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On the total reflection of light 

PROFESSOR C V RAMAN, F.R.S. 

1. Introduction 

It has long been known that the explanation of the phenomenon of total 
reflection of light on the principles of the wave-theory involves the existence in the 
second medium of a disturbance which penetrates beyond the boundary to a 
depth depending on the angle of incidence and diminishing exponentially as the 
perpendicular distance of the point of observation from the boundary is 
increased. Stokes* showed how the expression for this disturbance which he 
designated as a superficial undulation may be derived directly from the Fresnel 
formulae for the intensities of the reflected and refracted beams of light, and 
applied the same method to the investigation of theappearance of the central spot 
in Newton's Rings formed beyond the critical angle of incidence. A discussion of 
the problem on the principles of the electromagnetic theory is given in   rude's^ 
Theory of Optics, where the question of the flow of energy in the second medium 
is also considered on the basis of Poynting's Theorem. That the superficial 
disturbance in the second medium must be a physical reality is indicated by the 
consideration that it is closely related to the changes of phase occurring in total 
reflection and that the same theory which predicts it also gives a quantitative 
explanation of the elliptic polarisation actually observed when light plane- 
polarised in any azimuth is totally reflected.' Further, the phenomena of 
Newton's Rings beyond the critical angle, already mentioned, and the fact that 
small particles placed in contact with the boundary in the second medium are 
observed to scatter light when viewed through a microscope are usually regarded 
as confirming the theory. Some doubt has however been thrown on the usual 
treatment in a recent theoretical paperS by Sir Arthur Schtlster who appears to 

*Math. Phys. Papers, 2, 57. 
' ~ n ~ l i s h  Translation, p. 299. 
:SO far as the writer is aware, no measurements of the absolute change ofphase of the light-vector for 
the two principal components taken separately have been made for the case of total reflection at any 
angle. For the case of total reflection at grazing incidence however, Bevan has made observations by 
the method of Lloyd's interference-fringes (Philos. Mag., Oct. 1907), which are in agreement with 
theory. 
  roc. R. Soc. London A107, p. 15. 
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hold that the assumption made in the theory of an infinitely extended'surface is 
essentially illegitimate. Moreover, the present writer has recently shown* that by 
using intense monochromatic light (the green or violet line of the mercury arc), 
and an ordinary spectroscope, the light emerging from the second face of a prism 
on which the light was incident at an angle greater than the critical angle could be 
readily observed. Photographs showing the disturbance emerging into the 
second medium were published, and they clearly indicated that the effect 

h 

observed was due to the limitation of the aperture of the pencil incident on the 
surface and was thus primarily a phenomenon of diffraction. Similar effects were 
also observed with a Lummer-Gehrcke plate when light was incident within the 
plate at an angle greater than the critical angle. These effects clearly indicate that 
diffraction does play a part in the phenomena of total reflection, and it becomes 
necessary to eonsider the matter afresh in the light of the new experimental 
evidence now available. It is proposed in this paper to consider, de novo, the 
phenomena of total reflection from the point of view of diffraction theory. 

2. Application of the Fresnel-Huyghens principle 

In the general explanation of total reflection first given on the principles of the 
wave-theory by Huyghens, the elementary parts of the boundary between the two 
media are regarded as the source of secondary wavelets emerging into both 
media. That there is-no refracted wave in the second medium though the 
boundary is fully illuminated is a consequence of the fact that no common 
envelope can be drawn to the wavelets emerging into it. There is little doubt that 
the more recondite phenomena accompanying total reflection may also be 
explained by following up Huyghens's original line of thought and applying the 
principle of interference. In particular, the disturbance existing in the second 
medium at points close to the boundary, and the diffraction effects arising from 
the finiteness of the illuminated area should both be capable of determination in 
this way. 

