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Prefatory note 

These investigations formed 4he subject of Lectures delivered at special meetings 
of the Indian Association for the Cultivation of Science on the 9th January, 1909, 
with ,Sir Gooroodas Banerjee presiding, and on the 9th May, 1915. with the 
Hdn'ble Justice Sir Asutosh Mookerjee, F.R.S.E., etc. in the chair. 

I. On a new form of Melde's experiment 

This will be found described in my notes in Nature  ondon don) of the 4th 
November, 1909, and in the Phys. Rev. of March, 191 1 (Bulletins of the Indian 
Association Nos 2 and 3). When properly performed its results easily surpass in 
beauty and interest, those obtained with the usual arrangements in Melde's 

, experrimants, The modified form of the experiment was devised in the course of my 
work of 1906 at the Presidency Collage, Madras, when endeavouring to clear up 
certain anorn~louo observatiolis by Mr V Appa Rao. The fine cotton or silk string 
which is maintained in vibration is attached tq the prong of a tuning-fork which is 



best maintained electrically (though indeed a bowed fork is suitable enough) and 
is held so that it lies in a plane perpendicular to the prongs but in a direction 
inclined to their line of vibration. 

Under these circumstances the motion of the prong may be resolved into two 
components, one parallel and the other perpendicular to the string. The latter 
transverse component maintains an oscillation having the same frequency as that 
of the fork when the tension of the string is suitably adjusted. The length of the 
string should be such that under the action of this force the string divides up into 
an even number of ventral segments, say two. The first, i.e. longitudinal 
component of the obligatory motion, will then generally be found to maintain 
simultaneously an oscillation having half the frequency of that of the fork. The 
success of the experiment lies in isolating the two vibrations, the frequency of one 
of which is double that of the other, into perpendicular planes. This is easily 
secured by a simple little device. The end of the string is attached to a loop of 

I 
thread which is passed over the prong, instead of directly to the prong itself. The 

I result of this mode of attachment is that the frequencies of vibration in the two 
, planes at right angles differ slightly and this has the desired effect of keeping the 
I 

, two component vibrations confined to their respective planes, if the tension of the 
string lies anywhere within a definite range. 

With the arrangements described above it is evident that the motion of each 
point on the string in a plane transverse to the length should be one of the 
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I Lissajous figures for the interval of the octave. The shape of this figure depends on 
the phase-relation between the component oscillations, and this is determined by 
the precise value of the tension of the string. It is well to state at once that when the 
tension is somewhat in excess the curves are parabolic arcs. Plate I shows a 
stereo-photograph of a string maintained in an oscillation of this type. 

We proceed to discuss the approximate theory of this case. The motion of the 
prong of the tuning-fork may be put equal to y cos pt. 

The component of this transverse to the skring may be put equal to 
y cos pt sin 8. If the distance of any point on the string from the fixed end when at 
rest is x, the transverse components of the maintained motion may to a first 
approximation be written as under 

R, Y= y sin 8-cos(pt +'Ex - Eb) 
Rb 

(1) 
I 
I 
I vide Lord Rayleigh's Theory of Sound, article 134. 

Z =  Bcos (v -+ E sin-. 7 
If we exclude any consideration of the motion at points near the nodes of the 
maintained oscillatidn, equation (1) may be writteb in the simple form 

PX 
, Y = y sin 8 sin - cos (pt + E'). 

a 

If pla = 2n/b, (1) and (2) may be written in the form 

27cx 
Y = Asin-cos(pt + E'), 

b (3) 

Z =  s s i n ~ c o s ( ~ +  b E). 

It should be understobd that in these equati0ns.Y and Z  do not refer to the 
coordinates of any point fixed relatively to the string but to the points at which a 
plane transverse to its equilibrium position cuts the surface generated by the 
moving string. The distinction is of importance in view of the fact that each point 

, on the string possesses a small longitudinal motion derived frod that imposed by 
the fork and the x c0ordinat.e of any point fixed relatively to the string is therefore 

1 not itself constant. 
In particular cases equations (3) and (4) may be reduced to very simple forms. 

Thus if E' = 2E and also in the special case when both E and E' are equal to zero 
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which is the equation of the surface generated by the moving string, the sectibns of 
which by planes perpendicular to theaxis of x are parabolic arcs. The curvature of 
these parabolic arcs lies in opposite directions for values of x less and greater than 
b/2. This is exactly the type of vibration shown in the stereo-photograph (plate I). 
It will be noticed that in the half of the string near the tuning-fork the curvature of 
the parabolic arcs is in one direction and in the other half in the opposite 
direction. 

At the mid-point there is practically no transverse motion in one of the 
perpendicular planes. This is also evident in the plate, but no photograph can give 
a really adequate idea of the beauty of the stationary form of vibration, which 
must be seen to be fully appreciated. 

It is not difficult to make out &om general considerations why and when the ten- 
sion is somewhat in excess, t h  phase-relation between the component vibrations is 
such as to give us a parabolicfype of vibration. It is clear that when the free period 
of vibration of the half-lepgth of the string is somewhat less than that of the fork, 
the phase of the oscillation maintained by the transverse obligatory motion is 
very approximately in agreement with that of the obligatory motion itself, i.e. 
E' =O. Under the same circumstances and generally also whenever a large 
amplitude of vibration is maintained by the longitudinal component of the 
motion of the fork, the phase of the oscillation of half-frequency is such that the 
displacemenbis very nearly a maximum when the tension is a minimum, and vice 
versa. This is what it would be if E = 0. Since E and E' are both zero, equation (5) 
gives us the required type a& vibration. 

A parabolic type af moticm ohould also be obtained when E' = 2E + II .  The 
equation of the surface generated by the moving string in this case may be 
obtained by merely writing- Y for Y in equation (5) 

Y 2ax 2 Z 2  IIX  
-cosec- = 1 -- 
A b 

B2 cosec2-. 
b 

The sections of this surface by planes normal to the axis of x are parabolic arcs, 
but it will be noticed that their curvatures are in the opposite direction to those 
given by equation (5). A rough approximation to th6 case given by equation (6) is 
obtained when the tension of the string is somewhat in defect, i.e. the free period of 
the half-length of the striag is more than the period of the fork, and the 
longitudinal component of t k  vibration of the fork maintains an oscillation of 
large amplitude. 

It remains now to consider the intermediate case where E' = 2E + a/2. It 'is 
evident d priori that in this case the sections of the surface described by the 
moving string by planes norha1 to the axis of x should be 8 curves, and this is 
readily verified by experiment. The tension of the string, to obtain a motion of this 
type, should be roughly that at which the transverse obligatory motion maintains 
the most vigorous vibration, and a large motion is also maintained by the 
longitudinal component. 



This leads me on to consider a very interesting point which was referred to 
above in passing. From equatioa (3) it appears that wheq x = b/2, Y = 0. This 
point is the 'node' of the oscillation maintained by the transverse obligatory 
motion. Strictly speaking Y is not zero at this point. There is a very appreciable 
small motion at the node, the magnitude of which is given by equation (1). This 
equation may by changing the origin of time be written in the more intelligible 
form 

y sin 0 kx 
Y = - (  sinaxcospT$-cosaxsinpT 

R b  2a 
At the node the first term within the bracket is zero but the second term remains 
finite. It will be seen that the phase of the second term differs from that of the first 
by quarter of an oscillation. When the sections of the surface generated by the 
vibrating string at other points are 8 curves, as Qescribed in the preceding 
paragraph, the section of the surface at the node itself by a plane normal to the 
string is a parabolic arc with a fairly large radius of curvature. This is readily 
'verifiable by experiment. I here refer to the motion in a plane transverse to the 
string and this is quite distinct from the curvature due to the small motion parallel 
to the axis of x which each point of the string (other than the fixed end) possesses 
in virtue of the longitudinal motion imposed by the tuning-fork. 

Equations (3) and (4) represent the curves along which the string lies at any 
given instant. They are of course not plane curves at all (except at the epochs when 
eit.her Y or Z or both are everywhere zero) and are exceedingly pretty. With the 
parabolic type of oscillation the peripheral curve, i.e. the position of the string at 
its extreme outward swing, can readily be seen. In other cases, intermittent light is 
required to render these curves visible. Probably the most satisfactory arrange- 
ment is to use intermittent illumination having a frequency double that of the 
tuning-fork which maintains the string in vibration, so that four views are 
obtained simultaneously and by their disposition give a much more vivid idea of 
the mode of motion than would be had if only one or two positions of the string 
were visible. For work of this kind, a stroboscopic disk with narrow radial slits 
and run by a Rayleigh motor synchronous with the driving tuning-fork is an 
extremely useful piece of apparatus. The motor purchased by the Association has 
thirty teeth on its arrnature*wheel'and I have had two stroboscopic disks made 
with thirty and sixty slits respectively, either of which can be mounted on the 
motor. It is not necessary to hold the eye close to the stroboscopic disk for many 
purposes. If the disk is vertically held and the vibrating string is horizontal and 
parallel to the disk and is observed through the top row of slits, i.e. through those 
moving in a direction parallel to the string, the latter is seen as if divided up into a 
fairly large number of ventral segments. This effect is due to the fact that the string 
is observed through different parts of the revolving disk and it is therefore seen in 
successive cycles of phase along its length. We get practically a series of replicas of 
the string with the same amplitude of motion but of greatly diminished length, i.e. 
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with magnified curvature. This is specially advantageous in the present case. The 
vibrating string should be brightly illuminated when under observation through 
the stroboscopic disk. 

