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The Diffraction of Light by Metallic Screens.
By Prof. C. V. Ramaw, F.R.S,, and K. 8. KrisaNan.

(Received June 13, 1927.)

1. Introduction.

Gouy* discovered that when a metallic screen with a sharp and highly-polished
edge is held in the path of a pencil of light, its boundary appears as a luminous
line diffracting light through large angles, both into the region of shadow
(interior diffraction) and into the region of light (exterior diffraction). He
noticed further that this diffracted light is strongly polarised, but in perpen-
dicular planes in the two regions mentioned ; the colour of the diffracted light
and its state of polarisation depend in a remarkable manner on the material
of the screen and on the extent to which its edge is rounded off in the process
of polishing. When the edge is viewed through a double-image-prism from
within the shadow, only that image appears coloured which is more intense
and is polarised with the magnetic vector parallel to the edge. The second
image which is fainter and is polarised with the electric vector parallel to the
edge, appears perfectly white. When the incident light is polarised in any
arbitrary azimuth, the diffracted light is found to exhibit elliptic polarisation.
These and other results have been confirmed by later observers.}

Gouy’s experimental results were discussed by Poincaré on the basis of the
electromagnetic theory of light in two memoirs published in the “ Acta Mathe-
matica.”} The special case of an ideal screen (plane or wedge-shaped), supposed
perfectly-reflecting and having a sharp edge, is amenable to complete theoretical
treatment, and was dealt with by Poincaré himself, and later in a rigorous.
manner by Sommerfeld,§ and following him by numerous other mathematicians.
The behaviour of actual metallic screens, however, differs considerably from that
found theoretically for this ideal case. Though attempts have been made by
Poincaré himself in the memoirs quoted, and later also by Epstein,|| to take the
nature of the screen and the rounding of its edge into account, it cannot be-
said that Gouy’s observations have so far received a complete or satisfactory
explanation. We propose in this paper to discuss more particularly the:

* ¢ Ann. Chim. et Physique,” vol. 8, p. 145 (1886).

1 W. Wien, ‘ Wied. Ann.,” vol. 28, p. 117 (1886).

1 ¢ Acta Mathematica,” vol. 16, p. 297 (1892), and vol. 20, p. 313 (1896).

§ ¢ Math. Annalen,” vol. 47, p. 317 (18986).

I} “ Diss. Munich *; also ‘ Encyklop. d. math. Wissensch.,” vol. V (3), p. 491.
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influence of the material of the screen on the diffraction by a sharp edge, and to
show how it may be explained in a very simple manner. The case of rounded
edges is reserved for discussion in a separate paper.

In the fifth section of his first memoir, Poincaré discussed the electromagnetic
boundary conditions at the surface of an imperfectly conducting screen, and
made the important remark that the extreme smallness of the depth to which
an optical disturbance penetrates into any actual metal, should considerably
simplify the theory. In his actual attempt, however, to discuss the problem
of diffraction by an imperfectly conducting screen, he made no use of the
elegant mathematical methods and results contained in the earlier parts of his
memoir, and contented himself with a qualitative discussion on the basis of
the Kirchhoff formulation of Huygens’ Principle. The treatment given does
not, as was indeed remarked by Poincaré himself, appear capable of leading to
quantitative results. In the course of our paper, we shall show how it is possible
to apply the Fresnel-Huygens’ Principle with success to the problem of diffrac-
tion by imperfectly-conducting screens. It is more convenient, however, to
base our treatment in the first instance on a modification of the known exact
solutions for the case of perfectly-reflecting screens or wedges.

