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A classical derivation of the Compton effect 

C V RAMAN, F.R.S. 

Abstract . 

With the aid of an atomic model in which the electrons are regarded as a gas distributed in a 
spherical enclosure surrounding the nucleus, it is shown that tiie classical wave-principles lead 
directly to a quantitative theory of the Compton effect and an explanation of the known experimental 
facts in connection with it. 

1. Introduction * 
As the simplest possible model of a spherically symmetrical atom, consider a 
spherical enclosure of radius R within which are imprisoned a certain number Z 
of electrons. We shall assume that the electrons move about within the enclosure 
like the molecules of a gas. They are subject to the influence of a central field of 
force, but are prevented from coalescing with it by the energy of their movements 
and their mutual repulsions. Our atom model is placed in the path of a plane train 
of waves of definite frequency. What would be the nature of the secondary 
radiation emitted by the atom? We shall proceed to discuss this problem on the 
classical wave-principles. 

It will be assumed that each of the electrons is periodically accelerated along 
the direction of the electric force in the incident waves and emits secondary waves 
whose amplitude at a distance r is given by the expression - e2sine/mc2r, where e, 
m and c have the usual meaning, and 8 is the angle between r and the electric force 
in the incident waves. The problem of determining the secondary radiation at a 
distance from the atom resolves itself into that of finding the sum of Z vibrations 
of equal amplitude but whose phases are different. An important point is that as 
the electrons have been assumed to be mobile, the phase-relations between theZ 
vibrations are continually variable with time. Has the problem of finding the 
resultant of Z such vibrations'any definite meaning or answer? 

2. Theory of random interferences 

The question raised in the foregoing paragraph is very similar to those which 
. continually arise in such optical problems as the theory of coronas, the scattering 
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of light by the molecules of a fluid and the like. We shall consider the 
mathematical formulation of our problem a little later, but the answer to it can be 
given forthwith by analogy with the known results in the optical cases referred to. 
The resultant of the Z vibrations can,be divided into two parts. Thefirst part is 
entirely determinate, its ampfitude being a function of the angle between the 
primary and secondary rays which is invariable with time, its frequency is the 
same as that of the incident radiation, and its phase is definitely connected with it 
for each given direction. The second part is entirely indeterminate, so that neither 
the amplitude nor the phase can be specified at any given time or in any given 
direction, and consequently the frequency is also variable. Nevertheless, it is 
possible to specify the statistical expectation of intensity of this second and highly 
fluctuating type of secondary radiation, that is to say, the average value to which 
it tends in the mean of a large number of trials, and to determine the manner in 
which it tends to be distributed with reference to direction. This possibility of 
subdividing the resultant into two parts, one of which is stationary and 
determinate, and the other is fluctuating and indeterminate except in a statistical 
sense, follows in a strictly 'mathematical way from the theory of random 
interferences. 

3. Analysis of secondary radiation 

We may now proceed to demonstrate the foregoing statements. 
To enable the secondary radiation to be evaluated in a simple manner, we shall 

assume that the electrons move independently of each other in the spherical 
enclosure within which they are confined, and that the probability of any specified 
electron being found within a volume element dV of the enclosure is x(p)dV, 
where ~ ( p )  is a known function of the distance p of the volume element from the 
centre of the sphere. As the probability of the electron being found within the 
enclosure is unity, ~ ( p )  must satisfy the condition 

The sum of the Z vibrations at some distant point in some specified direction 
making an angle 24 with the incident rays is 

eZ sin 8 
-- [cos (2avt + x,) + cos (2avt + x,) + . a .  + cos (2avt + x,)] (2) mcZr 

where x,, x,, . . . . . zZ are the phases of the vibrations to be added. The resultant 
intensity is 

e4 sinZ 8 I = -  , 4 , CZ + 2C cos (Xl - x2)I 
m c r  
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where the summation within the brackets extends over theiZ(Z - 1) terms of the 
form cos (x, - x,). The phase differences (x, - x,) etc, may be expressed in terms 
of the positions of the two electrons concerned in each case. These positions are 
sufficiently specified by the coordinates pl, p,,. . . pl, p,, . . . where p is the radial 
distance of the electron from the centre of the sphere and p is the direction-cosine 
of p with respect to the bisector of the angle between the incident and scattered 
rays. The statistical expectation of the value of cos (x, - 2,) in a large number of 
trials is given by the real part of the quadruple integral 

where 

IC/ = 4np sin 4/L. 
Since the variables p and p are all independent, the integration with respect to 

p1 and p, is readily effected. The quadruple integral (4) thus reduces to 

We shall write (5) in the form FZ, where F is evidently a function of R, I and the 
angle 4. Multiplying F2 by 3Z(Z - 1) and substituting in (3), the latter reduces to 
the extremely simple form 

Equation (6) may be written in the form 

I=I ,  + I,, where 

The two parts I, and I, of the secondary radiation are fundamentally different 
in their physical nature as already remarked in the preceding section. 