The first step in such a treatment is the marking out of the kresnel zones on the 
boundary between the two media. When this is of limited area and the point at 
which the effect is to be determined is far away from it, the Fresnel zones 
obviously become parallel rectilinear strips on the surface, and the determination 
of the integrated effect due to all the zones follows the ordinary methods of 
diffraction theory. We find in fact that the surface on which light is incident 
beyond the critical angle and is "totally" reflected sends out into the second 
medium streamers of light giving rise to diffraction-patterns in the usual way. 
These diffraction-patterns differ however from those of the ordinary kind in being 

*Philos. Mag., 6th Series, 50, 812. 
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strongly asymmetrical in character and also "truncated," that is to say, they 
consist only of certain outlying and relatively faint parts of the diffraction- 
patterns associated with the forms of aperture used, the principal and relatively 
intense parts being absent. For, none of the Fresnel zones included within the 
area correspond to a pole or region of stationary phase. Since the light thus 
streaming into the second medium represents energy, the reflection occurring at 
the boundary technically ceases to be total, though practically, the departure 
from totality is negligibly small, unless the aperture is very small or the incidence 
is only slightly greater than the critical angle. The streamers of light emerging into 
the second medium, have, as in all cases of diffraction, their origin at the margins 
of the diffracting area. The front and rear parts of the boundary are, at distant 
points, equally operative. The observations of Dr Chuckerbutti* and those of the 
present writer already quoted on the effects observed with a surface bounded by 
parallel edges entirely agree with these indications of theory. One special feature 
which comes into prominence in these observations and which deserves to be 
emphasised is that the intensity of the diffraction-pattern is zero at all distant 
points lying in the plane of the boundary when produced, that is to say, at all 
points from which when viewed, the angular aperture of the illuminated area is 
zero. As we may move away from this plane, the diffraction-pattern steadily gains 
in intensity. This may be regarded as an effect. due to the variation of the 
"obliquity-factor" of diffraction, and is, in fact, thus explained in the papers 
already quoted. It has the influence of altering enormously the relative intensities 
of the diffraction-bands and making them very different from those calculated in 
the usual way. 

3. Disturbance at points close to the surface 

The same method of treatment may be applied to the other case of interest, 
namely, the effect at a point in the second medium very close to the illuminated 
area. It is a fact of observation that for angles of incidence exceeding the critical 
angle, the illumination dies away very quickly as we move away from the surface 
and the chief interest is thus in determining the effect at points lying within a 
distance of a few wavelengths from it. At such small distances, the usual 
approximate methods of finding the effect due to the Fresnel zone and of 
integrating the same over the whole of the surface of resolution are not quite 
rigorous. Nevertheless, as will be shown below, they may be applied with success 
to the elucidation of the particular case under consideration. In fact, even by 
merely considering the geometrical form of the Fresnel zones, a considerable 
insight into the problem may be obtained. 

*Proc. R. Soc. London A99,503, 1921. 
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Figure 1. Fresnel zones on surface. Incidence = 45" =critical angle. 
Point of observation is on the surface. 

I 
The form of the Fresnel zones over the surface for any angle of incidence and for 

any point of observation may be readily mapped out in the following way. From 
the point of observation, a perpendicular may be dropped on the surface, and 
round its foot as centre, a set of circles spaced at half-period intervals from the 
point of observation are drawn. Crossing these are drawn a set of equidistant 
straight lines perpendicular to the plane of incidence and spaced at such intervals 
that the distance from one straight line to the next corresponds to a change of 
phase of the incident waves of half a period. The circles may be numbered, 
commencing from the centre outwards, 0,1,2,3,4,5, etc, The straight line passing 
through the centre may be numbered 0, and those to the right of it, 1,2,3,4, etc., 
and those to the left of it - 1, - 2, - 3, - 4, etc. The points of intersections of the 
circles and straight lines are then marked with the sum of the index-numbers 
corresponding to the particular circle and straight line cutting at each such point. 
These index-numbers represent the total difference of path between the secondary 
waves reaching the point of observation from the nearest element of the surface 
and from any other. Smooth curves may now be drawn free-hand or with the aid 
of a flexible steel strip through all the points havirig identical index-numbers. 
Very instructive diagrams may be obtained in this way for any specified angle of 
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Figure 2. Fresnel zones on surface. Incidence = 45" = critical angle. 
Point of observation is L above the surface. 

incidence and for any assigned value of the perpendicular distance from the 
boundary, and they give accurately the form of the Fresnel zones. 