2. Theory.

Sommerfeld’s solution of the wave-equation in cylindrical co-ordinates for
the case of a semi-infinite screen which is a perfect reflector and lies in the
xz-plane, with its edge along the z-axis, is

u="F(p, $ bo) F F (p, b, — o) (1)

The upper (minus) sign refers to the case in which the plane of polarisation
and the plane of incidence are parallel to each other ; (we shall refer to this as
the || case), and w then denotes the electric force parallel to the edge. The
lower (plus) sign refers to the case in which the plane of polarisation of the inci-
dent light is perpendicular to the plane of incidence (we shall refer to this as
the L7 case), » then denoting the magnetic force parallel to the edge.

p\E 2nt T .
F o, 4, g = (1] eFamvoimw [ oy, @)

—®

where
v = /Thp . cos} ($ — ).
The expression (2) has the property that when = is positive and sufficiently
large, which is the case when = 4 ¢, > ¢ > 0, the function tends to the limiting

value ¢ T ¢%*r°3@—¢ which represents a train of plane waves incident on
8 2



256 C. V. Raman and K. S. Krishnan.

the screen in a direction making an angle ¢, with its plane ; when < is negative
and sufficiently large, which is the case when = -+ ¢, < ¢ < 2w, the function
tends to the limit zero. F (p, ¢, — ¢) is obtained by writing — ¢, for &,.

. 2nt
When 7t — ¢y > ¢ > 0 it tends to the limit ' T ¢*»c®@+dd which represents
a plane train of waves reflected from the screen. When n — ¢y < ¢ < 2m,
F (p, ¢, — ;) tends to the limit zero.

Now the solutions (1) satisfy the conditions « = 0 and 0u

d¢
on both faces of the screen, supposed to be infinitely thin and perfectly reflecting,
that is, when ¢ = 0 and also when ¢ = 2n. Now any actual screen to be
opaque must be of finite thickness, hence a solution of the form (1) or any
simple modification of it cannot be expected to represent the behaviour of such
screens completely. Nevertheless, as already mentioned above, a metallic screen
of a thickness which is only a small fraction of a wave-length, is practically
opaque, and this makes it possible to represent its behaviour with a high degree
of accuracy by a comparatively simple modification of (1). Consider expres-
sions of the form

uw=F (P’ 953 950) — (G, + 7’:Ds) .F (P; 9")? _‘950) (3)

u=F (P’ 95’ 950) + (Op + iDp) K (Ps 95’ "’_950) (4)
in which the (numerical) factors C; - 4D, and C, 4~ D, are so chosen that
they represent the amplitude of the wave reflected at the illuminated face of
the particular screen used, for the particular angle of incidence under con-
sideration. Equation (3) refers to the ||’ case, and (4) to the 1" case. Since
C, 4- 4D, and C, - 1D, are functions only of the angle of incidence ¢,, (3)
and (4) continue to satisfy the wave-equation and represent distributions of
light and shadow of the same general character as those indicated by (1), with
this difference, however, that the disturbance on the illuminated face of the
screen expressed by (3) and (4) will have the actual values corresponding to
the screen used, while (1) corresponds to a screen with properties which cannot
be physically realised. We are therefore justified in expecting that (3) and
(4) would represent the disturbance throughout the whole field in the actual
problem much more accurately than the Sommerfeld formule.

To understand the physical significance of the formule, it is best to use the
asymptotic expressions for the functions for large values of p. We have, when
cos % (¢ — ;) is positive,

= 0 respectively,

and

omt
12" T g—ke

2V/2rke . cos § (¢ — o)

2t
Fp, b, dpg) = ¢ T gecosté—dn) L

(5)



Diffraction of Light by Metallic Screens. 257

while when cos § (¢ — ¢,) is negative, there is a similar expression in which the
first term is missing. Similarly when cos (¢ + ¢,) is positive, we have

2mt X
§32 gt T g—ikp

2v/2nkp . cos } ($+ )

and a similar expression in which the first term is missing, if cos § (¢ + ) is
negative. The general expression for the light diffracted by the edge is either

2mt
F (p, 95, —(ﬁo) gt P Cosidtdo) +

(6)

_@RdTe ™[ 1 ¢, 4D, ] o
i 2V/2rkp |cosi(d—¢o) cosF( + ¢)
or
_ ,i3/267lg%-t'e—ikp B 1 L C.p + D » ) (8)
7 |

2v/ ke | cos 4 (¢— o) " cos (¢ + &

3. An Alternative Treatment.

The formule (7) and (8) may also be derived in the following manner based
on the Fresnel-Huygens’ Principle. It is readily shown that the wave-equation
in cylindrical co-ordinates,

