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Some remarkable cases of resonance*

C V RAMAN

The general principal of resonance is that a periodic force acting on an oscillatory
system may set up and maintain a large amplitude of vibration when the periods
of the force and of the system are approximately equal, even though in other
cases the amplitude might be so small as to be negligible. In the present paper I
propose to discuss some remarkable cases which form apparent exceptions to this
law of equality of periods, that is, in which we have marked resonance when the
periods of the impressed force and of the system do not stand to each other in a
relation of approximate equality.

The first of these is the well known case of double frequency, the theory of
which was first discussed by Lord Rayleigh.” In a note published in the Phys. Rev.
for March, 1911, I promised a fuller discussion of the maodification in this theory
necessary to fit the results with those actually observed in experiment. I now
proceed to fulfil this promise and the delay that has occurred in doing so is I feel a
matter for regret. Lord Rayleigh starts with the following as his equatlon of
motion: :

U +kU + (n* — 20sin 2pt)U =0, 1)

~and assuming that U, the displacement at any instant during steady motion, can
be represented by an expression of the form -

A,y sinpt + B, cos pt + A, sin 3pt + B, cos 3pt + A sin Spt, 2)

proceeds to find the conditions that must be satisfied for the assumed steady
motion to be possible. This he does by substituting (2) for U in the left-hand side
of equation (1) and equating to zero the coefficients of sin pt, cos pt, etc. The
- conditions for the possibility of steady motion thus obtained are

B, _J@—kp) _ o
A1 \/ @t kp) tane, 3)
(n? — p?? = a® — k*p?. : (4)

* Prehmmary notes on this subject appeared in Nature (London), December 9, 1909 and February 10,
1910, and in the Phys. Rev., March 1911,
Y Philos. Mag., April, 1883 and August, 1887, and Theory of Sound, Art. 68(b).
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By a trigonometrical transformation equation (3) can be written in the form
kp =acos 2e. - (5)

- It appears from these equations that the phase of the oscillation maintained, i.e.
e is independent of the amplitude, and that the latter quantity is indeterminate.

I attempted to verify the phase-relation given by equations (4) and (5)
experimentally in the following way: The oscillating system used was a stretched
string-and this was maintained in motion by periodically varying its tension in the
manner of Melde’s experiment. Since the periodic change of double frequency in
the tension of the string is imposed by the tuning-fork, the motion of the prong
-corresponds to the term — 24« sin 2pt in equation (1) and the transverse vibration
of the string to the expression (42 + B2)!/2 sin (pt + ) if the small terms in 45, B,
_etc. are neglected. The experimental problem therefore reduces itself to the
determination of the phase-relation between the motion of the string and the
vibration of the prong of the exciting tuning-fork. This can be attacked by two
distinct methods. "

(i) Mechanical composition of the two motions: This is automatically effected
and needs no special experimental device. For, the motion of the prong is
longitudinal to the string and any point on the string near the end attached to the
prong or near any other intermediate node of the osdillation has two rectangular
- motions: the first longitudinal to the string and having the same frequency as the
vibration of the fork; and the second which is the general transverse oscillation of
the string. The resulting motion is in a Lissajous figure and this is readily
observed by attaching a fragment of a silvered bead to a point on the string near
the fork.

(i) Optical composition of the two motions. Furnishes a second method and
this is undoubtedly the more elegant of the two. It can be effected in the following
way: a small mirror is attached normally to the extremity of the prong of the fork.
The plane of the oscillation of this mirror is perpendicular to that of the vibration
of the string, and a point on the latter is brightly illuminated by a transverse sheet
of light from alantern or from a cylindrical lens. When the string is in oscillation
the illuminated point appears drawn out into a straight line, and this is viewed by
reflection first at a fixed mirror and then at the mirror attached to the vibrating
prong. The illuminated peint is then seen to describe a Lissajous figure which is
compounded of the motions of the string and the tuning-fork. v