The geometrical f ~ r m  of the curves drawn in this way shows the following 
general features. The zones for all angles of incidence in excess of the critical angle 
are approximately hyperbolic in form. The fact that they are not closed curves 
indicates that for no point of observation does the surface present any pole or 
region of stationary phase. The curvature of the lines is most marked for points of 
observation near the surface; as the distance is increased, the lines become more 
and more nearly straight. The spacing of the zones draws a striking diminution as 
we pass in the plane of incidence from negative to positive values of x, that is, from 
the left to the right of the foot of the perpendicular drawn from the point of 
observation. This change in the spacing is the more sudden, the smaller is the 
distance of the point of observation measured perpendicularly from the 
boundary. It is largest at the critical angle and diminishes with increasing angle of 
incidence. Figures 1, 2, 3 and 4 represent the form of the Fresnel zones for 
particular cases and illustrate the foregoing remarks. Figures 1 and 2 represent 
the case of incidence at the critical angle 45" and figures 3 and 4 for incidence at 
60". The refractive index ,u is taken as 1.414. In figure 1 and figure 3 the point of 
observation is on the surface. In figure 2 it is 1 above from the surface and in figure 
4,4A above the surface. The centre of the smallest unit index circle drawn in each 
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Figure 3. Fresnel zones on surface. Incidence = 60". Point of observation is on the surface. 

case is the foot of the perpendicular from the point of observation. 
When we proceed to sum up the effects of the different Fresnel zones, taking 

into account the varying distances from the point of observation and the varying 
obliquities, we should obtain an idea of the way in which the residual effect 
observed in the second medium varies with the point of observation. Viewed jn 
this way, it is seen that the penetration of the disturbance into the second medium 
in "total reflection" may always be regarded as a diffraction-effect. It is important 
however to determine what part of the effect arises from the outermost parts of the 
surface and what part from the area closest to the point of observation. 

If the Fresnel zones had been uniformly spaced to the right and left of the foot 
of the perpendicular from the point of observation, they would have annulled 
each other's effects and given zero as the resultant distutbance. Actually however, 
as we have seen, there is a change in the spacing as we pass from left to right which 
is the more sudden, the closer we approach the surface between the two media. 
The summation over the Fresnel zones would therefore give a resultant effect 
which is the larger, the more nearly the point of observation approaches the 
surface. This ,effect arises from the part of the surface nearest the point of 
observation, and may be identified with the "superficial undulation" of Stokes 
and other writers. Since the change in the spacing of the Fresnel. zones is most 
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Figure 4. Fresnel zones on surface. Ixicidence at 60'. Point of observation 41 above the surface. 

marked when the incidence is just at the critical angle and diminishes rapidly as 
the incidence is increased, we should expect the resultant effect to diminish in the 
same way. This is in agreement with the "superficial undulation" formula. We 
have already seen that the obliquity-factor of diffraction becomes vanishingly 
small when the angular aperture of the surface as viewed from the point of 
observation approaches zero. When the point of observation is suficiently close 
to the surface, the obliquity becomes practically 90" for all the elements of the 
surface except those nearest to it. It follows that when the integration is carried 
out over all the Fresnel zones, the marginal parts of the surface contribute 
nothing and may be neglected. 