Fu_ 100 10 Bu_ 1w o)
0p* pOp RO 02 P o ’
is exactly satisfied by putting

| 2nt e-«ikp
@w=¢T
24/ 2k

which represents a cylindrical wave of Poisson’s type diverging from the
z-axis. A plane wave incident on the zz-plane in the direction ¢, is transmitted
through the part of the plane to the left of the edge and is reflected from the
part on the right. To find the disturbance diverging from the edge of the
screen, at any point very distant from it, we divide the area of the zz-plane
adjacent to the edge into half-period strips parallel to it on either side, and show
in the usual way that the effect of the transmitted wave reduces to one-half
of the first half-period strip on one side of the edge, and that the effect of the
reflected wave reduces to that of a similar strip on the other side. Assuming
that each of these strips is the origin of a cylindrical wave of the type appearing

in (10), we may write the total disturbance at (p, ¢) diverging from the origin,
in the form

cos § (¢ + <), (10)

2mt e-—'ikp

= ¢ Tmp [Agcos 4 (¢ + o) + Bycos & (b -+ B)], (11)
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where A, B, o« and B have to be so chosen as to givé the amplitudes and phases
of the divergent waves correctly. Now the width of either half-period strip is

easily shown to be
A

4cos L (p—dy) cos & (d+¢by)’

and we may assume, as is usual in the elementary diffraction theory, that the
amplitudes A, and B, are proportional to this width. It is necessary that the
term in (11) proportional to A,, contributed by the transmitted wave, remains
finite when ¢ = — ¢, and that proportional to B, contributed by the reflected
wave, remains finite when ¢ = © 4 ¢, as these directions do not coincide with
the respective directions of travel.of these waves. We are thus obliged to assume
that & = ¢, and that p == —d, The equation (11) then reduces to

g e A B
=l 24/275]59 [cos% (d— o) - cos} (é + ¢OJ: (12)

where A and B are suitably chosen constants. As in the elementary diffraction
theory we write

A= eiT— 2
which expresses the difference of path of A/8 between a parent plane wave and
the divergent cylindrical wave from a laminar strip cut out of it. The value of
B relatively to A evidently depends on the change of amplitude and phase
occurring in reflection at the surface of the screen. We write therefore

B/A = — (C,+iD) or 4+ (C,+ iD,),

according to the state of polarisation of the incident beam. The formule (7)
and (8) are then reproduced.

4. Explanation of Ellipticity of the Diffracted Light.

From expressions (7) and (8) the ellipticity of the light diffracted through
large angles, when the incident light is polarised in any arbitrary azimuth,
follows as an immediate consequence. We shall consider first the case of
normal incidence on a plane screen. We have then

n(l —i) —1

Cs+ @Dsch +-@Dp:m—l.

Taking for the case of a steel edge and for A =5-80 X 107°cm., e = 324
and #n = 2-46, we have C, + ¢D, = () + 1D, =069 — 2 X 0-29. With these
numerical values and writing the expressions in the square brackets on the right-
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hand side of (7) and (8) in the form F, + ¢G, and F, -+ ¢G, respectively, the
values of F 2 -+ G2 and of F,2 + G2 for various angles of observation, and the
phase differences between these two components are shown in Table I.

Gouy noticed that with a sharp steel edge, the light diffracted into the region
of shadow shows no sensible ellipticity when the deviation is less than 45°
For larger deviations, it becomes sensible, the || component being in advance of
the 1™ component, the difference of path being, however, always numerically
less than /4. It will be seen that this is in general agreement with the figures
for the difference of path shown in the fifth column of Table I. The table
also indicates the interesting result that in the region of exterior diffraction,
the path difference changes sign and increases in a continuous manner up to
the boundary of reflection, when it becomes half a wave-length, while according
to the Sommerfeld formulee there is a sudden reversal of ‘phase when the
diffracted ray lies in the continuation of the plane of the screen.

Table I.—Diffraction by Steel Edge : Normal Incidence.

| and L indicate plane of polarisation parallel and perpendicular respec-
tively to the plane of incidence.

A =5-80 X 1075 em.