In concluding this section I must remark that some phenomena of interest are 
observed when the two modes of vibration, the frequency of one of which is 
double that of the other, are not isolated in perpendicular planes. When not kept 
in check by some device of the kind described at the commencement of this note, 
the oscillation of higher frequency has a tendency to settle down into circular or 
elliptical motion and some very curious types of vibration are obtained by its 
composition with the plane vibration of half frequency. The form of these types 
can be varied by altering the inclination of the string and its tension. We need not 
however pause to discuss them in detail. Interesting as some of these modes of 
motion are, they sink into insignificance when compared with some of the 
compound types of vibration maintained by a simple harmonic force that will be A 

illustrated in section V of this paper. 

11. The small motion at the nodes of a vibrating string 

I drew attention in recent publications (quoted at the commencement of the 
previous section) to some remarkable features of the small motion at the nodes of 
a vibrating string which it appears had not previoudy been noticed. A vivid idea 
of the types of motion obtaining can as I showed be had by observing under 
periodic illumination of approximately double the frequency of that of the 
oscillation. I have since succeeded in obtaining photographs under actual 
experimental conditions of the appearances observed. 

When a stretched string is maintained in oscillation in segments by a periodic 
force or an obligatory motion imposed transversely at one point on it, the nodes 
are not of course points of absolute rest, as the energy requisite for the 
maintenance of the motion is transmitted through these points. Certainly the best 
way of observing what exactly takes place at the nodes is to use intermittent 
illumination, the frequency of this being nearly double that of the vibrations. We 
would then see two slowly moving positions of the string which obviously 
represent opposite phases of the actual motion. If the nodes were points of 
absolute rest, then these two positions would intersect at fixed points. One 
naturally expects that the 'nodes' or points of intersection actually seen under the 
intermittent illumination should never depart very far from the positions of the 
real nodes of the oscillation, i.e. the positions where the string is seen under non- 
intermittent illumination todivide up into segments. But this is not the case. The 
'nodes' seen under the intermittent illumination travel along the string over an 
extraordinary range, in fact over a distance equal to the whole length of a loop. 
This striking effect is very readily observed, any device for securing intermittent 
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illumination of approximately the correct frequency being sufficient for the 
purpose. 

While visual observation is quite simple, much the most satisfactory arrange- 
ment both for ordinary daylight observation and for photographic work is the 
use of a stroboscopic disk with radial slits mounted on a Rayleigh motor which is 
actuated by the intermittent current from a self-maintaining tuning-fork 
interrupter and th'erefore runs synchronously with it. The tuning-fork inter- 
rupter, which is of frequency 60 per second, maintains the string in transverse 
oscillation of the same frequency. It also drives the synchronous motor on which 
is mounted a stroboscopic disk having just double as many aperfures as the 
armature-wheel has teeth. The disk therefore gives two views of the' fork and of 
the string maintained by it, which are practically stationary provided the point of 
observation is fixed and the motor is running satisfactorily. By changing the point 
of observation (which should be so chosen that the radial slits are parallel to the 
string and move at right angles to it) the successive stages of the motion and of the 
travel of the 'nodes' can be observed at leisure. 

For photographic work, the stroboscopic disk is held vertically and the camera 
employed is brought close behind that one of the rectangular slits on the disk 
which is horizontal. The lens is stopped down by a plate which has a rectangular 
slit cut in it to correspond with those on the disk. The string and the aperture on 
the lens of the camera are both horizontal and by racking up the lens-front by 
successive small distances till it has moved,through a length equal to that between 
contiguous apertures on the disk, a complete set of photographs can be obtained 
on one plate showing the successive stages of the motion of the string. Plate I1 
reproduces a photograph obtained in this manner, the centre of the field being the 
position of the node of the vibrating string as seen by non-intermittent light. It 
shows the cycle of changes in 13 stages and was obtained by moving up the lens- 
front through very small distances each time. It will be seen that the point of 

Plate 11. Stroboscopic photograph of the small motion at the node of a vibrating string. 
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intersection or 'node' which is first in the centre moves off to one side of the field, 
first slowly and then more quickly, till after the lapse of a time which can be seen 
to be exactly half the period of the cycle it has gone well off the plate and the two 
positions of the string seen in the photograph are sensibly parallel. Direct 
observation shows that the point has moved off to a distance equal to half the 
length of a segment. It simultaneously appears at an equal distance on the other 
side and moves in from that direction first quickly and then more slowly till it 
reaches the centre again, and the cycle is complete. 

The explanation of these phenomenais that the small motion at the node is not 
in the same phase as the large motion elsewhere. It is evident from the photograph 
that the small displacement at the node is a maximum when the large motion 
elsewhere is a minimum: in other words that its phase differs by exactly quarter of 
a period of the vibration from that of the general motion of the string. An 
independent method of demonstrating this was discussed incidentally in section I 
above. Equation (7) of that section contains in a nutshell the complete theory of 
the case. The sign of the phase of the small motion at any node may be found from 
the following rule, which is verified by observation. If the tuning-fork which 
imposes the obligatory transverse motion is exactly at a node, it is opposite in 
phase to the small motion at the next node, and in the same phase as the motion at 
the node next after that, and so on. 

111. The amplitude and the phase of oscillations maintained by 
forces of double frequency 

In a note published in Nature (London) of the 9th December, 1909, and again 
more fully in a communication under the title "Remarks on a paper by J S Stokes 
on 'Some curious phenomena observed in connection with Melde's 
Experiment,"' published in the Phys. Rev. for March, 1911 (see Bulletins 2 and 3 
of the Association), I drew attention to the fact that there were considerable 
discrepancies between the facts of observation and the theory first published by 
Lord Rayleigh (Philos. Mag., April 1883, August 1887 and Theory of Sound Art. 
68b) as regards the maintenance of vibrations by forces of double frequency, and I 
also indicated the cause of these discrepancies. The phenomena observed are not 
only interesting in themselves but are very important in connection with the 
general theory of the maintenance of vibrations by a variable spring which I shall 
discuss in the succeeding sections. . 

Lord Rayleigh starts with the following as his equations of motion: 

u + kti -I- (n2 - 2u sin 2pt)u = 0 (1) 

and assuming that u may be put equal to 

A, sin pt + B ,  cos pt + A ,  sin 3pt + B, cos 3pt + A ,  sin 5pt + &c. (2) 
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proceeds to find the conditions that must be satisfied for the assumed state of 
steady motion to be possible. This he does by substituting (2) for u in the left-hand 
side of equation (1) and equating to zero the coefficients of sin pt, cos pt, etc. The 
relations thus obtained are (to a first approximation) 

By a trigonometrical transformation equatidn (2) may be written in the form 

kp = a cos 2E. (4) 

These equations show that the phase of the motion is independent of the 
amplitude maintained and that the latter quantity is indeterminate. 

It is possible to test experimentally the phase-relation as given by equations (2) 
and (3). The oscillatory system used for this purpose is a stretched string which is 
maintained in vibration by a periodic variation of tension of double frequency 
imposed on it with the aid of a tuning-fork. In this case the term - 2a sin 2pt is 
proportional to the motion of the tuning-fork and u corresponds to the 
maintained vibration of the string. The experimental problem therefore reduces 
itself to a determination of the phase-relation between the vibrations of the fork 
and the string, the frequency of one of which is double that of the other. This can 
be investigated by two distinct devices. 

(i) Mechanical composition of the two motions: This is automatically effected 
and* needs no special experimental arrangements. For, each point on the string 
(except the fixed end) has two motions at right angles to each other. The first is 
transverse to the string and is merely that due to its general vibration. The second 
.is longitudinal to the string and is due to the motion in that direction of the prong 
of the fork to which the string is attached. The resulting path of any point on the 
string lies in the plane of oscillation and is one of the Lissajous figures for the 
interval of the octave. This curve may easily be rendered conspicuous by 
attaching a Small fragment of a silvered bead to a point on the string near the 
tuning-fork. This is the most convenient position, though in case the vibration of 
the string is in two or more ventral segments, the bead may also be attached near 
any one of the other nodes as well. 