Observing by either of the methods described above, the relation between the
phases of the transverse oscillation of the string and of the motion of the prong of
the tuning-fork can be closely studied, and some remarkable phenomena are
noticed in this way. The principal point observed is that the phase relation is not
independent of the amplitude maintained. This is best shown by using a bowed
fork and starting with a large amplitude of motion and then allowing the motion
to die away. The initial curve of motion and the changes in it as the motion dies
away both depend on the tension of the string. When this is in excess of that
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required for the most vigorous maintenance, the curve is a parabolic arc convex
to the fork and remains as such when the motion dies away. With a smaller
tension adjusted so that the free period of the string is exactly double that of the
fork, the initial curve with a large amplitude of motion is still approximately a
parabolic arc convex to the fork. The damping of the motion is now more rapid
and the curve reduces to an 8-shaped figure when the amplitude is very small. For
the most vigorous maintenance a still smaller tension is necessary and the initial
~ curve with a large motion is still convex to the fork, but it will now be noticed that
when the amplitude falls to a very small quantity the curve passes through the 8-
figure stage and tends to become concave to the fork. The most remarkable
changes are observed when the tension is smaller still. The damping here is very
large and a steady motion is only possible when the amplitude exceeds a certain
minimum value. At this stage the string very rapidly comes to rest and in the final
stage the curve of motion becomes a parabolic arc concave to the fork with a very
small amplitude. For a satisfactory explanation of these phenomena it is
necessary to start with a modified equation of motion which takes into account
the variations of tension which exist in firee oscillations of sensible amplitude and
are proportional to the square of the motion. The equation of motion thus
completed is ' S

U + kU + (n? — 2asin 2pt + U2 U = 0. ®

Substituting expression (2) for U in the left-hand side of the above given equation
and putting the coefficients of sin pt, cos pt, etc. equal to zero, the conditions for
the possibility of steady motion reduce to the form

kp = acos 2e 0
and : C
(W —p* + F)? =a? —k?p?, o ®
where ' : :
3
F= Tﬁ(Af +B?)

Equation (8) determines the amplitude of the motion and (7) its phase. It is
evident at once that with given values for « and kp the amplitude of the motion is
greatest when 7 is smallest and that there can be no maintenance if « < kp. We
therefore get the apparently paradoxical conclusion (which is amply verified by
experiment) that the maintenance is not the most vigorous when the free period
(for small amplitudes) of the string is double that of the fork. Another interesting
inference which is confirmed by experiment is that whén n < p and (n? — p?)?
> (a? — k?p?) maintenance is impossible unless F, i.e. also the amplitude, has a
definite minimum value.

Equation (7) shows that as a is increased e, the phase of the oscillation, alters
continuously. The influence of F, i.e. of the amplitude of the motion on e its phase
can readily be traced from equation (8). When n > p, for a larger value of F we
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must have a large value of « and cos 2e tends more and more to assume a zero
value. ertmg equatlon (7) in the form

o—kp

tane-——i—————
n—p*+F

O
it is evident that when n>p and F is large, e is positive and approaches to the
value n/4. This agrees with the experimental result. When n < p, e may be positive
- ornegative according as F is greater or less than (p? — n?) and the alteration of the
phase of the motion with the amplitude is most conspicuous, and this is in
agreement with observation. In the extreme lower limit e tends to the value — /4,
and the curve of motion is a parabolic arc concave to the'fork. In other words
when the prong is at its extreme outward string, the string is also at its extreme
outward swing, a seemingly paradoxical result not in accordance with the
ordinarily received ideas of the expenment Equation (1) may be written in the
form -

U+kU+n2U 2aUs1n2pt (10)

The right-hand side of this equation may be regarded as the impressed part of the
restoring force acting on the system, and this is a very useful way of regarding the
matter. Putting U = Psin(pt +¢) to a first approxjmation, we can find the
conditions that must exist for steady motion directly by equating the work done
by the force represented by the right-hand side term of equation (10) to the energy
dissipated in an equal time by the friction term on the left. The relation thus
obtained is identical with equation (7) obtained from the complete analysis. It is
observed that the right- hand side of equation (10) is

20P sin 2pt sin (pt + €)

- and this may be written as

oP(cos pt — e — cos 3pt + e).