. . Difference Difference
Resi Direction Intensity Intensity of path of path
egion of . of {|¢ of 17 between the .
. of diffracted according to
observation. component | component | components S rfold
ray ¢. TR G2 F ot G2 5.5 ommerfe.
8 L » Lo o s % formulz.
. A
Boundary of reflection.... 90 — — 0-50 0-50
120 15-0 3-9 0-45 0-50
Exterior diffraction (re- 150 6-7 0-38 0-35 0-50
! . g 180 5.9 0-36 0-15 —
gion of illumination) 210 8-0 1-55 0-06 0
240 21-1 10-0 0-03 0
Boundary of shadow........ 270 —_ — 0 0
285 49 70 —0-01 (U]
300 10-0 21-1 —~0-03 0
Interior diffraction (re- 315 3-6 11-4 —0-04 0
gion of shadow) 330 1-55 8-0 —0-06 0
345 0-72 6-4 —0-09 0
360 0-36 5.9 —0-15 —
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5. Effect of Oblique Incidence.
When the light is incident on the screen obliquely at an angle 6 (measured
as usual from the normal) we have
cos 8 — A/ n% (1 — ix)? — sin20 (13)
cos 8 +4/n% (1 — ix)® — sin? 0

¢, +iD,= —

and

w2 (1 — ik)2cos O — 4/ n2 (1 — ix)? — sin2H (14)

C D, = ,
v tDy n? (1 — ix)2 cos 0 4/ n2 (1 — ix)2 — sin2 0

At normal incidence (13) and (14) are equal, and at grazing incidence they
are again equal but opposite in sign. At the principal incidence (which lies
between 70° and 80° for most metals) the difference of path between the ||
and 17 components of the reflected wave amounts to A/4 and then rapidly
diminishes to 0 as grazing incidence is approached. ~With the help of the
formule (7), (8), (13) and (14) the intensity of the two components of the
diffracted light and their phase-difference can be calculated for any angle of
incidence and of observation. Let us first consider moderately oblique inci-
dence. Two cases have naturally to be distinguished, viz., when the incidence
is from the screen-side of the normal, and when it is from the farther side.
Tables IT and III give the values for a steel screen when ¢, = 135° and 45°,
respectively, for yellow light. It can be seen that the effects observed in
interior and exterior diffraction are no longer similar to each other.

Table II.—Diffraction by a Steel Edge. ¢, = 135°.

Difference of
Direction of Intensity of Intensity of | path between
Region of observation. diffracted /¥ component { 37 component | the componenta
13y ¢. Fs?4 G2, Fp24 Gyl 3p—38s.
A
135 4-6 0-30 0-23
180 3-8 0-35 0-14
Exterior diffraction 225 4.9 0-8 0-09
270 12 4:0 0-04
285 24 11 0-03
300 75 48 0-02
Boundary of shadow.............. 315 — — 0
330 41 75 —0-02

Region of shadow 345 6-0 27 —0-05
360 0-7 18 —0-17
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In the case considered in Table II, the region of shadow is of much smaller
angular width, and the degree of polarisation and also the ellipticity increase
rapidly as we approach the plane of the screen (¢ = 360°). On the other hand,
in Table IIT the region of shadow is much wider, and the polarisation and
ellipticity of the diffracted light increase less rapidly with increasing deviation
of the diffracted ray. In exterior diffraction these effects are reversed.

Table I11.—Diffraction by a Steel Edge. ¢, = 45°.

Difference of
Direction of Intensity of Intensity of | path between
Region of observation. diffracted Jl¥ component | 3* component | the components
ray ¢é. T2 4G Fp24-Gpt. dp—3s
o
135 — — 0-45
Exterior diffraction 165 28 2-3 0-32
195 31 8-4 0-06
Boundary of shadow .............. 225 — — 0
255 9-6 22 —0-03
285 1-5 7:0 —0-06
Region of shadow 315 0-5 4-2 —0-09
345 0-2 3-3 —0-14
360 0-1 31 —0-17

6. Diminished Intensity of Duffracted Light.

If we compare the figures shown in Tables IT and IIT with those calculated
from Sommerfeld’s formule for a perfectly reflecting screen, we find that the
effect of imperfect conductivity of the screen is not only to introduce elliptic
polarisation, but also to diminish the total intensity of the diffracted light and
the ratio of the components of vibration for specified angles of incidence and
diffraction. In fact, these effects are all closely related to one another, and
become the more striking when the incidence is very oblique.