4. The two types of secondary radiation 

We may point out that the first of the two types of secondary radiation into which 
we have resolved the emission from the atom is obviously the diffracted radiation 
from the atom. This is clear from its proportionality to Z2, and from the form of 
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the function appearing in (5). The clearest proof of its nature is however given 
when we attempt to find by the methods of the electromagnetic theory of light, the 
intensity of the diffraction-pattern due to a dielectric sphere. If the dielectric 
constant of the material of the sphere is a function of thq radial distance from the 
centre and is given by the relation K - 1 = ~ ( p )  where ~ ( p )  is assumed small 
compared with unity, the intensity of the diffracted radiation is given bythe 
expression 

The identity of form of this integral with that appearing in (5) and (7) makes the 
nature of the latter evident. 

Thus, of the two terms appearing in (6), the first term namely (7) is a perfectly 
determinate and invariable part which is the diffraction pattern of the atom. 
Hence, it follows that the second term in (6), namely (8) represents the statistical 
expectation of intensity of a quantity whose value in individual trials is 
indeterminate. This is clear from the fact that this term arises from a summation 
of amplitudes with entirely indeterminate phase-relationships which consequent- 
ly can give no definite result in any individual trial. The proportionality to Z 
instead of to Z2 is significant in this connection. A summation of the intensities 
instead of the amplitudes of the effects of the electrons is permissible for the 
determination of a statistical average only when the effects under consideration 
are completely uncorrelated in phase. An important point to be noticed also from 
equation (1) and expression (5) is that when 4 = 0, that is, in the direction of the 
primary beam, F~ = 1 and hence the expression (8) vanishes. This could have been 
expected a priori, for in the forward direction, the Z vibrations to be added have 
completely determinate phases, and hence the indeterminate part of the sum of 
the Z vibrations must vanish. 

The first type of secondary radiation being the diffraction by the atom, what 
meaning should we attach to the second and highly fluctuating type of radiation 
which is indicated by our atom-model? In this connection, we may remark that 
the possibility, or rather, the necessity for separating the secondary radiation into 
two distinct parts arises only when we employ a dynamic atomic model. In static 
atomic models where the electrons are supposed to occupy fixed positions within 
the atom, the phase-relations between them have always fixed values for an3 fixed 
direction, and the entire effect produced by the electrons is single and indivisible; 
we would have merely a diffraction-pattern or "structure factor" for the entire 
atom, differing considerably no doubt from that due to a smoothed-out 
distribution, but belonging to the same physical class of phenomenon. With static 
atom-models, therefore, it is not permissible to speak of any "independent" 
scattering by the electrons. 

From the fact that the statistical expectation of intensity of our second type of 
radiation is proportional to Z, the atomic number, the reader might be tempted to 
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suppose that this is simply the J J Thomson-C G Barkla type of scattering by 
the Z electrons in the atom acting "independently", Such a view would be 
erroneous, For, in the first place, our formula is not simply the Thomson 
expression but appears with a very significant multiplying factor (1 - F2). But a 
more vital and fundamental difference is that our expression represents merely 
the statistical average of a quantity thatfluctuates with time. This is essentially the 
result of using a dynamic atomic model, and the fluctuating effect involves also 
corresponding fluctuations with the time of the state of the atom itself, an idea not 
contemplated in the Thomson-Barkla theory. In fact, our investigation discloses 
that the so-called "Thomson scattering by the Z electrons acting independently" 
has no real existence either in a static or a dynamic atoqjc model. 