The second term within the brackets is ineffective so far as the maintenance of the
motion Psin(pt + e} is concerned. We may therefore leave it out and write
equation (10) in the form

U + kU + n2U = aP cos (pt — e). , 1n

Weritten in this way it is evident that a large motion must ensue if p = n and that
we have here merely an example of the general principle of resonance.

Part 11

I now proceed to consider some other exceedingly interesting cases of resonance
under the action of forces similar in character to that in the case of double
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' frequency considered above, but having other frequency relations to the system
- influenced. My experiments show that resonance may occur inthe followmg cases
- of the kind: - .

(1) When the period of the force is 4 that of the system. ,
(2) When the period of the force is 4 times that of the system.
(3) When the period of the force is $ tinies that of the system.
(4) When the period of the force is % times that of the system.
(5) When the period of the force is 3 times that of the system.
(6) When the period of the force is g times that of the system.
And so on. '

The most remarkable instances of these cases of resonance are furnished by a
stretched string under the action of a penodlcally varying tension. To observe
them, all that is required is that the tension of the string should be gradually
increased tillits free period in the fundamental mode stands in the desired relation
- to the period of the tuning-fork which imposes the variable tension. It will then be
found that a vigorous oscillation is maintained. Figures 1, 2, 3, 4 and 5 are
photographs of stretched strings maintained in the first five types of motion
respectively under the action of an electncally mamtaxned tumng-fork varying
the tension periodically.

The actual frequency and the phase of the maintained motion in each of these
cases can be determined by observation of the corresponding Lissajous figures,
using the mechanical or optical method of composition described abové for the
first of these cases. The detailed results I must reserve for a future paper. One good
way of studying these types of motion is to illuminate one point on the vibrating
string by a transverse sheet of light from a lantern or from a cylindrical lens and to
observe the line of light so produced in a revolving mirror. But the best method of
all for recording the motion photographically is that by which I obtained
figures 6, 7, 8, 8(a), 9 and 10 published herewith and which I now proceed to
describe. :

Figures 6, 7, 8, 9 and 10 refer respectively to the first five types of motion as
shown in figures 1, 2, 3, 4 and 5. It will be observed that each of them shows two
curves. The white curve in the black ground is a record of the motion of the
tuning-fork, and the other curve which is black on a white ground is a record of
the motion of a point on the string maintained in vibration. These records were
obtained on a moving photographic plate in the following manner. One source of
light was a horizontal slit, and the other was a vertical slit placed behind the
oscillating string. Both were illuminated by sunlight and had colhmatmg lensesin
front of them. The light from the formet fell upon a small mirror attached to the
prong of the vibrating fork and aftdr reflection. fell upon the lens (having an
aperture of 4cm diameter) of a roughly constructed camera. The light from the
vertical slit behind the vibrating string was also reflected into the camera by a
fixed mirror. In the focal plane of the camera was placed a brass plate with a
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_ vertical slit cut in it. The images of the horizontal and vertical slits fell, one
immediately above the other, on the slit in the plate. Only a very small length of
the former, ie. practically only a point of light was allowed to fall upon the
photographic plate. The dark slide which held this was moved uniformly by hand .
in horizontal grooves behind the slit in the.focal plane of the camera, while the
fork and the string were in oscillation.

Figures 1 and 6 represent the well-known case in which. the string makes one
oscillation for every two oscillations of the fork. This is evident in the photograph.

Figures 2 and 7 represent the next type in which the variable tension maintains
an oscillation of the same frequency as its own. It will be noticed that the
‘curvature of one of the extreme positions of the string is somewhat greater than
- that of the other and that the mid-point of the oscillation is somewhat displaced
to one side of the middle-point of the vertical slit at which the string was set when
at rest. The inference from this fact of observation is that the transverse motion of
each point on the string is represented by an expression of the form

Psin(2pt +¢)+ 0, ‘ (12)

where Q is a constant. A motion of this type is only possible under a variable
spring. For, the restoring forces acting on an element of the string at the two
unequally curved extremes of its swing cannot themsélves be equal and ‘opposite
(the condition necessary for a simple harmonic oscillation) unless the tensions of
the string at the two extreme positions are unequal. In fact the second constant
term Q in the motion is introduced under the action of the variable spring, and its
importance will become evident as we proceed.