(ii) Optical composition of the two motions: This is undoubtedly the more 
elegant of the two. To effect this, a small mirror is attached to the extremity of the 
prong of the fork. A tuning-fork with a'steel mirror fixed to the end of one prong . 
(see Lord Rayleigh, Theory of Sound, article 39) may well be used for the 
purpose. One point on the stretched string is illuminated by a transverse sheet of 
light from a lantern or with sunlight and a cylindrical lens. When the string is set 
in vibration, this appears drawn out into a luminous straight line which is viewed 
by reflection first at a fixed mirror and then at the oscillating mirror attached to 



the tuning-fork. If the plane of vibration of the prongs is at right angles to that in 
which the string vibrates (this may be secured by a simple experimental device), 
the illuminated point is seen to describe a Lissajous figure which renders evident 
at once the phase-relation under investigation. 

Working by either of these methods, it is found that the phase of the motion is 
not independent of the amplitude maintained with any given initial tension. The 
best way of showing this is to use a bowed fork and after starting the motion with 
a large amplitude to gradually allow it to die away, the Lissajous figure or 'Curve 
of motion' as I shall call it and the changes that occur in it being watched during 
the process. It is observed that the initial curie of motion and the alterations that 
it undergoes when the motion is gradually damped down, both depend on the 
initial tension of the string. With a high initial tension so that the string can be 
maintained in its fundamental mode of vibration only by vigorous bowing of the , 
fork, it is found that the curve is a parabolic arc which is convex to the tuning-fork 
and remains as such when the motion dies away. This state of matters continues 
so long as the initial tension is considerably in excess of that at which the free 
period of vibration of the string for small amplitudes is equal to the period of the 
fork. As the tension is gradually reduced, it will be observed while theinitial curve 
for large amplitudes is a parabolic arc, it becomes modified into a looped figure as 
the amplitude decreases, still however remaining convex. When the tension is still 
further reduced so that the free period of the string for small oscillations is equal 
to that of the fork, the curve of motion for large amplitudes is still approximately 
parabolic or at any rate a looped figure convex to the fork, but as the motion dies 
away it alters into an 8-shaped figure. The most remarkable changes are however 
observed with a still smaller tension. In this case very large amplitudes of motion 
are maintained and the initial curve of motion is still convex, but as the motion is 
damped away it becomes an 8-shaped figure and finally a looped'figure concave to 
the fork. At this stage the motion suffers very rapid damping, and when the initial 
tension is below a certain value a minimum amplitude of motion of the string 
exists below which steady motion is not possible. In the final stage with the 
smallest amplitudes, the curve of motion is a parabolic arc with its concavity 
towards the fork. 

To enable these observations to be satisfactorily explained, it is necessary to 
modify Lord Rayleigh's theory so as to take into account the variations of tension 
that exist in free oscillations of sensible amplitpde and are proportional to the 
square of the motion. In my paper on 'Photographs of Vibration Curves' in the 
Philos. Mag. for May 191 1 (see BulletinNo. 5 of the Indian Association) I showed 
experimentally that such variations of tension exist by causing them to act on a 
sounding-board, which was held normal to the wire and would therefore have 
otherwise remained appreciably at rest. The vibration curve of the sounding- 
board was photographed on a moving plate along with and immediately above 
the vibration curve of the wire itself. It was observed that the frequency of the 
vibrations of the sounding-board was generally double that of the oscillations of 
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the wire. But when the equilibrium position of the wire was a catenary of small 
curvature and its oscillations took place in a vertical plane, the motion of the 
sounding-board excited by them had a component of frequency identical with 
their own. These and other observations proved conclusively that variations of 
tension existed in free oscillations of sensible amplitude which were due to the 
second order differences in length between the equilibrium and displaced 
positions of the wire or string and were in fact proportional to the square of the . 
displacement. Taking these into account the modified equation of motion under 
the action of forces varying the spring may be written as 

ii + kti + (n2 - 2a sin 2p; + pu2)u = 0. (5) 

Assuming that 

u = A, sin pt + B, cospt + A, sin 3pt + B3 cos 3pt + A, sin 5pt + &c. 

and substituting in the. left-hand side of equation (5), we obtain the conditions 
that must be satisfied for steady motion to be possible. by equating to zero the 
coefficients of sin pt, cos pt, etc, Neglecting the quantities A,, B3, etc. as too small 
appreciably to effect the final result, we obtain 

(n2 - p2 + F)2 = a2 - k2p2 
where 

(7) 

38 F is equal to -(A: + B:) 
4 

and is therefore proportional to the square of the amplitude of motion. 
Equation (6) may as before be written in the form 

From these equations we may draw the following inferences: 
If a < kp no steady motion is possible. When 

n < p and (p2 - n2)2 > a2 - k2p2 

maintenance would evidently be impossible unless F had a certain finite 
minimum value. This is in accordance with the results of experiment. When the 
initial amplitude is less than that given by this minimum, the motion cannot be 
sustained and rapidly dies away. On the other hand, if the initial amplitude is 
equal to or greater than the required minimum, it shows a marked tendency to 
increase rapidly of itself up to many times the initial value. The reason for this is 
pretty clear from equation (7). When (p2 - n2) is positive and greater than the 
right-hand side of that equation, any increase of the amplitude of motion 
diminishes the quantity on the left, with the result that a still further increase in 



INVESTIGATI>ONS O N  THE MAINTENANCE OF VIBRATIONS 49 

amplitude is entailed, and it continues to increase till (n2 - p2 + F) again becomes 
positive in sign and equal to (aZ - k2p2)llz in magnitude. A somewhat similar 
rapid increase in the amplitude (though not of such a marked character) takes 
place in all cases where the initial tension is less than the theoretical value. The 
motion is however capable of starting from infinitely small vibrations if (p2 - nZ)2 
is equal to or greater than (a2 - k2p2). On the other hand, when the tension is 
sufficient or in excess no such phenomenon is observed. The increase of the 
motion from infinitely small amplitudes up to the value required to satisfy 
equation (7) is then quite gradual. 
. Again it is evident that for given values of a and kp, F is not a maximum when 
the tension is equal to the theoretical value. In other words, the maximum 
amplitude of motion is not obtained when the free period of the string for small 
oscillations is double that of the tuning-fork. This somewhat paradoxical result is 
entirely verified by observation. In fact it is clear that the amplitude maintained is 
largest when n is less than p and has as small a value as is consistent with steady 
motion in the given mode, in other words when the initial tension of the string is 
considerably in defect. 

We now proceed to discuss the phase of the maintained motion. This is given 
by equations (6) or (8) above. From the former it is evident with E, i.e. the phase- 
difference, is always positive if (n2 - p2 + F) is of that sign. The curve of motion is 
therefore convex to the'fork when the tension is in excess and also when it is in 
defect, provided the amplitude of motion is sufficiently large. The maximum 
positive phase-difference is n/4 and this is attained when a is large compared with 
kp. It can be seen from equation (7) that a large variation ofstension is required to 
start the motion when the initial tension is high. The curve of motion is then a 
parabolic arc convex to the fork and continues as such so long as the tension is in 
excess and the amplitude is sufficiently large. But with small amplitudes, the 
phase-difference though positive is less than x/4 and the curve of motion is a 
looped figure. When the initial tension is equal to the theoretical value and the 
amplitude of motion is very small a = kp and E = 0 and the curve of motion is 
shaped like an 8. This is in agreement with observation. But when the amplitude 
increase, the phase-difference again becomes finite and the curve is convex to the 
fork. When the initial tension of the string is in defect, the phase-difference is 
positive or negative according as the amplitude is large or small and the curve of 
motion is convex or concave under the respective circumstances. It is not at all 
difficult to observe any of these different cases, though in order to maintain the 
motion steadily with the curve in the concave position some careful adjustment of 
the amplitude of motion of the tuning-fork will generally be necessary. The 
largest negative value of the phase-difference is -n/4 and the curve is then a 
parabolic arc concave to the fork. The significance of this is that when the fork is at 
its extreme outward swing, the string is also at its position of maximum 
displacement: a paradoxical result not in accordance with the ordinary ideas of 
the experiment. 
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, A glance at the Lissajous figures for the interval of the octave pictured in 
figure 7 of Lord Rayleigh's Theory of Sound will show that it is possible for two 
similar and similarly situated curves to represent different relative phases of 
motion between its components, if the moving point describes the two curves in 
opposite directions. In order therefore to verify the phase-relation experimentally 
it is necessary, in addition to observing its shape, to note the direction in which 
the curve of motion is described. This may be done by observatiw through a 
stroboscopic disk which is kept revolving at a speed slightly less than that at 
which it would give one stationary view of the vibrating string. It id then fairly 
easy to make out the direction in which a fragment of a silvered bead attached to a 
point on the string near the tuning-fork describes the curve compouhded of its 
motions longitudinal and transverse to the string. The observed direction agrees 
with that indicated by theory. 