As remarked above, the fluctuations with time of the secondary radiation from 
{he atom involve corresponding fluctuations in the electrical state of the atom 
which we may attribute to the movements of the electrons. If we postulate that the 
atom does not or cannot fluctuate, the fluctuating type of secondary radiation 
cannot exist. On the other hand, if we believe that our atom-model is not a wholly 
erroneous picture of the real atom and are prepared to concede the inference from 
it that a fluctuating type of secondary radiation from the atom does exist, then we 
must be equally prepared to accept the corollary that its emission is accompanied 
by a simultaneous fluctuation in the electrical state of the atom, the two 
phenomena in fact being inseparably linked with each other. 

We shall now proceed to identify the second or fluctuating type of secondary 
radiation with the Compton iffect. It may seem surprising to be told that the 
classical wave-principles thus lead us directly to the existence of this effect and 
indeed also suffice to indicate its observed physical characters. The belief that the 
classical wave-principles are not easily reconcilable with the phenomena of the 
Compton effect must be ascribed, however, not to any defect of the wave- 
principles, but to the fact that they have not been interpreted correctly in the past 
in relation to the present problem. The existence of at least two different types of 
secondary X-radiation, one of which is of a highly "fluctuating" or incoherent 
character is the cardinal experimental fact which requires explanation, and we 
have seen already that the classical wave-principles taken together with a 
dynamic atom-model lead us to it very naturally. We shall presently see that they 
also explain the other facts known experimentally about the Compton effect. 

Our identification of the classical fluctuating secondary radiation with the 
Compton effect is not merely qualitative. It may be developed mathematically 
and proves itself to be solidly based. 

5. The characters of the Compton effect 

From equations (7) and (8) written above, and from the nature of the function F2 
which involves R, A and 4, it is readily seen that the ratio of the two types of 
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secondary radiations depends on Z the atomic number, upon the ratio of the 
wavelength I to the radius R of the atom, and upon the angle of diffraction 24. We 
shall consider these in order. 

As already remarked, the fluctuating type of radiation vanishes when 4 = 0. 
With increasing angle of diffraction, the value of F2 falls down from unity rather 
quickly, and ultimately reaches rather small values at large angles. The march of 
the function F2 with 4 depends of course on the structure-factor of the atom. The 
second type of radiation is, therefore, relatively to the first quite inconspicuous at 
small angles of diffraction. It reaches importance only when the angle of 
diffraction is such that F2 is a small fraction of unity, and then becomes quite 
comparable with the regularly diffracted radiation. 

The ratio of the second to the first type of radiation is largest for elements of low 
atomic number and becomes very small for elements of high atomic number. For 
elements of low atomic number, the two types of radiation are of comparable 
intensity even at very moderate angles of scattering; at larger angles, the 
fluctuating radiation becomes much the more conspicuous of the two. 

For any given angle of diffraction, F2 becomes smaller with decreasing 
wavelength of the incident radiation. Hence the ratio of the fluctuating to the 
stationary type of radiation increases with increasing hardness of the incident X- 
radiation. The angle of diffraction 2 4 at which the two become of comparable 
intensity becomes smaller at the same time, sin 4 being in fact proportional to I. 

We see therefore that the experimentally known facts regarding the ratio of the 
"unmodified" and "modified" types of X-ray scattering and its variation with the 
atomic number of the scattering element, the wavelength of the incident 
radiation, and the angle of diffraction are correctly indicated by the very simple 
theory developed in the foregoing pages. 

Our model atom is, of course, rather crude in its constitution. Its most defective 
feature is the assumption of an artificial barrier preventing the electrons from 
escaping outside. Such an artificial barrier is not really needed. I n  reality, any of 
the electrons is free to wander away from the atom into space if its kinetic energy 
should exceed the potential energy of its position in the central field of force. On 
the other hand, if its kinetic energy be less than this value, it cannot leave the atom 
and no barrier is needed to prevent its escape. If we imagine an electron to be so 
feebly bound that a small increment of energy would liberate it, such addition of 
energy would enable it to wander off from the atom. The escape of an electron 
from the atom may therefore be legitimately regarded as a possible mode of 
"fluctuation" in the electrical state of an atom, and one which is especially likely in 
the case of atoms in which the electrons are very loosely bound. We may 
therefore, without an undue stretch of language claim that considerations of a 
purely classical nature not only definitely predict the existence of a highly 
fluctuating type of secondary radiation from atoms, but also indicate that the 
fluctuation of the atom which must accompany the emission of such radiation 
consists of the ejection of an electron from it. 
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To be strictly logical, of course, we must be prepared to admit the possibility of 
other possible modes of fluctuation of the atom and the existence of correspond- 
ing special types of secondary radiation from it. Our simple atom-model with its 
virtually free electrons is not however capable of dealing with such cases 
quantitatively. 

