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THE SMALL MOTION AT THE NODES OF A
VIBRATING STRING.!

By C. V. Raman.

T is generally recognized that the nodes of a string which is
maintained permanently in oscillation cannot be points of abso-
lute rest, as the energy requisite for the maintenance of the vibra-
tions is transmitted through these points. I have not however seen
anywhere a discussion or experimental demonstration of some
peculiar properties of this small motion. I shall therefore endeavor
to give an account of some experiments and observations of mine
relating to this subject.

2. Some rather striking effects are observed when the small
motion at a node is viewed stroboscopically, <. e., under periodic
illumination. For this purpose, the frequency of intermittence of
the light should be nearly twice that of the oscillation of the string.
A tuning-fork maintains the string in oscillation in any convenient
number of loops, by imposing a transverse obligatory motion at
one point of it. Another tuning-fork, which has nearly twice the
frequency of the other, forms the interrupter of a Ruhmkorff’s coil,
the spark from which furnishes the periodic source of illumination.
Both forks are electrically self-maintaining. The string is seen in
two slowly-moving positions, which represent opposite phases of
the actual motion. If the nodes were points of absolute rest, then
the two positions seen under the periodic illumination would inter-
sect at fixed points. On account, however, of the small transverse
motion at the nodes, the points of intersection or ‘“‘fictitious nodes’
are seen to execute a motion of large amplitude parallel to the
string—the range of the motion being equal to the whole length of
a loop. This motion, best seen under a magnifying glass, is repre-
sented in Fig. 1, in which nine successive stages at equal intervals
of a complete cycle are shown.

1A preliminary note on this subject was published in Nature, November 4, 1909,
as a letter to the Editor.
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3. The ““fictitious’” node is in the first stage at the center of the
field. It then moves to one side of the field, first slowly, then more
rapidly; at the fourth stage, it is off the field; at the fifth, the two
positions of the string are, at the
center of field (3. e., at the posi-
tion of the node in the actual os-
cillation), sensibly parallel to
each other. Itthen reappears on
the other side of the field, moves
in rapidly, then more slowly;
at the ninth stage, it is back
again at the center of the field.

3. A motion of the type shown
in Fig. 1 can be represented
mathematically by the expres-
sion A sin ax cos pt + B cos ax
sin pf, where x is the distance
from the center of the field, ¢is
the time, the other quantities
being constants or nearly so.
The two terms differ in phase
by quarter of an oscillation.
The significance of this is that

Fig. 1. the small motion at the node and

the large motion elsewhere differ

in phase by quarter of an oscillation. If the expression for the

displacement were of the type A4 sin ax cos pt + B cos ax sin

(pt + E), the two terms differing in phase by more or less than =/2,

the motion would not be of the type shown in Fig. 1. It would be

unsymmetrical, the velocity of the point of intersection when at a

given distance from the center of the field on one side and approach-

ing it, being much greater than its velocity when at the same dis-
tance on the other side and receding from the center.

5. Another experiment, which was first performed by me in
collaboration with Mr. V. Apparao, of the Presidency College,
Madras, was found later to furnish a second method of determining
the phase of the small motion at the nodes. The principle of this
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method was to compound the oscillation at every point on the
string with another perpendicular to it of half the frequency and to
observe the compound oscillation at the nodes and elsewhere. A
string can be maintained permanently in a compound oscillation
of this character by attaching one end of it to the prong of an
electrically-maintained tuning-
fork, so thatit liesin a plane per-
pendicular to the prongs, but in
a direction inclined to their line
of vibration.!

6. A beautiful and interesting
type of stationary oscillation is
maintained when the tension is
somewhat greater than that
necessary for the most vigorous
maintenance. The curves de-
scribed by points on the string
are then parabolic arcs.? As the
frequency of oscillation in one
plane is half that in a perpendic-
ular plane, there are two vibra-
tion-loops in the latter for every
one in the former. The conse-
quence of this is that the para-
bolic arcs which form the paths
of points on the string have their
curvatures in opposite directions
in alternate halves of a big Fig. 2.
loop, 4. e., in alternate small

loops. The surface generated by the moving string is one of great
delicacy and purity, and an adequate idea of it can only be had on
actually performing the experiment. The photograph herewith

1Under these circumstances, the motion of the prong may be resolved into two
components, one perpendicular, and the other parallel to the string. The first main-
tains an oscillation having the same frequency as that of the fork, and the secomd
maintains an oscillation having half that frequency. The two oscillations occur, or
can be made to occur in perpendicular planes.

2 A parabolic arc is one of the Lissajons figures for the 1:2 composition ratio.
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published (Fig. 2) gives only a very feeble idea of the effect. It
can be seen from the shading that the paths of points on the string
are curved arcs, and that the curvatures are in opposite directions
in the two halves of the loop (which appear unequal in the photo-
graph as the string pointed towards the lens of the camera).

7. For the study of the small motion at the nodes of the oscillation
excited by transverse obligatory motion, it is necessary that the
tension of the string be adjusted so that maintenance is as vigorous
as possible. When this is done, it is noticed that points on the
string (except near the nodes) describe 8 curves. The curve at
the node, 7. e., the path compounded of the small motion at the
node, and the large motion of half the frequency perpendicular to it,
in neither an 8 curve not a straight line, but is a flat parabolic arc.
From this, the phase-difference is again seen to be w/2. The direc-
tion of the curvature of the arc, in other words, the sign of the
phase-difference, was found to agree with theory.

