
SPECIAL SECTION: THE LEGACY OF ALBERT EINSTEIN 
 

CURRENT SCIENCE, VOL. 89, NO. 12, 25 DECEMBER 2005 2093 

e-mail: nkumar@rri.res.in 

Bose–Einstein condensation: Where many  
become one and so there is plenty of room at 
the bottom 
 
N. Kumar 
Raman Research Institute, Bangalore 560 080, India 
 

Classically identical particles become quantum mecha-
nically indistinguishable. Satyendra Nath Bose taught 
us, in 1924, how to correctly count the distinct micro-
states for the indistinguishables, and for a gas of light 
quanta (later photons), whose number is not conserved, 
e.g., can vary with temperature, he gave a proper 
derivation of Planck’s law of black body radiation. 
Einstein, in 1925, generalized the Bose statistics to a 
quantum gas of material particles whose number is 
now fixed, or conserved, e.g., 4He, and thus opened a 
new direction in condensed matter physics: He showed 
that for low enough temperatures (~1 Kelvin and below), 
a macroscopic number of the particles must accumu-
late in the lowest one-particle state. This degenerate gas 
with an extensively occupied single one-particle state 
is the Bose–Einstein condensate, now called BEC. 
(Fragmented BEC involving a multiplicity of internal 
states of non-scalar Bose atoms is, however, also real-
izable now). Initially thought to be a pathology of an 
ideal non-interacting Bose system, the BEC turned out 
to be robust against interactions. Thus, the Bose–Ein-
stein condensation is a quantum phase transition, but 
one with a difference – it is a purely quantum statistical 

effect, and requires no inter-particle interaction for its 
occurrence. Indeed, it happens in spite of it. The con-
densate fraction, however, diminishes with increasing 
interaction strength – to less than ten per cent for 4He. 
The BEC turned out to underlie superfluidity, namely 
that the superfluid may flow through finest atomic cap-
illaries without any viscosity. Interaction, however, seems 
essential to superfluidity. But, the precise connection be-
tween BEC and the superfluidity remains elusive. Thus, 
for example, we may have superfluidity in two-dimensions 
where there is no condensate! Seventy years later now, 
the BEC has come alive with the breakthrough in 1995 
when near-ideal BEC was created in dilute alkali gases 
of 87Rb and 23Na atoms cooled in the gaseous state down 
to nanokelvins and localized in a trap. There are rea-
sons why we ought to be mindful of the BEC – if only 
because here even the interaction between the particles 
is tunable at will – the sign as well as the strength of it. 
BEC has now become an ideal laboratory for basic and 
condensed matter experiments, and for high resolu-
tion applications. Properly viewed, it is indeed a new 
state of matter. This article is about the saga of BEC 
that really began with Einstein in 1925. 
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mulation, quantum gas statistics. 
 
LET me begin with what may seem like an apology, 
which it is certainly not, and a touch of history of Bose–
Einstein condensation, that it is. The point is that if we go 
strictly by the calendar, then the Bose–Einstein condensa-
tion does not belong in the miracle year of 1905, which is 
being observed as the World Year of Physics by many 
learned bodies around the world. In fact, Bose–Einstein 
condensation came in twenty years too late, in the year 
1925 when Einstein, already famous at 45, derived the 
condensate for a degenerate quantum gas of permanent 
particles, i.e., of fixed number, such as helium (4He), as a 
necessary consequence following from the novel quantum 
statistics1 proposed a year earlier in 1924 by the young 
Indian lecturer, Satyendra Nath Bose at 25, then at the 
Dacca University, for the gas of light quanta (later pho-
tons). Bose had shown how to correctly count the distinct 