In Table IV the case of oblique incidence on a steel edge has been worked
out and shown. It is assumed that ¢, = 170°, that is, only 10° short of grazing
incidence. The figures for the steel edge and for a perfectly reflecting screen
are shown side by side for comparison, and it will be seen that the intensity
of the L™ component is diminished to one-fifth of its value, on the surface of the
screen, by reason of the imperfect conductivity, while that of the || component
is very slightly increased. Nevertheless, the ratio of the 17 and ||* components
remains large, showing that even at such incidences the polarisation remains
large. We have to approach grazing incidence still more closely before the
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Table IV.—Diffraction by a Steel Edge. ,= 170°.
Region of Shadow.
Difference of
Direction Intensity of Intensity of Intensity of Intensity of path between
of | coraponent | [/ component | 37 component | g7 component | the components
diffracted for a perfect for steel for steel for a perfect for steel
T3y é. conducior, F24+Gst. Fpi4 G2 conductor. 8y—05
» A
o
350 — — — — 0
352 2590 2600 3100 4060 —0-01
354 460 480 750 1280 —0-02
356 119 128 313 746 —0-04
358 23 28 170 571 ~0:07
360 0 0-9 109 527 —0-23

diminution of the .’ component is such as to produce a striking diminution of
From formulee (7), (8), (13) and (14) it follows
that, at grazing incidence, the diffracted light should be unpolarised at all

the completeness of polarisation.

angles.

The foregoing considerations help to explain, at least in part, the interesting
observation of Gouy that for given directions of the incident and diffracted
rays, the intensity of the diffracted light is a mazimum when the plane of the
screen bisects the angle between these two directions. According to Sommer-
feld’s formulze the intensity should be a msnimum for this position of the screen.
Owing, however, to the imperfect conductivity of actual screens, as we have
seen, the intensity falls off in approaching the extreme cases in which the light
is incident grazingly on the screen from either direction. As we shall see later,
other circumstances, as, for instance, the finite angle formed by the faces of the
screen at the edge, or the actual rounding off of the latter, would also operate
in the direction of diminishing the intensity of the diffracted light in the two
extreme positions of the screen. Hence the intermediate position for the
screen actually gives the maximum instead of the minimum intensity for the
diffracted rays in the particular direction. '

7. Explanation of Diffraction Colours.

The wave-length enters in the expression for the intensity of the difiracted
light in two distinet ways. Referring to (7) and (8) it will be seen that the
intensity is inversely proportional to %, that is, proportional to the wave-~
length. The longer wave-lengths would thus tend to be more prominent in
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the light diffracted by the edge than in the incident light. This effect would
operate both on the parallel and perpendicular components of vibration in the
diffracted light.
entirely different way, by the factors C, 4 ¢D; and C, 4- ¢D, appearing in (7)
and (8), which are, in general, functions of the wave-length of the incident light.

The colour of the diffracted light is also influenced, and in an

If we confine ourselves to the case of normalincidence, C,+ <D, and C, -+ D,
are identical in magnitude. But the former appears with a negative sign in
(7) and the latter with a positive sign in (8).

appears with a strengthened amplitude in (8) it will appear with a weakened

Hence, if a particular wave-length
amplitude in (7), and vice versa. This, taken together with the proportionality
to A already mentioned, furnishes an explanation of the difference in the colour
of the parallel and perpendicular components of the light diffracted into the
region of shadow, which was discovered by Gouy for metals such as copper and
gold. It can easily be seen that in the region of shadow, the longer wave-
lengths which are strongly reflected by the metal would be much enhanced in
the perpendicular component, while the corresponding weakening in the
parallel component would be almost insensible. In the region of exterior
diffraction, these features are interchanged.

Table V.-—Gold Screen. ¢, = 90° (Normal Incidence).