There is another way of writing the equations of motion which is very useful in 
that it gives a clearer view of the whole case and leads us on to the subject of the 
next chapter. Neglecting the terms in A,, B,, etc. we may put u = P sin (p t  + E). 
Equation ( 5 )  may be written as under 

if trigonometrical functions of 3pt are neglected. This may be succinctly written in 
the form 

I 

i i + k t i + N 2 u = a , P c o s ( p t - E l ) .  ( 9 )  

This is the ordinary form of the equation of a system subject to forced vibrations, 
and if Lord Rayleigh's equation, see ( 1 )  above, had been treated in the same way, 
we should have obtained 

ii + kli + n2u = aPcos(pt - E).  (10)  

From equations ( 9 )  and (10)  it is clear that a large motion might be sustained 
when p = N or n as the case may be, and that the maintenance of vibrations by 
forces of double frequency is in essence only an illustration of the general principle 

C of resonance according to which a large motion may be set up if we have equality 
of periods between a system and the forces acting upon it. A comparison of 
equations (9) and (10) shows that the introduction of the term Bu3 on the left-hand 
side of (5 )  results in a decrease in the free period of the system and also a change in 
the magnitude and the phase of the restoring force acting upon it. These 
modifications fully account for the phenomena discussed above. Equating the 
work done by the fbrce represented by the right-hand side term of either of the 
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equations (9) or (10) in any number of complete periods of the variable tension to 
the energy dissipated by the friction term on the left we deduce the relation 

which is identical with that obtained, see (4) and (8) above, from the complete 
analysis. 

IV. Vibration curves of oscillations maintained by a variable 
spring 

In the last section I discussed the case of the maintenance of vibrations by forces 
of double frequency and emphasized the fact that in reality it ,only furnishes us 
with an illustration of the general principle of resonance according to which a 
periodic force acting on a system whose period is approximately equal to its own, 
may maintain a very considerable amplitude of motion, though in other cases its 
effect might be so small as to be oflittle account. In the course'of the experimental 
work described in the preceding sections, I came across some other extremely 
interesting and remarkable cases of resonance which formed apparent exceptions 
to the above-stated law of approximate equality of periods. These cases I propose 
to discuss in the present paper. A preliminary note on this class of maintained 
vibrations was published by me in Nature (London) of the 9th December, 1909, 
and another (illustrated) in the issue of the 10th February, 1910 (see Bulletin No. 2 
of the Indian Association). 

The title of this section g i~es  an indication of the character of the forces whose 
action we now proceed to discuss. They only alter the 'spring' or restitutional 
coefficient of the system and do not tend directly to displace it from the position of 
equilibrium. My observations showed that there were several quite distinct cases 
in which periodic forces of this character acting on a system set up a large motion. 
These cases may be tabulated as follows: 

(1) When the period bf the force is 3 that of the system, 
(2) When the period of the force is 3 times that of the system. 
(3) When the period of the force is 3 times that of the system. 

- (4) When the period of the force is 4 times that of the system. 
(5) When the period of the force is 3 times that of the system. 
(6) When the period of the force is # times that.of thhr system. 
(7) When the period of the force is 3 times that of the system. 
&c. &c. &c. &c. 

Each of these forms a distinct type of maintained motion which can be obtained 
and studied separately by itself. The first is evidently identical with the case of 
'double frequency' which was discussed in the preceding section. 
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To obtain any o w  of these types of motion, we adopt a procedure very similar 
to that by which the maiintenance of vibrations by forces of double frequency is 
secured. Using a stretched string as our 'system' we subject it to a periodic 
variation of tension by attaching it to a tuning-fork whose prongs vibrate in a 
direction parallel to the string. The tension of the string (the length of which 
should be suitable) is adjusted so that its period of vibration in a given mode (for 
instance in its fundamental mode) bears the required ratio to the period of 
vibration of the tuning-fork. It will then generally be found that the equilibrium 
position of t b  string becomes unstable and it settles down into a state of 
permanent and (in suitable circumstances) vigorous vibration in which the 
a m b e r  of swings (to and fro) made by it per unit of time bears the desired ratio to 
tbe ffeawtncy d the tuning-fork. 

Each of these types obvibration presents some very remarkable peculiarities, a 
study of which enables us to explain the manner in which the maintenance is 
df&c&d in a simple and intelligible way. When I first observed some of these types 
f prso&eded to  kvmtigate them by precisely the same methods which I applied to 
the of double frequency, i.e. mechanical or optical composition of the motion 
of the string with that of the tuning-fork. It is obvious that the methods are 
applicable to all these cases and in fact in some respects, e.g. for a detailed 
investigation of the phase of the maintained motioi they are probably superior 

\ to other methods of investigation that could be devised. It is evident that the 
Lhajous figure seen gives us at once the requisite information as regards the 
frequency and phae-relation between the motion of the string and that of the 
Ewk Fa? purposes of demonstration, however, the method of 'vibration curves' 
whid I shall now proceed to discuss, yields far more striking and impressive 
rc~sult~. 

By the 'vitrrati~ncurve' of an oscil~ation I mean of course its time-displacement 
dh$rm, or an q d v h t  thereof. To m b b  .the vibration curves of the 

, os&ktisn of ths stria& and that of the tuning-fork to be re~orded side by side for 
cmapri- the fo1bwing arrangement was found the most suitable. Two slits 
were wed wstruroes ollight. One of them was horizontal and the other which was 
vertical was placed immediately behind the oscillating strirlg. Both the slits were 
illuminated by sunlight and had collimatihg lenses in front of them, The fork 
stood with, its prongs vertical and a small silvered mirror was attached with wax 
to the side of one of the prongs, and this of course tilted periodically through a 
smallangle when the fork was in vibration. The light issuing from the horizontal 
siit was incident in a nearly normal directioqupon this mirror, and after suffering 
rekt ion at it hll upon the lens (having an aperture of I t  inches diameter) of a 
roughly constructed camera. The light issuing from the vertical slit in a direction 
a%3&ht to that lkom the other was deflected through 90" by reflection at a 
fkassiEt aid &m-W upon tb lens of t b  camera In the focal plane of the 
Wgcr was placed a metal plate with a vertical slit cut in it. The images of the 
horbntal  and vertical slits fell one immediately above the other on the slit in the 
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plate. Of the former only a very small length, i.e. practically only a point of light, 
passed through to fall upon the ground-glass of the camera or its substitute, the 
photographic plate. Immediately below it was the narrow image of the vertical 
slit crossing which was seen the shadow of the string when at rest. To photograph 
the vibration curves the ground-glass was remaved and the dark slide which held 
the plate was moved as uniformly as possible by hand in horizontal grooves 
behind the slit in the focal plane of the camera. In the positive reproductions, the 
vibration curve of the string appears 4s a dark curve on a bright ground and that 
of the tuning-fork vice versa. We now proceed to consider each type of 
maintained oscillation and ifs vibration curves separately, 

The first type 

Plate 111 shows photographs ofithe well known case of the string maintained in a 
vibration of half the frequency of the tuning-fork, and of its vibration-curves from 
which it is evident at once that the tuning-fork makes two vibrations for every 
oscillation of the string. The photograph shows the maximum,displacementsof 
the string to have occurred almost exactly at the epochs of minimum tension, 
from which we may infer, since the amplitude of motildn of the string was by n-o 
means very large, that the initial tension of the string was in excess of the 
theoretical value, vide section I11 of this Bulletin, We shall now consider in some 
detail. 

, The second type 

The frequency of the oscillation of the string is in this case the same as that of the 
fork which varies its tension. This type is shown in figure 1, plate IV. The string 
vibrates in its funclamental mode, but it will benatbgd that its curvatureat one of 
the positibns of maximum displacement is greatcc than a$ the other. Figure 2, 
plate IV and plate V, show the vibration curues of this type of oscillation, and it is 
clear that the-frequency of the motion of the stria$ and of that of the forK are 
equal. In securing the photograph shown in plate IV it was arranged that the 
string when at rest should exactly bisect the slit. It will be seen that its vibration 
curve has been displaced bodily towards one side of the slit and is thus nearer the 
other curve. The significance of this L that the mid-point of its oscillation is 
displaced to one side of the equilibrium position of the string. This is confirmed by 
direct observation and accounts for the greater curvature of one of the positions 
of maximum displacement observed in figure 1, plats IV. The transverse m o t i n  
of each point on the string may therefope be represBarted by an expression of the 
form 
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Plate 111. Oscillations maintained by a variable spring of double frequency. 
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Plate IV. Maintenance of vibrations by a variable spring of equal frequency. 
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Plate V. Vibration-curves of os~illations maintained by a variable spring of equal frequency. 



the ratio of the coefficients P and Q being practically the same for all points on the 
string. 

A motion of the type represented by (1) above cannot exist if the-oscillatisns of 
the string were 'free' and under constant tension, inasmuch as the restoring forces 
at the two positions of extreme displacement would not bB equal .and opposite. 
But we are dealing here with forced oscillations under variable tension, A 
reference to the vibration curves will show that the maximum displamments (on 
either side) of points on the string occur at epochs not very far mov& from 
those of maximum and minimum tension. During one half of its mcillatiaa p e  
string is under a tension which is bss than its normal value and during the other 
half under a tension which is correspondingly in excess. During the former half 
the motion being under diminished constraint swells out and increases in 
amplitude and during the other half the reverse is the case. The net result is that 
while the simple harmonic character ofthe notion is not genexally &parted from 
to any very considerable extent, the owillation appears 06 take p5w about a 
point displaced to one side of the position of equilibrium, itx the nahner indicated 
by equation (1) above. 