Analytical treatment of the problem 

The preceding discussion indicates that the superficial undulation in the second 
medium is a diffraction-effect which arises, not from the margins of the 
illuminated area, but from the part of the area nearest the point of observation. 
This may be confirmed by mathematical analysis which indeed shows that the 
expected effect diminishes exponentially with the distance according to the law 
already derived from other considerations. 
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The diffraction integral expressing the effect at any point may easily be written 
down if we know the law of the secondary wave. The elementary disturbances 
arising from an area held obliquely to the wave-front have been expressed 
mathematically in Kirchoffs well-known formulation of Huyghens's principle. 
As has been remarked by various writers, however, Kirchoffs expression is not a 
unique solution of the problem, as an infinite number of formulae for the law of 
the secondary wave may be written down, all of which express correctly the 
disturbance in free space arising from specified light-sources. In our case, we are, 
moreover, dealing not with free space, but with the effects observed in the vicinity 
of a surface of separation between two media. The law of the secondary wave for 
this case has yet to be determined. For our present purpose, it is sufficient to 
proceed in the usual simple way and assume that the amplitude of the secondary 
wave is proportional to the area of the element from which it is sent out and 
inversely as the product of the wavelength and the distance of the element from 
the point of observation, and ignore all consideration of the obliquity factor. Let 
the surface be taken as coinciding with the xy plane, and the plane of incidence be 
taken as the xz plane. Further, let the point of observation be assumed to be on 
the Z-axis at a distance Z, from the origin, the latter being thus on the surface at 
the foot of the perpendicular drawn from the point of observation. Let r be the 
distance of an elementary area on the surface from the.origin. 

An element of area on the surface is rdrd8 and the resultant effect is 

const. Sow So2' A ,/, cos- 2~ { V t  - (zZ + r2)'/' - rp sin 4 cos 8 + &)rdrdO, 
l(zZ + r ) 3, 

where p is the refractive index of the first medium, the second medium being 
assumed to be free space, 4 is the angle of incidence on the surface, and 8 is the 
angle which the radius vector r drawn on the surface makes with the plane of 
incidence. E is the phase difference between the primary disturbance and the 
secondary waves to which it gives rise. The integral is assumed to be taken over a 
sufficiently extended area. It is obvious from physical considerations that the 
expression must give results which differ entirely in character according as 

psinq5 5 1, 

that is, according as the incidence is less or greater than the critical angle. This 
agrees, as we shall see presently, with the actual results of integration. 

Integrating with respect to 8 and writing 

for shortness, the expression reduces to the form 
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When z is put equal to zero, that is, on the surface itself, the expression reduces to 

Const. [cos x J: cos 2nr/A.Jd2m/I.p sin 4)dr I 

+ sin 1; sin 2nr/A.Jo(2ra/A-,u sin 4)dr . I 
The integrals appearing within the square brackets are well-known standard 

forms, the values of which depend on whether ,u sin 4 is greater or less than unity. 
If ,u sin 4 < 1 the first integral vanishes and the second becomes equal to 

whereas if ,u sin 4 > 1, the second integral vanishes and the first becomes equal to 

(,u2 sin2 4 - 1)- 'I2. 

The case Z = 0 corresponds to the surface of separation and in order that our 
result might reduce to the primary disturbance on the surface, the constants 
expressing the law of secondary wave must be suitably chosen. It is necessary to 
assume different values for them in the two cases: 

If ,u sin 4 < 1, Const. = 

and s = 7112. 

If ,u sin 4 > 1, Const. = ,/- 
and s = 0. 

We shall now substitute these values in the general expression, considering the 
two cases separately. 

Case I. Incidence less than the critical angle and ,u sin I$ < 1. 

The expression for the light-disturbance given above involves the evaluation of 
two integrals, namely 

Som sin 2n/I.(r2 + Z2)112- Jo(2n/I.r,u sin 4)(r2 + 2')- lDrdr 

and Som cos 2n/I.(r2 + Z2)11'. Jo(2n/A-r,u sin 4))(r2 + 2')- 'I2rdr. 