Figures 3, 8 and 8(a) represent the third type of motion in which the string
makes three swings for every two swings of the fork. But it is evident frond figures 8
and 8(a) that the successive swings on opposite sides are not all equal in amplitude
and the influence of this is also perceptible in figure 3, having given rise to the
appearance of two extra strings, which represent really the turning points of the
motion. The vibration curve shown in figures 8 and 8(a) can be represented by an
expression of the form

Psin(pt +¢)+ Qsin(pt + &), 1)

The alternate increase and decrease of the amplitude of the motion of the string

is evidently due to the action of the varying tension and the term Q sin(pt + ¢') in

- the motion which superposed on the first reproduces this waning and waxing
effect, plays a very important part in the maintenance of the motion, as we shall
see later on. Figures 4 and 9 represent the fourth type of motion in which the
string makes four swings for every two swings of the fork. As before the waning
and waxing of the motion under the action of the variable spring is evident in the
photographs and the observed motion of the points on the string is of the type

Psin(4pt +e)+Q sin\(2pt + ). 14)
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Here as befote we shall see that the second term which is introduced under the
action of the variable spring plays a very important part in the maintenance of the
motion,

Figures 5 and 10 represent the fifth type of motion in which the string makes
five swings for every two swings of the fork. The periodic increase and decrease in
the amplitude of the motion is also evident. The vibration-curve may be
represented by

Psin(5pt + e) + Qsin (3pt + ¢'), ‘ 15)

the second term being due to the action of the variable tension.
In the general case therefore we may assume the maintained motion to be of the
form

" Psin(ypt + ¢) + Qsin (y — 2pt + ¢). (16)
The equation of motion under a variable spring may be written as

U+kU+ n’U =2al sin 2pt

(See equation (10) above.)

If now we substitute (16) for U, the right-hand side,of equation (10) gives us
what we may regard as the impressed part of the restoring force at any instant. It
may be written as

aP[cos(y — 2pt + é) ~cos (y+2pt+e)]
" +aQ[cos(y —4pt +¢€') — cos (ypt + €')]. @17

The work done by this force in a period of time ¢ embracing any number of
complete cycles of the variable spring is found on integration to be equal to -
PQoptcos(n + e—e')if y> 2 or to 2PQupt sin e sin (¢’ — ) if y = 2. The surplus of
energy thus made available may be sufficient to counteract the loss by dissipation
in the same time, i.e. to maintain the motion.

It is not difficult to make out from equations (10) and (17) that these apparently
anomalous cases in reality form illustrations of the general principle of equality of
periods required for resonance. For, we get a large motion when n = yp in the
general case, and the reason for this is evident at once if we neglect the first three
terms in (17) as ineffective and write equation (10) as under

U+kU+n2U-——-<chos('ypt+e) (18),
We started on the assumptlon that ‘
U = Psin(ypt + ¢) + Qsin(y — 2pt + ¢').

Equation (18) shows that if we had neglected the second term (coefficient Q) we
should have been unable to account for the resonance effect observed. Probably
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for a more complete discussifon it would be necéssary to take three terms thus:

U Psin (ypt + e) + Qsin (y 2pt +¢é')
+ Rsin(y +2pt + e,).

Experiment shows however that the third term {with coefﬁcwnt R) is relatively
mmportant and the treatment given above may therefore be taken as a fairly
close first approxxmatlon It will be noticed from figures 7, 8, 8(a), 9 and 10 that
the epochs of maximum amphtude in each case pretty closely correspond to those
of minimum tension and vice versa. This is exactly what is to be expected on
general considerations, '
'‘Some very curious phénomena are observed when the vibration of the string in
each of the cases described above is observed through a stroboscopic disk. These
and other matters I hope to detail in a future paper.