distributions (microstates or complexions) of indistin-
guishable objects (particles) among the distinguishable 
boxes (phase-space cells) with no restrictions on the occu-
pation numbers. Actually, Bose had proposed this new 
quantum statistics in an attempt to give a logical deriva-
tion of the celebrated Planck law of black body radiation 
(Figure 1), without the ad-hoc assumptions that Planck 
had to make. His paper was, however, turned down by the 
editors of the Philosophical Magazine. Convinced that he 
was right, Bose sent his manuscript to Einstein. It was 
Einstein who first saw the important conceptual ad-
vance – the indistinguishability of identical particles – in 
Bose’s work. At his (Bose’s) request, contained in the letter 
accompanying the manuscript, Einstein personally trans-
lated it in German and got it published speedily in 
Zeitschrift fuer Physik, the prestigious physics journal of 
the time. (It is of certain historical note that in his letter 
young Bose had addressed Einstein as ‘Respected master’ 
in the typically Indian tradition of Ekalavya. They met 
only later in 1925 in Berlin. Einstein also promoted 
Bose’s work in the Prussian Academy of Sciences). Ein-
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stein at once saw the deep connection between Bose’s 
view of the Planck thermal radiation as a gas of massless 
light quanta and an ideal quantum gas of identical mate-
rial particles of non-zero mass, such as helium or hydrogen. 
The crucial point was that of indistinguishability of the 
identical quantum particles and the quantum-statistically 
correct way of counting them. As an act of pure transfer-
ence, Einstein applied2–5 the quantum statistics of Bose to 
a gas of identical particles, but with the proviso that, 
unlike the case of photons, the number of particles must be 
conserved now. Hence, the introduction of a chemical po-
tential that, at low enough temperatures, led to the con-
densation4 (that now bears his name jointly with the name 
of Bose, see Figure 1). This condensation was much to 
the disbelief of many leading physicists of the time; 
among them were Planck, Schrödinger, and Einstein him-
self perhaps. Einstein never returned to Bose–Einstein 
condensate (BEC) after 1925. 
 But, all this was about twenty years after the miracle 
year of 1905. The question then is why include BEC in 
this centennial issue. One obvious answer is that BEC 
was a landmark in the developments that followed the 
quantum revolution unfolding at the turn of the 20th cen-
tury. C. N. Yang has remarked to the effect that just BEC 
alone would have assured a place for Einstein, and cer-
tainly for Bose, in the annals of physics. There is, how- 
 
 

 
 

Figure 1. Bose–Einstein Condensation and Quantum Statistical Phase 
Transition: From the photon gas to a gas of indistinguishable molecules. 

ever, to my mind, yet another, more efficient cause for its 
inclusion here. While it is true that BEC was not born in 
the miracle year of 1905, it did have a miraculous resur-
rection seventy years later in 1995, nearer our own times, 
when the near-ideal BEC was realized experimentally in 
a dilute gas of alkali atoms at a few billionths of a degree 
Kelvin (nanokelvins) above the absolute zero of tempera-
ture! For a review, see refs 6–8. This was an ideal conden-
sation (one hundred per cent!) – a dream for a quantum 
condensed matter physicist! Indeed, the term BEC came 
into being just then – for this new state of matter. The 
saga of BEC that really began in 1925 with Einstein, 
lived through 1995 to our own times, and will certainly 
live on far beyond. See the timeline at the end. Thusly 
justified, let us turn now to the physics of BEC.  