We are now in a position to understand in what manner the maintenance is 
effected in this case. We may write the equation of motion of a system having,one 
degree of freedom and subject to a variable spring thus 

ii + kti + n2u = 2au sin 2pt. (2)  

Substituting P sin (2pt + Ez) + Q for u in the righthhand side of this equation, we 
get 

ii + kti + n2u = 2aP sin 2pt sin (2pt + E,) + 2aQ sin 2pt 
= 2aQ sin 2pt + aP cos E2 (3) 

if we neglect trigonometrical functions of the angle 4pt. The first term on the right 
represents transverse periodic forces acting on each element of the string which 
would maintain a large motion having the same frequency as that of the fork if n is 
approximately equal to 2p. The second term stands for a system of constant forces 
impressed transversely at each point on the string ander the action of which the 
mean point of the maintained motion is dieplaced to one side of tb<quilib~.wrn 
position. This is just what we get. We a s w e d  that u w P Cm@t + g2) +@ and 
the importance of the term Q is sufBdently clear f r m  whAt%as beetl seld ab@ve 
Substituting for u in the left side of equation (3) we get the following relations: 

tan Ez = 2 k p  
4p2 - n2 ' 

These equations represent the relations that must be satisfied if maintenance is to 
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be possible. They are a fair approximation to the truth so long as the phase- 
difference E, is small. It is necessary, however, to consider the question whether 
the effect of terms containing trigonometrical functions of 4pt can be entirely 
ignored, particularly when according to the above formulae, Q becomes very 
small, which is the case when the phase-difference approaches the value n/2. We 
have already seen that the right-hand side of equation (3) contains such terms. We 
may therefore write 

u=Psin(2pt+E2)+Q+Rsin(4pt+E4) (7) 

where the ratios P : Q : f l  are the same at all points on the string. Substituting this 
on the right of equation (2)  we get 

ii + kti + n2u = aP cos E, + 2aQ sin 2pt 
+ a R  cos (2pt + E4) - aP cos (4pt + E,).  (8)  

Each of the terms on the right of this equation represents a system of transverse 
forces, the effect of which we may consider separately. The first and the second we 
have already dealt with. The effect of the third depends upon its phase, i.e. upon 
the value of E,. This can be found by considering the action of the component of 
the restoring force represented by the fourth term, which has a frequency 
approximately double that of the free oscillation of the string. Its effect should 
therefore be small and should have a phase exactly opposite to that of the force 
producing it. By substituting for u in equation (8), we find 

(n2 - 1 6 p 2 ) ~  sin(4pt + E,) = - aPcos(4pt + E,) 

and E4 is equal to E, + 1112. The third term on the right ofequation (8)  is therefore 
to - aR sin (2pt + E,) and being exactly opposite in phase to the principal part of 
the motion dealt with, i.e. P sin(2pt + E,) cannot assist in maintaining it. Its effect 
is merely equivalent to an alteration in the free period of oscillation of the string, 
and the motion is maintained entirely by the farce proportional to Q represented 
by the second term. We have then the following relations which must be satisfied 
for the assumed state of steady motion to be possible. 

tan E, = - cot E, = 2kp 
4p2 - N 2  

RIP = ~ / 1 2 ~ ,  ( 1  1 )  
n2 [ (N2  - 4p2),  + 4k2p2] = 2a2(N2 - 4p2) (12) 

where . N 2  = n2 + ~ , / 1 2 p , .  

R sin (4pt + E4) in the 
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expression for the displacement is quite appreciable (having an amplitude at least 
3 that of the term Q), though it does not assist in the maintenance of the motion. 
Figure 2, plate V, shows this component in the tnotion quite clearly, The 
vibration-curves.for all points on the string exhibit the harmonic to an equal 
degree. According to equations (9) to (12) above, the phase of the maintained 
motion is independent of the amplitude, the latter quantity being indeterminate 
and the adjustment of pitch must be absolutely rigorous for steady vibration. All 
these inferences are however subject to modification in practice. The tension of 
the string in free oscillations of large amplitude is not constant, generally 
increasing by a quantity proportional to the square of the motion, and the 
necessary adjustment of pitch may therefore be secured by an alteration of the 
amplitude of motion. With however a heavy or long string horizontally held ahd 
under moderate tension, the effect of gravity is not negligible and the law of 
variation of the tension with the amplitude varies with the plane of the oscillation. 
If this is in a vertical plane, the fact that the equilibrium position is a catenary of 
small curvature becomes of some importance, particularly when the vibration of 
the string is in its fundamental mode. The tension in free oscillations of sensible 
amplitude would be of the form 

n2 + /3(u - a)' 

if they occur in a vertical plane and of'the form 

\ 
n2 + /3u2 

if in a horizontal plane. 
If u is put equal to P sin(2pt + E2) + Q it is evident that it is not open to us 

indifferently to alter the signs of both P and Q together and retain the conditions 
of the motion unchanged in the former case as would be possible in the latter. The 
average tension during the motion as given by the first formula would evidently 
be greater when Q is negative, i.e. directed downwards than .when it is in the 
opposite direction. This appears to be the reason why as in figure 1, plate IV, the 
oscillation generally sets itself so that of the two extreme positions of the string the 
one which has the greater curvat,ure is concave upwards. 

Again 

[n2 + p(u - a)2] 

may when expanded be written in the form 
i 

n2 + /3[P2/2 + (Q - a)2] + /3P[2(Q - a) sin (2pt + E2) P/2 cos (4pt + 2E2)]. 
(13) 

Of the two periodic terms the first has the same frequency as the variation of 
spring imposed on the system and no doubt plays an impartant part in the 
adjustment of the phase-relation between the motions of the fork and the string. 
In view of the fairly complete discussion of similar effects in the case of doube 
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frequency (section 111) we need not pause to consider further detail, but proceed 
to discuss. 

The third type of motion 

This is shbwn in figure 1, plate VI. Figure 2, plate VII and figure 1, plate VIII, 
represent the vibration-curves of the string and the fork in cases coming under 
this class. The string makes three swings for every two vibrations of the fork, but 
the swings are not all of equal amplitude: This is evident from the vibration- 
curves and also from the appearance of the-string itself in the first of the 
photographs. In addition to the two extreme positions, the photograph shows 
clearly two intermediate resting points of the string, one on each side of its 
equilibrium position, which mark the limits of the swings made at the epochs 
when the tension.of the ~tring~is in excess. The two outer resting points, as can be 
seen from the vibration-curves, correspond almost exactly with the epochs of 
minimum tension at which the vibration being under diminished constraint 
swells out and increases in amplitude. The motion at any point of the string is 
capable of being very approximately represented by two terms. Thus 

u = P sin (3pt + E , )  + Q sin (pt + El) (14) 

the second of which has the smaller amplitude and Wuency and is brought into 
existence under the action of the variable tension. The ratio P/Q is the same at all 
points on the string, the motion of which may therefore be discussed as if it had 
only one degree of freedom. The frequency of the second term is less than that of 
the first by a quantity which is itself the frequency of the variable spring. The 
analogy between the motion as shown in the vibration-curves and that in the 
atmospheric 'beats' of two simple tones, one of which has the smaller amplitude 
and frequency, is fairly clear (see Helmholtz's 'Sensations of Tone,' 
appendix XIV), The time which is required for one swing undergoes periodic 
fluctuations, being greatest when the tension is least and vice versa. This 
corresponds to the periodic flattening and sharpening of the 'beats.' 

It can be shown that the maintenance of the vibrations is effected entirely by the 
aid of the periodic component of lower frequency, i,e. Q sin(pt + El), in the 
expression forthe steady motion under variable spring. The product of this term 
into the variable spring gives a transverse periodic force acting on the system, 
which is of the right frequency and phase for maintaining its vibrations. The 
equation of motion may be written 

u + kli + n2u = ct[P(cos pt + E ,  - cos 5pt + E  ,) 

+Q(cospt- E l  -cos3pt + El)]  (15) 

the fourth and last term on the right representing the force referred to above. 
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Plate VI. 1. The third type of maintenance. 2. The fourth type of maintenance. 
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Plate VIII. Vibrationcurvesof(1) the third typeofmaintenanmand(2)thefourth typeofmaintenance. 
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. . 
Substituing for the terms on the left and reducing, we get four equations which 
give us the values of El, E and of the ratio Q/P and leave us in addition a relation 
betweeq the 'constants' involved. The first equation is 

3kpP = - aQ cos (E, - El) (16) 

and this expresses the relation between the energy supplied and the energy 
dissipated in any number of complete periods of the variable spring. The phase- 
difference (E, - El) may be eliminated with the aid of the second relation 

In practice, as can be seen from the vibration-curves, E, is nearly equal to - 4 4  
and El nearly equal to + n/4. Cos (E, - El) is therefore nearly equal-to zero. It is 
evident from (16) that kp is very small compared with a. 

