin bx) = 2 ' J2, cos 2rbx $ 

to evaluate the integrals, where Jn[ = J,(v)] is the Bessel function of the nth order 
and a dash over the summation sign indicates that the coefficient of J, is half that 
of the others. The real part of the integral is then . 

2$' ~ 2 ,  cos uli cos 2rbx dx - 2 J2,+ , sin ulx sin 2r + 1 bxdx $ I::2 

I - cos (ul - 2r + 1 b)x) dx. 
1 Integrating the above, we obtain 

sin (ul + 2rb)p/2 sin (ul - 2rb)p/2 
P $ J" { (ul + 2 r b V  (ul - 2rb)p/2 

sin (ul + 2r + 1 b)p/2 sin (ul - 2r + 1 b)p/2 - - 
(ul + 2r + 1 b)p/2 (ul - 2r + 1 b)p/2 

\ 

The integral corresponding to the imaginary part of the diffraction integral is 
zero. One can see that the magnitude of each individual term of (2) attains its 
highest maximum (the other maxima being negligibly small compared to the 
highest) when its denominator vanishes. Also, it can be seen that when any one of 
the terms is maximum, all the others have negligible values as the numerator of 
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each cannot exceed unity and the denominator is some integral non-vanishing 
multiple of b which is sufficiently large. So the maxima of the magnitude of (2) 
correspond to the maxima of the magnitudes of the individual terms. Hence the 
maxima occur when 

ul f nb = 0 n(an integer) 2 0 (3) 

where n is any even or odd positive integer. The equation (3) gives the directions in 
which the magnitude of the amplitude is maximum which correspond also to the 
maximum of the intensity. If 0 denotes the angle between such a direction in the 
XZ-plane along which the intensity is maximum and the direction of the incident 
light, (3) can be written as 

remembering that u = 2n/1 and b = 2n/1*. This formula is identical with the 
formula (1) given in the first section. The magnitudes of the various components 
in the directions given by (4) can be calculated if we know, 

Thus the relative intensity of the mth component to the nth component is given by 
a 

- J'(v) where v = 2npL/R. 
J,Z (0) 

In the undisturbed state of the medium there is no variation of the refractive 
index, i.e. p = 0. In this case all the components vanish except the zero component 
for 

J,(O) = 0 for all rn # 0 and J,(O) = 1. 

In the disturbed state, the relative intensities depend on the quantity v or 2npL/1 
where R is the wavelength of the incident light, p is the maximum variation of the 
refractive index and Lis the path traversed by light in the medium. We have' 
calculated the relative intensities of the various components which are observable 
for values of v lying between 0 and 8 at different steps (figure 1). 

Figure 1 shows that the number of observable components increases as the 
value of v increases. When o = 0, we have only the central component. As v 
increases from 0, the first orders begin to appear. As u increases still more, the 
intensity of the central component decreases steadily and the first orders increase 
steadily in their intensity till they attain maximum intensity when the zero order 
will nearly vanish and the second orders will have just appeared. As v increases 
still more, the zero order is reborn and increases in its intensity, the first orders fall 
in their intensity giving up their former exalted places to the second orders, while 
the third orders will have just appeared and so on. 

Our theory shows that the intensity relations of the various components 



Figure 1 

Relativt intensities of the various components in the diffraction spectra. 
(For tables, see Watson's Bessel Functions and Report oj the British ~ssociat ion,  1915). 

depend on the quantity v or 2npL/I. Thus an increase of p (i.e. an increase of the 
supersonic intensity which creates a greater variation in the refractive index of the 
medium) or an increase of L or a decrease of I should give similar effects except in 
the last case where the directions of the various beams will be altered in 
accordance with (4). 

3. Interpretation of Bar's experimental results 

(a) Dependence of the efSect on the supersonic intensity: Bar has observed that only 
the zero order (strong) and the first orders (faint) are present when the supersonic 

I intensity is not too great. He found that more orders appear as the supersonic 
I 

intensity is increased but that the intensity of the zero order decreases while the 
I first orders gain in their intensity. Increasing the supersonic intensity more, he 

found that the first order would become very faint while the second and third 
orders will have about the same intensity. The figures la  of his paper may very 
well be compared with our figures l(c), l(h)and l(k). Thus, we are able to explain 
the appearance of more and more components and the wanderipg of the intensity 
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amongst them as the supersonic intensity is increased, in a satisfactory manner. 
(b) Dependence of the effect on the wavelength of the incident light: We have 

already pointed out that the effects due to an increase of p caused by an increase of 
supersonic intensity are similar due to those with a decrease of A except for the fact 
that the positions of the components of the emerging light alter in accordance 
with (4). Bar has obtained two patterns of the phenomenon by using light with 
wavelengths 4750A and 3650A. He obtained, using the former seven components 
and using the latter eleven components in all. He also observed great variations in 
the intensities of the components. Not only is the increase in the number of 
components an immediate consequence of our theory, but we can also find the 
pattern with 3650A if we assume the pattern with 4750A. The pattern with the 
latter in Bar's paper shows a strong resemblance to our figure l(p) for which 
2npL/A is 3.7. Thus we can calculate 2npL/A when A is 3650A. It comes to about 
4.8. Actually our figuke for which 2npL/A is 4.8 closely corresponds to Bar's 
pattern with 3650A. 

(c) Dependence of the effect on the length of the medium which the light traverses: 
It is clear from our theory that an increase of L corresponds to an increase of v and 
that the effects due to this variation would be similar to those with an increase of ' 

the supersonic intensity. But the basis of our theory does not actually cover any 
large change in L. However, we should find more components and the wandering 
of the intensity amongst the various components. 

4. Summary 

(a) A theory of the phenamenon of the diffraction of light by soundwaves of 
high frequency in a medium, discovered by Debye and Sears and Lucas and 
Biquard, is developed. 
(b) The formula 

n A 
sin 6 = & n(an integer) 3 0 

which gives the directions of the diffracted beams from the direction of the 
incident beam and where A and A* are the wavelengths of the incident light and 
the sound wave in the medium, is established. It has been found that the relative 
intensity of the mth component to the nth component is given by 

J t ( ~ ~ P L ~ ~ ) I J , ~ ( ~ ~ P L I ~ )  

where the functions are the Bessel functions of the mth order and the nth order, p 
is the maximum variation of the refractive index and L is the path traversed by 
light. These theoretical results interpret the experimental results of Bar in a very 
gratifying manner. 
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