8. The above relates to the small motion at any node. One
particular case is of importance, as it admits of independent experi-
mental verification. For a string to be maintained in vigorous
vibration by the imposition of an obligatory motion at one point,
this point should itself lie at or near a node of the oscillation. It
follows that under such circumstances, the imposed obligatory
motion and the general oscillation of the string should differ in
phase, the difference being equal to m/2 when the obligatory motion
is imposed exactly at a node. This difference of phase between
the motion of the prong and the general oscillation of the string,
which may have been anticipated from the general principles of
resonance, may be verified experimentally in two ways: (1) By
stroboscopic observation and (2) by a tilting-mirror and Lissa-
jous’s figure arrangement. Before entering into experimental de-
tails regarding these, we may first discuss the mathematics of the
questions dealt with above.

MATHEMATICAL NOTE.

9. The result of the investigation by Donkin of the problem of
forced oscillations of stretched strings (Acoustics, 2d ed., pp. 121~
124) is erroneous. Starting with the assumption that the obligatory
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motion at the point x = b is p sin n¢ + ¢ cos nt and taking dissipa-
tion of energy into account, the final approximate result obtained
by him for the motion of points not near a node is

sin 6(p sin nt + g cos nt)/(sin? ¢ 4+ 6,2 cos? p)?.
0

From the original, it will be seen that sin  and (sin? ¢ + 3§ cos? ¢)
do not involve the time ¢; the phase of the general motion of the
string should therefore be identical with that of the obligatory
motion at the point ¥ = b. This result does not agree with that
given in paragraph 8 above. The exact step in the mathematical
work which introduces the error is putting tan & = ¢/p, where

tan ® = (goo sin ¢ + pdy cos ¢)/(pao sin ¢ — gdy cos ¢).

To show that this step is erroneous, we may, without loss of gen-
erality, put ¢ = 0. Then

tan & = 2 cot Bo cot o = L cot ¢
an = —CO = CO = —CO N
G COt ¢ =Bpcote =" cot ¢

Donkin’s approximation is therefore equivalent to putting the
damping factor ¢ = 0. This is inadmissible, for the coefficient
of the term, 1. e., cot ¢, is very large, and when ® = ¢r at the exact
stage of resonance, becomes infinite. At this stage tan ® = o0 and
® = w/2, whereas Donkin would have tan ® = o and therefore
$ = o.

10. To compare the facts stated in paragraphs 1 to 8 above
with the results of theory, we may make use of the notation and
results given on pages 197-199 of Lord Rayleigh’s Theory of Sound,
Vol. 1., second edition. The expression for the displacement at
every point of the string maintained in vibration there given is

R,
7% cos (pt + Z, — Z,),
R,
where
. 2x2
R? =sin? ax 4+ pre cos? aa

and

eB% — o B=
tan 2, = B L o Be cot ax,

+
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corresponding to an obligatory motion v cos pf at the point ¥ = b.
In this expression § is a small quantity, and therefore

tan 2, = fBx cot ax,
and
(2, — Z,) = tan™'(Bx cot ax) — tan"'(8b cot ad).

This value of (2, — Z,) is very small and may be put equal to
zero except in the two cases, where cot ax or cot ab is very large,
. e., ax or ab is nearly equal to any integral multiple of =. In
other words, the motion at any point is in the same phase as the
obligatory motion unless it happens that (1) the point of observa-
tion, or (2) the point at which the obligatory motion is imposed,
or (3) both points either coincide with, or are situated near nodes
of the forced oscillation. In short, it may be said that there is a
localized change of phase at the nodes, the difference between the
phase at the node and at some point a considerable distance away
from it being w/2.

11. The expression for the displacement can be written in the
form

.. kx .
R, (sm ax cos pT 4+ e cos ax sin pT ),

which is seen to be of the type given in paragraph 4 above.

12. We now return to the experimental details referred to at
the conclusion of paragraph 8 above.

Method (1).—A short length of the vibrating string is brightly
illuminated, and an image of it is focused in the field of view of
a stroboscopic disc. A slit held parallel to the string at some
distance from it is illuminated, and the light issuing thereform
suffers reflection at a small mirror attached to the prong of the
electrically-maintained tuning-fork which keeps the string in vibra-
tion, and is then focused by a second lens into a linear image.
The two images are adjusted so as to be in juxtaposition. On
starting the tuning-fork and the stroboscopic disc, it can be seen
that the two linear images are in different phases of motion, and
the gradual change of the difference with the alteration of the
tension of the string can be studied.
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Method (2).—The motion of the prong and that of any point on the
string are parallel to each other. To apply the method of Lis-
sajous’s figures for the observation of the phase-difference, a tilting-
mirror arrangement was adopted. The tuning-fork actuates a light
pivoted mirror by means of a thread which is kept taut by a spring
pressing against the mirror. The plane of oscillation of the tilting-
mirror is perpendicular to that of the vibration of the string, and a
point on the latter brightly illuminated throughout its path with
the aid of a cylindrical lens, and viewed by reflection, first at a
fixed mirror and then at the tilting-mirror, is seen to describe a
Lissajous’s figure (circle, ellipse, or straight-line). From this figure
the phase-difference can be inferred at once. It was found that
the phase-difference was not quite independent of the amplitude
of oscillation of the prongs: the explanation of this effect probably
being that a large amplitude of oscillation involves a departure
from constancy of the tension of the string, the average tension
being greater than the normal value.



Fig. 1.