The third relation is 

. (n2 - pa) - (a + kp) tan El 
tan E, = 

(a - kp) - (n2 - p 2 ) t a n ~ ,  ' 

This may be simplified and written as 

tan E ,  = (8p2 - a tan El)/(a - 8p2 tan El). 

, It is of interest to note that the ratio between the amplitudes P and Q is of the same 
order of quantities as the ratio between the constant and variable parts of the 
spring. It can be readily shown that to a first approximation 

Finally we get the relatiiin between the constants involved by eliminating P, Q 
and (E, - El) between the three equations (1 6), (1 7) and (19). Neglecting 
quantities of the order a4 we get 

which gives us an idea of the accuracy in adjustment of pitch that is required. In 
duducing this relation it is assumed that 3kp is of the order a2/n4, and this is 
necessary if the motion is to be maintained. 

It remains to consider the effect of the force represented by the term 
- aP  cos (5pt + E,) on the right of equation (15). For this purpose we start afresh 
and assume that 

u =  A,cospt+ A3cos3pt+ A5cos5pt 

+ B, sin pt + B, sin 3pt + B, sin 5pt. (21) 

) 
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Substituting in the equation of motion 

ii + kti + n2u = 2au sin 2pt 

we get the following relations 
A ,  = aB3/16p2, B, = - aA3/16p2 (22) 

Equations (18) and (24) are identical and by comparing equations (17) and (23) it 
can readily be seen that the only change is that instead of n2 we have the very 
slightly larger quantity (n2 + aZ/16p2) in the latter equation. The inference is that 
the component in the displacement which has a frequency higher than that of the 
principal part of the motion does not assist in its maintenance, the effeot produced 
by it being merely equivalent to a very small decrease in the free period of the 
oscillation of the string. It will be recollected that a similar result was obtained in 
the case of the second type of the maintenance of vibrations discussed above. 
From equation (22) it appears that the amplitude of the component of frequency 
5p/2n in the maintained motion is less than half the amplitude of the component 
of frequency p/2n. If the former is represented by R sin (5pt + E,) it is evident from 
what was said above that E, is nearly equal to n/4. We have roughly 

u = P sin(3pt - n/4) + Q sin (pt + 4 4 )  + R sin (5pt + 7114) / 

when 
pt = n/4, u = (P + Q - R), 

and when " 

pt = 57114, u = - (P + Q - R). 

The maximum amplitudes are therefore less than they would be if the component 
R did not exist. Its presence should therefore render itselfevident by a flattening of 
the vibration-curve at the epochs of minimum tension. Some flattening of this 
kind, though not very marked, appears to be shown in figure 2, plate VII. 

The preceding discussion gives us only the phaseg and the ratios of the 
amplitudes of the components of the maintained motion, and according to the 
equations the actual amplitudes are indeterminate. In practice however the 
equation of motion is subject to modification on account of the variation of 
tension in free oscillations of sensible amplitude. For simplicity we may consider 
a case in which the string is vertical. The effect of gravity on its transverse 
oscillations may then be neglected, and the equations of motion may be written in 
the form 
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If 
u = ~ s i n ( 3 p t + ~ ~ ) + ~ s i n ( p t + ~ ~ ) + ~ s i n ( 5 ~ t + ~ , ) , '  n2+/3u2 
= nZ + /.l(P2 + Q2 + R2)/2 + a large number of periodic terms. (25) 

As may have been expected, the average tension is increased b e l a r g e  amplitude 
of motion and this is no doubt what secures the necessary adjustment of pitch and 
determines the amplitude of the maintained vibration. Of the periodic terms in 
(25) probably the most important are those which have a frequency equal to that 
of the imposed variable spring and tend directly to alter its magnitude or 
effectiveness. There are only three such terms, and if we neglect the others, 

n2 + flu2 = nz + p(P2 + Q2 + R2)/2 + pQP cos 2pt + E3 - El 

- pQ2 cos2pt + 2E1 + PRPcos2pt + E ,  - E3. 

Putting E3 = - x/4 and El = E, = 4 4  approximately, we have as our equation 
of motion 

u + kti + [N2 - (2a - Q(P + Q) + RP) sin 2ptlu = 0. 

From this it seems evident that when the imposed variation of tension is in excess 
of that just required to maintain the motion, the component of amplitude Q tends 
to increase at the expense of the component with amplitude R. The latter tends to 
become even less important than it would otherwise be, and indeed there does not 
appear to be any very marked indication of its existence in the vibration curves. 

The fourth type of motion 

This is shown as figure 2, plate VI, and its vibration curve as figure 2, plate VIII. 
In the former a resting point intermediate between the two extreme positions of 
the string is clearly visible, and it can be seen in the vibration curve that this 
corresponds exactly to the terminal point of the swing at the epoch of maximum 
tension. The string makes four swings for every two vibrations of the fork. Of 
these the two occurring when the tension is in excess are less in amplitude and 
take a shorter time than the two others made when the tension is in defect. The 
maintained motion consists therefore of a principal component of frequency 
double that of the fork, the simple harmonic character of which is modified under 
the action of the variable spring and which therefore appears along with a 
subsidiary motion of the same frequency as that of the fork. As in the previous 
cases discussed, the ratio between the two components is practically the same at 
all points of the string, and the problem may therefore be dealt with as if it related 

, to a syiteni with one degree of freedom only. 
For a full discussion we must assume that thegdisplacement at any instant may 
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be represented by an expression of the form 

u = A, sin 2pt + A, sin 4pt + A, sin 6pt + Bo + B2 cos 2pt 

The terms of frequency 4p/2n form the principal part of the maintained motion, 
and these and the terms of lower frequency 2p/2n are, as can be seen from the 
vibration curve, predominant. As in the previous cases discussed, it can be shown 
that the latter terms are mainly instrumental in maintaining the motion, in other 
words that their product into the variable spring gives a transverse periodic force 
of the right frequency and phase for maintaining the vibrations. The components 
of frequency 6pl2.n have an influence on the motion of the system which is 
equivalent merely to a slight decrease in the period of the free vibrations of the 
string, and they do not otherwise assist in the maintenance of the vibrations. The 
constant term B, though small is by no means negligible, and it remains to 
investigate its influence in the present case. As shown in the investigation of the 
second type of motion, a term of this kind may be regarded as the result of a 
system of constant forces acting at all points on the string, To solve the equation 

- of motion, we substitute (26) for u in the formula 

ii + kti + n2u = 2au sin 2pt 

. , The following relations are obtained 

It is not permissible to leave out B, in the first of the equations (30), for, if we do so 
and eliminate A,, B,, A, and B, between the equations (28) and (30) we get an 
eliminant of the form S2 = - T2 which is evidently absurd. The significance of 
this may be understood by writing equations*(28) in the form 

4kp(~, + B,)"~ = - a(A2 + B2)'12 cos (E, - E,) . (31) 
This formula expresses the relation that the energy dissipated by friction in a time 
comprising any number of complete periods ofithe variable spring is equal to that 
supplied in the same time through its agency. Now it can be seen from the 
vibration curve that (E, - E,) is very nearly equal to n/2 and cos(E2 - E,) is' 
therefore very small, but still sufficient to sustain the motion. If in the first of the 
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equations (30) we neglect B,, the value of (A2 + B,)'12 and (A4 + B4)'12 is not very 
appreciably affected, but cos (E2 - E4) is however reduced to such an extent that 
it is no longer possible for equation (31) to be satisfied, in other words the motion 
cannot be maintained. The term B, is equal to aA2/n2, i.e. equal to -4a2B4/3n4 
and is therefore very small, but as explained above, the maintenance of the 
vibrations cannot be fully explained without taking it into account. 

The components A, and B, in the maintained motion are both very small. The 
component A, is approximately equal to -4aB4/3n2. The ratio between the 
principal part of the maintained motion and the subsidiary component of lower 
frequency is therefore of the same order of quantities as the ratio between the 
constant and variable parts of the spring. 

The fifth type of motion and the general case 

Figure 1, plate VII and figure 1, plate IX, show this class of maintained motion 
and its vibration curves respectively. In this case, the frequency of the variable 
spring is two-fifths that of the free oscillations of the system. The forced 
oscillations of the system may be discussed as if it possqssed one degree of freedom 
only, the displacement at any point on the string being given by an,axpression of 
the form 

u = A, sin pt + A, sin 3pt + A, sin 5pt + A, sin 7pt + B1 cospt 
+ B3 cos 3pt + B, cos 5pt + B7 cos 7pt (32) 

the variable spring being as in previous cases represented by -2a sin 2pt, and the 
ratio of the constants being the same for all points on the string. The principal 
part of the maintained motion is (A, +B,)'12sin(5pt + E,), which is very 
approximatejy of the same frequency as the free oscillations of the system. It can 
be seen from the vibration curve that E, is approximately equal to - 3n/4 and A, 
is therefore nearly equal to B,. 