Using the well-known formulae 

J- l12@) = ~ C O S  nx - x, and JlI2(x) = g s i n  r 
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the two integrals under consideration are found to be special cases of a very 
general type of integral involving products of Bessel functions which has been 
discussed by Sonine.* We shall however adopt a different method of evaluation. 
~ a m b +  has proved the following formula: 

Som - exp[u(t2 - q2)112].~o(j0.(~2 - q2)-112ed~ = 
exp [ - iq(a2 + f12)'12] 

(a2 + j2)'l2 

In this relation, write 5 = r and q2 = - Z2. Also put 

j = 2NA.p sin 4 and a2 7 - (2~/rZ)~. 

The equation then stands thus: 

1: exp [ - 2ni/A(r2 + ~ ~ ) ' ~ ~ ] . ~ ~ ( 2 n / A . r . ~  sin #.(r2 + ~ ~ ) - " ~ r d y  

Separating the real and imaginary parts we have 

Sow sin 2njA.(r2 + Z2)'I2. Jo(2n/A+r.p sin 4).(r + Z2) - lI2rdr 

= A/2n.(1 - p2 sin2 4)-'/2. cos {2n/A.Z.(l - p2 sin2 +)'I2) 
and 

1: cos 2n/A.(r2 + Z2)'/'. Jo(2n/A.r.p sin 4).(r2 + 2')- 'I2rdr 

= - A/2n-(1 - p2 sin2 4)-'I2. sin {2n/A*Z.(1 - p2 sin2 4)'12). 

These results are confirmed by comparison with the general formulae given by 
Sonine and Nielsen. Substituting the values of the integrals in the expression for 
the disturbance in the second medium, we find that the latter reduces to 

A cos 21t/A.(Vt - xp sin 4 - z J ~ )  

which is of the same form as the ordinary expression for the refracted wave. 

Case 11. Incidence at more than the critical angle, and p sin 4 > 1. 

With the same substitutions as before, Lamb's formula now reads thus: 

jow exp [ - 2ni/A.(rz + Z2)ln]. ~~@n/A. r .p  sin 4)(r2 + Z2)- '12rdr 

= A/2x.(p2 sin2 4 - 1)- 'I2 exp [ - Z.2n/i:(p2 sin2 4 - 1)'12]. 

*Math. Annalen, Band 16, p. 1 .  See also Nielsen, Cylinderfunction, 1904. 
'~h i lo s .  Trans. R. Soc. London A203, 1904, p. 5. 



Separating the real and imaginary parts, we have 

loa sin*?@ + $)'I2 * Jo(zn/A.r.p sin 4)(r2 + z2)- lflrdr = 0 

and 

Substituting these values in the expression for the disturbance in the second 
medium when total reflection is occurring, we find that the latter reduces to 

2n Ascos --.(Vt - xp sin 4) exp - 2 -(p2 sin2 4 - 1)'12 . 1 [ ' I "  I 
Our investigation thus leads to precisely the same law of exponential decay as 

that derived from the Fresnel formulae for the superficial disturbance in the 
second medium, and the view that the latter is a diffraction-effect arising from the 
immediately contiguous part of the surface is thus .fully substantiated. 

. 

In evaluating the diffraction integral, the area of the surface was taken as 
infinite, and we found that the case p sin 4 = 1 marks a point of discontinuity at 
which the phase of the secondary waves alters suddenly by quarter of a period, 
and their amplitude becomes very large. This circumstance and the form of the 
Fresnel zones drawn in figures 1 and 2 show that when the incidence is exactly at 
the critical angle, the finite extent of the surface cannot be ignored and must be 
taken into account for a more exact djscussion. When however, the incidence is 
increased beyond the critical angle, the marginal portions of the area cease to be 
of importance in determining the observed effect at points not far from the 
surface. The further discussion of the phenomena at or very near the critical 
incidence and close to the surface on the basis of the integrals already given is a 
problem worthy of investigation which must however be deferred for the present. 
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