Part IIT

In part II, the equations of motion discussed are throughout those of a body
having one degree of freedom. This was sufficient for the purpose of elucidating
the leading features of each type of motion considered. But it must not be
overlooked that the systems dealt with, i.e. stretched strings, have more than one
normal mode of motion and this fact leads to certain exceedingly interesting
complications. The phenomena observed under this heading fall into two distinct
classes which I shall discuss separately.

The first class of phenomena I have designated “transitional types of
oscillation.” Their existence may be explained somewhat as follows: Take the case
of a system maintained in one of its natural modes of vibration by periodic forces
of double frequency. It is evident that the actual period of vibration would be
exactly double the period of the acting force but the free period of vibration in the
particular mode may differ slightly from the forced period of vibration. The range
and extent of the permissible difference between the two is a function of the
magnitude of the periodic force acting on the system. Assume now that the system
has another natural mode of vibration whose frequency for free oscillations is not
very far removed from that of the first and that the magnitude and frequency of
the periodic force acting on the system is such that the ranges of the two natural
modes of vibration for maintenance by forces of double frequency partly overlap
and the force actually at work falls within the overlapping part. It is evident that
in such a case the system would vibrate with a frequency equal to exactly half that
of the acting force, but the mode of vibration would not be either of the natural
modes but something intermediate between the two. These “transitional” types or
modes of motion possess special experimental interest in the case of stretched
strings as they can be readily observed and studied. It is not at all difficult for
instance to maintain a “transition” mode of oscillation intermediate between the
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ordinary modes with three and four ventral segments respectively, by suitably
adjusting the tension and varying it periodically by the aid of a tuning-fork. The
frequency of the motion would everywhere be exactly half that of the fork and the
motion at each point strictly “simple harmonic,” but there would be no “nodes”
or points of rest visible. Such a type of motion presents a very remarkable
- appearance when examined under intermittent illumination of periodicity -
slightly different from that of the tuning-fork. The two intersecting positions of
the string seen undergo a periodic cycle of changes enclosmg alternately three and
four ventral segments.

The phenomena observed in the experiment described above can be explained
on the supposition that the displacement at each point can be represented by the
equation

y= asingzti)—csin (pt+e) + bsinﬂ;zsin (pt+€). (19)
Equation (19) suggests that the phase of the motion is not the same at all points of
the string. In fact working by the optical and-mechanical methods described in
the first part of this paper I observed very remarkable variations of phase over the
length of the string, It appeared that in some cases e and’e’ differed by as much as
/2. ’

Of course we should get “transitional types” of oscillation with the vibrations
of higher frequencies maintained by periodic forces which were discussed in
part II of this paper, but they are not so marked as in the case of double frequency
since the frequency-ranges become smaller as we go up the series.

The second class of phenomena observed cannot be fully discussed within the
limits of the present paper and I shall have to content myself with briefly
indicating their nature. In part II of this paper I showed that a variable tension or
“spring” may under suitable circumstances maintain an oscillation of a frequency
standing in any one of a series of ratios to its own frequency. If the system which is
subject to the variable “spring” or tension has itself a series of natural modes or
frequencies, it would evidently be possible for two or more modes of vibrations to
be set up simultaneously with the respective frequencies and we would find a
“simple harmonic” variation of tension maintaining a compound vibration. The
special interest of this in the case of stretched strings consists of the fact that the
natural frequencies of the system themselves form a harmonic series, and we may
also have oscillations set up independently by one and the same force in
rectangular planes and the compound character of the motion would be rendered
visible by the curved paths of points on the string. These curves would in fact be
. identical with-or analogous to the respective Lissajous figures and I hope with a
future paper to publish several photographs which I have taken of compound
vibrations maintained in this manner by a single tuning-fork. Two of these will be
found published with my note in Nature (London), February 10, 1910.
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