The subsidiary term (A, + B3)sin(3pt + E,)  in the motion is from a physical 
point of view of great importance. It is not at all difficult to understand in what 
manner it is brought into existence. The successive oscillations of the string are 
evidently not all executed under identical conditions. At the epoch of minimum 
tension the motion being under diminished constraint swells out and increases in 
amplitude and the contrary is the case at the epochs of maximum tension. Again 
at the former epochs the time taken for a swing is more than at the latter. The 
motion as shown in the vibration curves is very analogous to the effect of 'beats'. 
Taking the general case in which a variable spring - 2a sin 2pt acts upon a system 
whose free oscillations have a frequency nearly equal to r/2 times that of the 
variable spring, the frequency of the 'beats' is equal to that of the variable spring 
and the frequency of the subsidiary motion is less by that quantity than the 
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Plate IX. Vibration curves of (1) the fifth type of maintenance and (2) the sixth type of maintenance. 

frequency of the principal rriotion, and we may therefore put 
- 

W =  Psin(rpt + E,)+ Qsin(r-2pt -I- E,-,).  (33) 
The product of the variable spring with the displacement at any instant may be 
regarded as the impressed part of the restoring force. Taking the first term on the 
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right of (33), the product - 2aP sin 2pt sin (rpt + E,) has no component of the 
frequency rp12n which is required (by the general principle of resonance) if the 
oscillation is to be maintained. On the other hand the product 

does contain such a component which is equal to 

aQ cos (rpt + E, - ,) 
and can maintain the motion if the othet conditions are suitable. The energy 
dissipated in any number of complete periods of the variable spring is equal to the 
energy supplied during the same interval if 

rkpP = - aQ cos (E, -, - E,). (34) 
This equation conveys the fundamental principle underlying the type of the 
maintenance of vibrations under discussion. In the general case Q is of the order 

if we neglect possible effects due to the variability of tbe tension in free oscillations 
of sensible amplitudes. In order to show that the value of cos(E,-2 - E,) in 
equation (34) may be sufficiently large to ensure maintenance of the motion, it is 
necessary to consider the effects produced by terms of still smaller frequencies (if 
any) in the expression for the displacement at any instant. An illustration of this 
point has already been given in the case of the fourth type of motion. Such terms 
exist in all cases whose r > 3. They owe their origin to secondary and tertiary 
reaction between the forced oscillations and the variable spring, and though very 
small in magnitude play an important part in building up the requisite phase- 
difference between the principal motion and its immediate auxiliary of lower 
frequency! Thus, returning to the case of the fifth type discussed above, we cannot 
neglect the term 

(A: + B:)sin(pt + E,) 

in the expression for the displacement, fbr if we do we should find that the value of 
cos(E, - ES) is not sufficient to maintain'the motion. On the other hand the 
terms 

(A, + B,)'12 sin (pt + E,) 

etc. do not play any shch part in the maintenance. Their effect is merely equivalent 
to a slight alteration in the free period of oscillation of the string, and they are 
generally inconspicuous. It is hardly necessary for me to add that in each case the 

~ necessary adjustment of pitch is secured by the variation of the period of the 
motion with increasing amplitudes. 

I 
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I have also obsefved the sixth and seventh and higher types of motion in the 
series up to the eleventh and have photographed their vibration-curves. These are  
shown as figure 2, plate IX and plates X and XI. The appearance of a string 
executing the sixth or eighth or tenth type of motion is somewhat analogous to 
that in the case of the fourth type, and that of the seventh or ninth or eleventh to 

Plate X. Vibration curves of (1) the seventh type of maintenance and (2) the eighth type of 
maintenance. 



C V R A M A N :  A C O U S T I C S  

Pla ~ t e  XI. Vibration curves of (1) the ninth type of maintenance, (2) the tenth type of mainteqance and 
(3) the eleventh type of maintenance. 
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the fifth type. The reason for this can be well understood. For the odd types are all 
more or less perfectly symmetrical and the even types are all unsymmetrical. 

Observations with revolving mirror and with stroboscopes 

That the string when maintained in any one of these types of vibration behaves as a 
single unit, in other words like a system having only one degree of freedom, can 
well be shown by observing the vibration curves at different points on the srring. 
By illuminating any one point by a sheet of: light transverse to the string and 
viewing the luminous line of light in a mirror kept revolving at a moderate speed, 
the vibration curve is seen at once. Even a mirror held in the hand which is tilted 
to and fro is sufficient for the purpose. Shifting the sheet of light so that it cuts the 
string at any other point produces no effect except to alter all the ordinates of the 
vibration curves in equal ratios. 

Some extremely interesting phenomena are noticed when a stroboscopic disc is 
used in observing these types of maintained motion. A Rayleigh synchronous 
motor on which is mounted a blackened disc with narrow radial slits cut in it is 
very suitable for this purpose. As already mentioned in section I, one of the discs 
which I use has thirty slits on it, the armature-wheel of the motor having the same 
number of teeth. The electric current from the self-interrupter fork which 
maintains the string in vibration also runs the synchronous motor. In making the 
observations, the stroboscopic disc is held vertically and the string which is set 
horizontal and parallel to the disc is viewed through the top row of slits, i.e. those 
whicb are vertical and move in a direction parallel to the string,as the disc 
revolves. It is advantageous to have the whole length of the string brilliantly 
illuminated and to let as little stray light as possible fall upon the reverse of the 
disc at some distance from which the observer takes his stand. A brilliant view is 
then obtained. I have already explained that under these circumstances we see the 
string in successive cycles of phase along its length, and the peculiar character of 
the maintained motion in these cases is brought out in an extremely remarkable 
way. The string is seen in the form of a vibration curve, which would be identical 
with those shown above, but for the fact that the amplitude af motion is not the 
same at all points of the string, being a maximum at the ventral segments and zero 
at the nodes. 

Another point calls for remark,,Using a fork with a frequency of 60 per second, 
the fwe oscillations of the string have a frequency of 30 in the case of the 1st type, 
60 in the case of the 2nd, 90 with the 3rd, 120 with the 4th, 150 with the 5th, and so 
on. With the disc having 30 slits on it we get 60 views per second of any one point 
on the string, and with the even types of motion, i.e. the 2nd, 4th, etc. the 
'vibration-curve' seen through the stroboscopic disc appears single. With the odd 
types, i.e. the lst, 3rd, 5th, etc. two vibration-curves are seen, one of which is as 
nearly as can be seen the mirror-image of the other, intersecting it at points which . 
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lie or should lie upon the equilibrium position of the string. The reason why with 
the odd types we see the vibration-curve double is obvious enough, and I need not 
proceed to detail it. The double pattern brings home to the eye in an extremely 
vivid and convincing manner the fact that under the action of the variable spring 
the 'amplitude' and 'period' of the motion periodically increase and decrease after 
the manner of 'beats.' 

An interesting variation on the experiment is made by using the disc with 60 
slits. We then get 120 views per second and with the even types we get the 
vibration-curves double, but one of the curves is not the mirror image of the 
other, the motion not being symmetrical. On the other hand, with the odd types 
we see the vibration-curves in quadruple pattern, the third and fifth types in 
particular giving extremely beautiful tracery effects. It seems somewhat difficult 
to obtain perfectly satisfactory photographs of these phenomena on account of 
slight periodic alterations in the speed of the stroboscopic disc, but I am still quite 
hopeful. 

V. The maintenance of compound vibrations by a simple 
harmonic force 

In this and the succeeding section on 'Transitional Modes of Motion under 
Variable Spring' I shall consider the phenomena of the maintenance of vibrations 
by a variable spring of simple harmonic character acting on a system that has 
more than one degree of freedom. In section IV, I have shown that a variable 
spring acting on a system having only one normal mode of oscillation may 
maintain its vibrations if the frequency of the variable spring stands to that of the 
system in any one of the ratios 2: r where r is an integer, We know that a vibrating 
system of the kind here dealt with, i.e. a stretched string, has not merely one free 
period of oscillation, but a series of such free periods in which it divides up into 
one, two or more segments. Since the frequencies of oscillation which a variable 
spring of given frequency may maintain under suitable circumstances also form a 
series, it is evidently possible for more than one mode of vibration to be 
maintained at one and the same time, each with its own appropriate frequency. In 
other words, the variable spring may maintain a compound vibration, and as the 
components of this motion need not both or all be in one and the same plane of 
vibration of the string; we may readily obtain by a little calculation and trial, 
types,of maintained motion in which the oscillation in one principal plane is of 
one frequency and in the perpendicular plane of a different frequency. Under 
these circumstances, the motion of a point on the string in a plane transverse to it 
becomes and remains the appropriate Lissajous flgure, and the frequency relation 
between the component motions is thus rendered evident to inspection in a most 
striking manner. 