Bose–Einstein condensation: The phenomenon 

Normally, a gas such as the air in a room has its molecules 
distributed over a broad range of energy-momentum. This 
is familiar from the Maxwell distribution of velocities 
known from the 19th century. The velocity distribution is 
smooth and sparse – the occupancy number of an elemen-
tary molecular phase space cell (dpdq ~ h3) being typically 
<1. As the temperature is lowered, however, the situation 
begins to change. The gas condenses into liquid and then 
into the solid state, through successive phase transitions 
at which some of the thermodynamic quantities become 
singular. All these transitions involve interactions among 
the particles, e.g., the long-range van der Waals attraction. 
Something much more subtle happens for certain gases, 
such as helium that remains fluid down to the absolute 
zero of temperature under its own vapour pressure. (He-
lium (4He) can be solidified only under pressure of about 
25 atmospheres. This is because of its low atomic mass 
and weak inter-atomic attraction, giving it a large zero 
point energy – we call it a quantum liquid). The helium 
(4He), however, does undergo a phase transition at a critical 
temperature Tc = 2.18 K – a second order phase transition 
at which its specific heat at constant volume has a loga-
rithmic singularity (λ-shaped and hence the name λ-point 
for the transition). A non-interacting (ideal) Bose gas has a 
gentler singularity, namely a cusp – a third order transition 
in the sense of Ehrenfest. The interaction drives it to the 
second order. Very spectacularly, the lower-temperature 
phase (called He II) turns out to be superfluid (with zero 
viscosity) while the higher-temperature phase (He I) re-
mains normal. At a deeper level, however, for T < Tc, the 
velocity distribution ceases to be sparse, and a finite frac-
tion of the 4He atoms accumulates in the zero-momentum 
state. This macroscopic, extensive occupation of the sin-
gle one-particle state is the Bose–Einstein condensation, 
or BEC for short. It is driven not by any inter-particle at-
traction, but is a purely quantum statistical effect. Much of 
this was, of course, not known in 1925. Einstein was led 
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to the condensation from his close examination of the 
ideas that followed from the new quantum statistics that 
Bose had proposed in the previous year, 1924, for the gas 
of light quanta in the black body radiation. Einstein 
clearly saw the deep concept of indistinguishability of 
identical particles that was implicit in Bose’s derivation 
of the Planck radiation law. All he really had to do then 
was to replace the gas of massless photons (with the rela-
tivistic dispersion relation p = hν/c) by the gas of mate-
rial particles (with non-zero mass and the non-relativistic 
dispersion relation E = p2/2m), and to introduce a chemi-
cal potential µ to ensure a fixed particle number N. A brief 
account of essentially his derivation of the condensate, 
and the underlying quantum gas statistics, is given below. 

BEC and the quantum gas statistics 

All statistics is about counting. And the quantum gas sta-
tistics is about counting the indistinguishables. It is con-
cerned with finding the most probable distribution of the 
gas molecules over the molecular phase space subject to 
certain given constraints or subsidiary conditions, e.g., 
given total energy and the total number of particles. The 
term probability is used here in the sense of Planck, 
namely, that the probability of a macrostate (coarse grained 
macroscopic description) is determined by (proportional 
to) the number of distinct microstates (fine-grained micro-
scopic descriptions or complexions) that are consistent 
with it (assuming that these microstates are degenerate in 
energy and equally probable). This is a problem in com-
binatorics – in how many ways (W) can we distribute N 
objects (particles) among Z boxes (phase-space cells) 
with the ih box containing ni objects. For the classical 
case (classical gas statistics) the boxes are, of course, dis-
tinct, but the N objects, though identical, are also distin-
guishable, and we have the classical Boltzmann result, 
Wc = N!/Π ini!. Here, permuting (exchanging) the ni objects 
within the ith box obviously creates no new microstates; 
but a permutation involving exchange of the particle be-
tween different boxes does create new microstates, and 
must be counted as such. Now, let the classically identical 
objects become quantum mechanically indstinguishable, 
as it must be in the case of quantum gas statistics. Then 
the permutations of the objects even between different 
boxes must be discounted – indeed, a permutation of the 
indistinguishables generates no new microstates!. Then, 
the Boltzmannian number of microstates (complexions) 
for the classical case, Wc (» 1), must be replaced in the 
quantum case by the correctly counted WQ = 1. This is the 
essence of indistinguishability and of the quantum statis-
tics that Einstein had made use of.  

BEC derived 

Proceeding with Einstein, consider an ideal (non-inter-
acting) gas of indistinguishable molecules for which the 

molecular phase-space lying in the energy shell Ev ± 1/2∆Ev 
has the number of elemental phase–space cells Zv given 
by 
 
 3 3 /2 1/ 2(2 / )(2 ) d ,v v vZ V h m E Eπ=  (1) 
 
(h being the volume of the elementary phase space cell 
after Planck). 
 We can now distribute Nv of the indistinguishable 
molecules among the Zv distinct cells in Wv ways, where 
 
 ( 1)!/ !( 1)!.v v v v vW N Z N Z= + − −  (2) 
 
(To see that this is so, just imagine placing Zv partitions 
separating the Nv objects arranged on a line, and count the 
number of ways of doing this. This is essentially same as 
Bose’s way of defining a microstate in terms of the set of 
occupation numbers of the cells; or equivalently, distri-
buting the distinguishable (Zv) cells among the indistin-
guishable (Nv) molecules). It is assumed here that Zv p 1, 
which is true for a gas extended over a large volume with 
a phase–space that is a continuum. The total number of 
microstates for the N indistinguishable molecules distri-
buted over the total phase–space is then  
 