Direction (F24+-Gs?) A X 105, for A x 105 = (Fp2-Gp®) A x 105, for A x 105 =
of
diffracted
ray ¢. 4-20. 5-80. 7-00. 4-20. 5-80. 7-00.
Q
270 — — — - — —
285 217 282 326 279 408 508
300 48-3 59-0 64-4 80-4 125 159
315 19-1 221 22-1 4]1-8 68-3 88-7
330 9-56 10-7 9-50 28-1 48-5 63-9
345 5-44 636 4-87 221 40-2 53-6
360 341 4-86 3-48 19-5 37-6 50-7

In Table V the intensity of the diffracted light has been calculated for the
case of a gold screen using the following data :—

A=7-00 x 107%cm. ; % =0-280 , nx=3-800 ;
A=0580 X 107 %cm. ; n=0-415 , s =2.7T50 ;
A=4-20 X 107%cm. ; n=1-570 ', nx = 1-800.

From the table it will be seen that in the region of shadow (F2 4 G2)2 has
practically the same value for different wave-lengths, while (F,2 4 G,2) 2
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increases in value as we proceed towards the red end of the spectrum. The
increase with wave-length is much more marked for large angles of diffraction
than for small angles. Further, F)2 4 G,? is always greater than F2-} G2,
the ratio between the two increasing with the angle of diffraction. From these
facts, it follows that when the region of shadow is examined, the || component of
the diffracted light will be perfectly white, while the 1" component, which
is in fact much stronger than the other, will exhibit an orange-yellow tint, the
colouration being the more marked, the further we go into the region of shadow.
The same colour effects will be noticeable alsoin the region of exterior diffraction,
the | and L components now, however, exchanging places.

8. Intensified Colours at Oblique Incidences.

While the variation with wave-length of the intensity of the .’ component
shown in Table V is marked enough, it is not exceptionally large, being in fact
of the same order of magnitude as the variation of the reflecting power of the
metal with wave-length. This is in agreement with observation, for Gouy
found that the sharpest metallic edges do not show particularly vivid colours
by diffraction. When, however, the incidence on the screen is made oblique,
the colours of the 1" component should become more lively. To understand
why this should be the case, we have only to refer to section 6 above, in which
it was shown that the imperfect reflectivity of the metal results in a diminution
of the intensity of the diffracted light in comparison with the theoretical value
for a perfectly reflecting screen, and that this diminution becomes the more
marked as the incidence of the light on the screen becomes more oblique. Those
wave-lengths, however, for which the reflecting power of the metal approaches
unity, persist in nearly -full strength in the 1" component of the diffracted light,
and hence determine its colour in increasing measure as the obliquity of the
screen is increased. It is to be noted also that the colour should appear at
smaller deviations of the ray in interior diffraction, and at larger deviations in
exterior diffraction, or wice versa, according to the position of the screen.

In Table VI the case of a gold screen, for a position of the screen 10° short
of grazing incidence, has been worked out and the intensities of the || and 1"
components are shown for six different wave-lengths, the direction of observa-
tion considered being along the surface of the screen in the region of shadow.
The normal reflecting power of the metal for the same wave-lengths is also
shown for comparison.
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Table VI.—Gold Edge. ¢, = 170°, ¢ = 360°.

A x 105 Intensity of Intensity of The reflection
(cm.) | component L7 component coefficient
N (F2+Gg2) A x 105, (Fp2+Gp?) A X 105, :
4-00 9-9 200 0-360
4-60 12-5 210 0-358
5-20 17-5 240 0-608
5-80 10-5 470 0-827
6-20 8-8 650 0-889
7-00 7-1 1000 0-930

It will be noticed that the intensity of the || component varies but little with
wave-length, while the 1" component shows large intensities in the orange and
red regions in the spectrum. The effect in the latter case is of a highly selective
character, becoming pronounced only for the wave-lengths for which the
reflecting power of the metal approaches unity.

When the figures shown in Table VI are computed after the manner employed
by the late Lord Rayleigh* for discussion of the colours of thin plates, and
plotted in Maxwell’s colour-triangle, it is found that the || component is perfectly
white, while the 47 component is of a rich orange-yellow colour.

The case of other metals may be worked out in a similar manner. In Table
VII are given the reflection-coefficients and the colour of the diffracted light
as observed by Gouy and Wien, for a number of metals. The general relation-
ship between them is fairly clear from the figures. In the case of the whiter
metals, of course, the colour is largely determined by the factor A appearing
in the expression for the intensity of the diffracted light.