The photographs shown in plate XI1 represent short sections of the string thus 
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maintained in stationary vibration, one point in the middle of the section being 
brilliantly illuminated. Figure 1 shows the ordinary first type of maintenance in 
which the frequency of the motion is half that of the fork. Figure 2 shows a 
compound of the first and second types in suitable phase relation, the motion 
being in a parabolic arc. Figure 3 is a compound of the first and third types. 
Figure 4 is a compound of the second and third types of frequencies respectively 
equal to and half as much again as that of the fork. Figures 5 and 6 are 
complementary, i.e. the same mode of vibration, figure 5 showing one part of the 
string and figure 6 another. In these two photographs the first and third types 
occur in one principal plane and the second type by itself in the perpendicular 
plane. In figure 5, the first and third are in similar phases, but in figure 6, they are 
opposed, hence the very remarkable split ring effect in the latter. In figure 7 we 
have the first and third types again in perpendicular planes but along with the 
third type there is a clear addition of the second type as well. Figures 8 and 9 are 
complementary, and show the first type maintained in one plane and the second 
and fourth types together in the perpendicular plane. Figure 10 represents a 
compound of the second and fifth types, and shows quite clearly the character- 
istics of the fifth type as described in the previous section, i.e. the increase of the 
amplitude and period of the motion at the epoch of minimum tension and their 
decrease when the tension is a maximum. Figure 11 shows the first type in one 
plane and the second and fifth types together in a perpendicular plane. Figures 12 
and 13 are complementary, i.e. show different parts of the string in the same mode 
of oscillation. They represent the first and fifth types together in one plane and the 
second by itself in the perpendicular plane. In figure 12, the first and fifth types are 
in the same phase and in figure 13 they are opposed. Figures 14 and 15 show the 
first type in one plane and the second and sixth types together in the 
perpendicular plane. The two latter are in different relative phases in the two 
photographs. 

Besides the above, I have observed a very large number of permanently 
maintained compound modes of vibration in which two or more of the tyqes of 
motion discussed in the preceding section occur in various phase-relations to 
each other. In the case of types of higher order than the second, the observed 
range of variation of phase was not however very large. 

The compound modes of motion in which two or more of the types of 
maintained motion occur together in one plane of vibration can also be observed 
stroboscopic;ally in the manner described in the preceding section. The special 
feature of interest in this case is that a large number of variations can be obtained 
and different parts of the string, sometimes even contiguous ones, show the 
component motions in different relative magnitudes and as seen through the 
stroboscopic disc in different phases. The double patterns obtained in this 
manner are extremely interesting and beautiful, and it is with regret that I decided 
not to delay the issue of this Bulletin till I had secured satisfactory photographs of 
some of them. 
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VI. Transitional modes of motion under variable spring 

In discussing the maintenance of vibrations by a variable spring of double 
frequency, vide section I11 above, it was tacitly assumed that the motion was that 
of a system having one degree of freedom only, or at any rate could be treated as 
such to a close approximation. In other words it was taken for granted that the 
ordinary 'modes' of vibration under constant spring, i.e. the ratios of the 
displacements at any instant of different points on the system, remain unaltered. 
We are justified in making this assumption so long as the free periods of the 
system in its several normal modes of oscillation are sufficiently removed from 
each other. But as will be seen from what follows, it breaks down entirely when 
the frequencies of two natural modes of vibration between which the half 
frequency of the imposed variable spring lies are sufficiently close together to fall 
simultaneously within the range of maintenance for the given frequency. The 
phenomena that then result are of considerable experimental and theoretical 
interest and I have termed them 'Transitional Modes of Motion'. The appropri- 
ateness of this will appear as we proceed. 

A variable spring of given frequency can maintain the vibrations of a system 
whose free period for small oscillations lies anywhere within a certain range 
determined by the magnitude of the imposed variqtion. If two of tbe normal 
modes of vibration of the system fall simultaneously within this range the steady 
motion, if any, that may result must evidently be of a frequency exactly half that of 
the variable spring imposed. It is possible to obtain the over-lapping of the ranges 
for two contiguous modes even if the free periods of these differ considerably, by 
sufficiently increasing the magnitude of the variable spring. It is experimentally 
observed that the maintenance of a steady state of vibration is perfectly possible 
under such circumstances. Thus for instance, there is absolutely no difficulty in 
obtaining a steady transitional mode of motion which is intermediate between 
the ordinary modes in which a string divides up with three and four ventral 
segments respectively. In the resulting vibration there is nothing that can even 
approximately be regarded as a 'node'. The amplitude of vibration is not however 
the same at all points of the string, and there are recognizable maxima and 
minima. It is not however easy to describe the appearance seen with much 
exactness and to a cursory examination the nature of the motion is by no means 
evident. When however we use intermittent illumination of frequency nearly 
equal to that fork maintaining the string in vibration, the extremely remarkable 
and interesting character of the motion is at once revealed. Since the frequency of 
the illumination is nearly but not quite double that of the motion we see 
simultaneously two opposite phases of the motion wMch undergo periodic cycles 
of change. At one instant the string is seen in the form of recognizably perfect sine- 
curves which enclose three ventral segments. At another phase of the motion it is 
seen in the form of perfect sine-curves which enclose four ventral segments. The 
periodic change from three to four segments and back again is one of the most 
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striking and interesting phenomena that are met with in the study of the 
maintenance of vibrations. 

When the frequency of the intermittent illumination is somewhat less than that 
of the fork we see the motion proceeding in the manner in which it actually takes 
place. One way of describing what is observed is to say that extra loops are 
continually being formed at the end of the, string attached to the fork and 
continually moving off and disappearing at the fixed end. The process at one end 
is periodically faster and slower than that at the other, with the result that we have 
alternately three and four ventral segments on the visible portion of the string. 

There is however another fact which is observed, i.e. the ordinates of the three- 
loop curve are not equal to those of the four loops, being generally larger: this is 
not brought out in the description given above. Perhaps a more accurate idea may 
be conveyed in the following manner. If we have a pair of curves whose initial 
positions are given by the equations 

and 

and which continually rotate round the axis of x, the plane yz being normal to the 
latter, their motion as seen projected on any given plane passing through the axis 
of x is similar to that seen in the actual experiment with the intermittent 
illumination. The projected curves would be given by the equation 

If the axes of y and z are at right angles, 8 = - n/4, and the phase difference 
between the two terms would be exactly quarter of an oscillation. 

From equation (1) it is clear that the phase of the resultant motion varies from 
point tq point on the string. Working by the methods described in section 111, I 
have observed the variation of the phase of the motion along the string and the 
indications of equation 11) of the present section are amply confirmed. Since A is 
generally larger than B, the most remarkable changes are observed on either side 
of the points where x = b/3 or 2b/3. At some distance from these points the 'curves 
of motion' (vide section 111) are parabolic arcs convex to the fork. As we approach 
nearer they become first looped figures convex to the fork and then 8-shaped 
curves. Nearer still, they are looped figures concave to the fork and finally 
parabolic arcs with their curvature directed towards the fork. As we recede on the 
other side we get the same changes in reverse order, the curves at some distance 
off being parabolic arcs convex to the fork. I hope later to obtain and publish 
photographs of these remarkable types of motion with the varying phase. 
. It is not difficult to see why the displacement at any point of the string is of the 
type given by equation (1). As already explained in the third section of this 
Bulletin, the maximum positive and negative phase-differences between the 
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variable spring of double frequency and the motion maintained by it are x/4 and 
- n/4 respectively. When the half-frequency of the variable spring is intermediate 
between the frequencies of free oscillations of the system in any two given modes, 
we may assume that the oscillationS are set up and maintained simultaneously in 
the two different modes but with the same frequency, i.e. half that of the variable 
spring. The two modes of oscillations are however in different phases, and the , 
sustained vibration can well be termed a transitioqal mode of motion. 

In concluding this Bulletin I have real pleasure in acknowledging my 
indebtedness of Dr Amrita La1 Sircar for his interest in the work and unfailing 
personal encouragement to myself, and also for his having as Hon. Secretary put 
the resources of the laboratory of the Association and the services of the staff 
unreservedly at my disposal during hours at which few institutions, if any, would 
remain open for work. I have also specially to mention the name of the senior 
demonstrator Mr Dey for having materially assisted in the early and rapid 
completion of the experimental work. 

Appendix 

Note on a stereo-optical illusion 

Working with a stroboscopic disc of the pattern already described, I noticed a 
very curious optical illusion that seems worthy of record. The disc with 30 slits 
was set up vertically, and the tuning-fork which regulated its motion was placed 
immediately behind with its prongs vertical and facing the disc so that the 
observer who took hisstand immediately in front of it could get a good view of the 
motion of both the prongs. Using both eyes for comfort, I was surprised to notice 
that the prongs appeared bent out of their plane, one to the front and one to the 
rear, and actually executed oscillations to the rear and to the front as the head was 
moved along the row of slits! The explanation of the phenomenon was 
undoubtedly thar the two eyes perceived the motion of each of the prongs of the 
fork in two distinct phases and endeavoured to reconcile them by seeing them 
bent out of their plane one to the front and the other to the rear! The appearance 
was most realistic. 
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