 W = ΠWv. (3) 
 
The rest follows the standard exercise in maximizing the 
associated entropy (S) function subject to the subsidiary 
conditions, or constraints, of the given number (N) and 
energy (E): 
 
 S = kB´nW, 

 N = ∑Nv, 

 E = ∑EvNv. (4) 
 
The constraints are to be imposed through the introduction 
of the corresponding Lagrange multipliers. Maximization 
of the entropy function is facilitated in the thermody-
namic limit (N → ∞, V → ∞, with N/V = number density; 
n = constant) through the Stirling approximation for the 
otherwise tyrannical factorials, ´nN| l N´nN – N, for 
N p 1. This straightforwardly leads to the distribution: 
 

 
( )

1
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N Z
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= =

−
∑ ∑  (6) 

where β = 1/kBT. 
 Note that the expression for Zv hides in it the single-
particle density-of-states factor which depends on the di-
mensionality.  
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 Several observations can now be made on eqs (5) and 
(6) that eventually gave the BEC4: 
 
(a) The expression on the right-hand-side of eq. (5) is 

singular for Ev = µ. The singularity is, however, inte-
grable for a 3D gas, but logarithmically divergent in 2D.  

(b) The chemical potential must be negative, including 
zero, as Nv has to be a non-negative number.  

(c) The chemical potential must increase towards zero as 
the temperature is lowered for a given N, while the 
right-hand-side of eq. (6) decreases continuously.  

(d) At a certain critical value Tc, the chemical potential 
vanishes and remains stuck at zero then on for lower 
temperatures.  

(e) Below the critical temperature, the right-hand-side of 
eq. (6) becomes less than N for a given T: the thermal 
distribution now cannot hold all of N bosons in the 
thermally excited non-zero energy states – there is an 
over-population! 

(f) The excess population must necessarily accumulate in 
the singularity at the lowest single-particle state, i.e., 
the zero momentum state. This is how Einstein had 
argued, and was thus led to condensation, and to the 
condensate fraction. The above-the-condensate fraction 
remains as a saturated ideal gas (vapour) in equilib-
rium with the condensate.  

 

 The critical condition (µ = 0) for the condensation is 
best expressed in terms of the phase–space density:  
 

 3
dB 2.612nλ ≥ , 

 1/ 2
dB /(2 ) .Bh Mk Tλ =  (7) 

 
This is also called the condition for quantum degeneracy. 
The equality sign in eq. (7) holds at the critical temperature. 
Here λdB is the thermal de Broglie wavelength, and 
n = N/V is the number density. (This condition for BEC 
can be re-stated as that the mean inter-particle spacing be 
less than the de Broglie wavelength ensuring appreciable 
overlap of the thermal wavepackets, that makes the in-
distinguishability effective).  
 It is clear from eq. (6) that there is no BEC in a 2D gas 
where the density-of-states has a non-zero value at zero 
energy. This is unlike the case of a 3D gas where the den-
sity-of-states vanishes at the bottom, i.e., at the zero of 
the single-particle energy. It is the wholeness of the BEC 
(a single macroscopic object) that accommodates the ex-
cess plurality (population) in the single zero-momentum 
state. It is in this sense that there is plenty of room at the 
bottom.  
 Einstein clearly realized that BEC is a purely-quantum 
statistical effect. He did not refer to the condensation as a 
phase transition. Einstein, however, had the mental picture 
of the condensate fraction in equilibrium with the above-

the-condensate fraction much as the saturated vapour is in 
equilibrium with the liquid phase under isothermal condi-
tions. Though, in a BEC the phase separation is in the 
momentum space. 
 Several other things also followed naturally from his 
derivation: The Nernst Theorem was satisfied (entropy 
vanished at the zero of temperature as there was a single 
state – the BEC); the Gibbs paradox was obviated, without 
recourse to any fixing or correction, such as dropping the 
factorial N! from the Boltzmann way of counting. This 
made the entropy correctly additive. 