Table VII.—Reflection Coefficients and Diffraction Colours.

Colour of
ForA x 105==] 4-20} 4-50} 5-00| 5-50 | 6-00} 6-50 | 7-00| )7 component of
diffracted light.

Silver ................ 0-866 { 0-905 } 0-913 | 0-927 | 0-926 | 0-935 | 0-946 | Pale yellow.
Copper ........... 0-33 |0-37 {044 | 048 | 0-72 | 0-80 | 0-83 | Red.

Steel ............... 0-52 {0-54 | 0-55 ! 0-55 | 055 | 0:56 | 0-58 | Reddish white.
Platinum ........ 0-518 | 0-547 {1 0-584 | 0611 | 0-642 | 0-663 | 0:69 | Yellow.

Zinc .o 0-803 | 0-806 | 0-805 { 0-789 | 0-774 | 0771 | 0-770 | Colour insensible.
TIn e — | 0-605 | 0-670 | 0-686 | 0:706 | 0-713 | 0-716 | Greenish yellow,

* Lord Rayleigh, ‘ Scientific Papers,” vol. 2, p. 498.
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9. Diffraction by Metallic Wedges.

Poincaré considered the case of a perfectly reflecting wedge in his first memoir,
and showed that if the surfaces of the wedge are given by the angles ¢ = 0
and ¢ = y, the rays diffracted from its edge have an amplitude proportional
to

— S (15)
cos ™ —cos T (¢ — ) cos T —cos (Gt )
X X X %

As the result of a more elaborate analysis,” Wiegrefe* found for the cylindrical
wave diverging from a wedge-shaped edge the identical expression given by
(15) with the multiplying factor

w12 by
— 32T e \/— .
¢

On putting x = 2n, the formule (15) and (16) reduce to those for the case of a
perfectly reflecting plane screen. In the case of an imperfectly conducting

2
x
20 °

sin

(16)

wedge, we modify expression (15) and write it in the form.

1 _ G, + D, o
2 T i 7
cos ™ —cos™ (— ) cos™- —cos” (¢4 ¢y
pd X
o0 ~
1 4 C, + 1D, , (18)
cos * — cos (¢ — ) cos G cos " (¢ -+ o)
X bé L X

where C,, D,, C,, D, have the same significance as previously, and are functions
of the angle of incidence of the light on the illuminated side of the wedge.
From formula (15) it appears that along the two surfaces of the wedge ¢ = 0
and ¢ = y, the diffracted light should be completely polarised with the intensity
of the [ component zero, and that of the L component finite. ~ As the rear
surface of the wedge limits the region of shadow, it follows as a consequence
that the polarisation-effects should usually appear at smaller deviations of the
diffracted ray in the case of a wedge than for a plane screen. When the imper-
fect reflecting power of the metal is taken into account, as in formule (17) and

* A. Wiegrefe, * Ann. d. Physik,’ vol. 39, p. 449 (1912).
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(18), it would also follow, for the reasons stated, that the colours of the diffracted
light should also be observable at smaller deviations and be generally more
striking than for a plane screen.

10. Summary.

1. The paper contains a discussion of the observations of Gouy on the intensity,
colour and polarisation of the light diffracted through large angles by metallic
screens and wedges with polished edges. The well-known expressions due to-
Poincaré and Sommerfeld referring to diffraction by perfectly-reflecting screens
and wedges, are modified so as to take into account the changes of phase and
amplitude which occur when light is reflected at the surface of a metal. The
modified formulee are then discussed.

2. The formule show that when the incident light is plane-polarised in any
arbitrary azimuth, the light diffracted through large angles is elliptically
polarised, the sign of the ellipticity being different in interior and exterior
diffraction. :

3. In interior diffraction, the component polarised in the plane of incidence
is white, while the perpendicular component is coloured, the colour depending on
the nature of the metal. In exterior diffraction, these effects are reversed.

4. The effect of imperfect conductivity is to make the intensity of the
diffracted light less and less as the incidence becomes more and more obligue.
This diminution is least for the wave-length for which the reflection-coefficient.
is largest. The colour-effects arise in this way and therefore become more
prominent at oblique incidences.