To avoid misapprehension, it should be made clear that the "fluctuations" of 
the atom we are considering are quite different in nature from the "fluctuations" 
contemplated in thermodynamics and kinetic theory. We are here concerned with 
the "fluctuations" of the atom from its normal condition under the influence of 
external radiation. Whether simultaneous thermal excitation would modify the 
results is a question into which we need not enter here. 

6. The change of wavelength 

It now remains to consider the question of the change of wavelength and its 
relation to the motion of the ejected electron. Any type of secondary radiation 
from particles in motion necessarily involves changes of wavelength. Since the 
fluctuating secondary radiation is associated with the motion of an electron from 
within to outside the atom, we may yaturally expect its frequency to be altered by 
reason of the Doppler effect. If we assume the electron to move with a velociity v in 
the direction of propagation of the primary waves, the wavelength of the spherical 
secondary waves emitted by it and observed in a direction making an angle x with 
the primary waves is 

Since we have assumed the electron to be periodically accelerated in the direction 
of the electric force, the only other possible way in which the incident radiation 
can act on the electron is by way of radiation pressure or electromagnetic 
momentum. This must be in the forward direction, for the secondary radiations 
from the electron being spherically symmetrical, they can have no resultant 
momentum in any direction. Thus, classical wave-principles justify (9) at least in 
form. We shall be doing no violence to them, though we may be offending 
Newtonian mechanics, by taking the forward momentum of the scattering 
electron to be the same as that of finite train of plane waves having the total 
energy hv. We then obtain 

which is the Compton equation derived on the classical wave-principles. 
In obtaining (lo), we have considered the electron, and altogether i~nored the 

atom with which it is associated before expulsion. The radiation from the atom 
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does not consist of simple spherical waves as contemplated above, but of the 
complex fluctuating disturbance given by equation (6) of which the second part 
represents only a "statistical expectation" of intensity. Hence, we should be very 
far from being justified in assuming without further examination that the 
argument adduced above is valid for the case of the atom as distinguished from 
that of the free electron. Nevertheless there is good reason for accepting (10) as 
representing statistically the observed relation between wavelength and direction 
of observation, at least as an approximation. For, when the angle of diffraction is 
not too small, and especially for elements of low atomic number, equation (6) 
gives the statistical expectation of intensity as practically Z times that of a single 
free electron, and hence (10) may be regarded as statistically valid to a close 
approximation. 

It is a different matter if we ask what are the possibilities in any individual trial. 
To find an answer to this, we have to consider more closely the character of the 
fluctuating disturbance radiated from the atom. We must remember that not only 
is its intensity variable with time, but also its angular distribution, so that 
apparently we have no method, a priori, of finding what it would be in any 
individual trial. A way out of this difficulty is however indicated by the well- 
known general solution of the equation of wave-propagation discovered by 
Whittaker (See "Modern Analysis," Camb. university Press); Whittaker's 
solution shows that even a most arbitrary type of wave-disturbance can be 
represented as the superposition of plane trains of waves travelling in all 
directions through space. Vfe may thus analyse our fluctuating radiation into sets 
of plane waves travelling In different directions. Since the incident waves are 
themselves plane and periodic, we may accept the hint given by equation (lo), and 
assume that it gives, as an approximation, the wavelength of the plane train 
travelling in the direction specified by the angle x as the result of such analysis. In 
any particular trial, therefore, the fluctuating part of the radiation emitted by the 
atom may be conceived as consisting, approximately, of a single such plane wave 
train or a group of closely adjacent plane wave-trains. In finding the correspond- 
ing velocity and direction of motion of the ejected electron, we have to take into 
account the momentum of the incident wave as well as that of the unsymmetri- 
cally scattered secondary wave. We understand in this way, why in any individual 
trial, the electron may be ejected in directions other than that of the primary ray. 
its actual velocity and direction of motion depend on the incident and scattered 
waves jointly. Incidentally, it becomes evident why the argument of the "triangle 
of momenta" by which Compton obtained his formulae gives the same result for 
the change of wavelength as the simple classical theory of the emission of 
spherical secondary waves by the electron. 
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