Note on indistinguishability 

Two objects may be said to be indistinguishable if they 
are merely two different states of the same underlying entity. 
This, of course, happens naturally in a quantum-field de-
scription where the particles are the excitations of an underly-
ing field – just its internal movements. At a somewhat 
heuristic level, one can understand the quantum indistin-
guishability of the classically identical particles. Classi-
cally, it is possible in principle to keep track of the 
identity of the particles as they are being permuted – here 
permutation is viewed as a process. The continuous track-
ing makes it always possible to know which is which. 
quantum mechanically, however, there are no trajectories 
and thus keeping track of the identical particles is forbidden 
in principle. Hence their indistinguishability. This is as 
operational as one can get. There remains, however, a ques-
tion: is there a degree of indistinguishability, e.g., two 
particles differing arbitrarily slightly in their masses. Is 
approximate indistinguishability meaningful, or must it 
be an absolute condition? Some of these questions had 
occurred to Einstein3 – in the form of a paradox involving 
a mixture of two gases with slightly differing molecular 
masses. Einstein also examined thermal fluctuations of the 
number in the Bose system (fluctuations, and, of course, 
invariances being his abiding interests). He found the 
wave noise (an interference effect) in addition to the shot 
noise-rediscovered many a time since. 
 Finally, a note on BEC in a spatially localized quantum 
gas. This is relevant to the BEC now realized in the opti-
cal and magnetic traps6–9. Here the usual condition Zv p 1 
for the phase-space elements on an energy shell is clearly 
not satisfied. One must do the fully quantum treatment 
using the occupation number representation for the Bose 
system with its second quantized creation/annihilation 
operators8. 

Generalization of BEC 

The BEC derived by Einstein was only for an ideal gas of 
non-interacting scalar bosons, extended uniformly in the 
3-dimensional (3D) space. Generalization has since been 
considered and in some cases realized: (a) fragmented 
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BEC10–12 – extrinsically into non-overlapping regions of 
coordinate or momentum space; and intrinsically in terms 
of their internal (hyperfine) spin structures, or even their 
macroscopic quantum mechanical phases. Then, there is 
the question of their thermodynamic stability – repulsive 
interaction as in 4He has been shown to disfavour frag-
mentation for reasons of the energetics of exchange inter-
actions11; (b) Dimension – there is no BEC in two 
dimensions, as can be readily seen from the fact that the 
sum of the thermal occupation numbers (see eq. (6)) over 
the molecular states for the system then diverges at all 
temperatures for chemical potential µ = 0. The absence of 
BEC in two dimensions, of course, follows from a rather 
general theorem in condensed matter physics; (c) Localized 
condensates6–9 – BEC has now been realized in dilute alkali 
atomic gases in harmonic traps, magnetic and optical; (d) 
Interactions13 – interacting bosons, for example 4He, has 
been treated extensively by the many-body theorists. Interac-
tions (repulsive) deplete the condensate; (e) Condensate 
fraction – neutron scattering14 has been an experimental 
technique of choice for determining the condensate fraction 
in 4He. In neutron scattering with high energy-momentum 
transfer rates, the struck atoms of the condensed system 
are excited to energies much greater than the binding energy, 
and thus the scattered cross-section gives directly the 
momentum distribution (the so-called Compton profile) 
of the system. The macroscopic occupation of the zero 
momentum single-particle state (the BEC) should now 
show up as sharp delta-function singularity (peak) in the 
measured momentum distribution, which is, however, yet 
to be clearly seen. It is essentially a deep inelastic scattering 
in the context of condensed matter. A novel method to 
demonstrate that a BEC really exists is the technique of 
quantum evaporation15. Here, a collimated beam of pho-
nons injected into the sample causes evaporation of the 
atoms from the sample in a single-excitation to single-
atom process. The angular distribution of the evaporated 
atoms was then inverted to show that there indeed is an 
accumulation of the atoms in the zero-momentum state – 
a BEC.  

Bose–Einstein correlation 

Closely related to BEC is the phenomenon of Bose–
Einstein correlation (bec), where bosons of the same kind 
emitted from nearby sources get correlated in energy (E) 
and momentum (P), or time (t) and space (x). This is best 
seen with reference to the scattering of the two Bose  
particles at an ideal 50:50 beam splitter as depicted in 
Figure 2. 
 For the one-boson incoming state, we have 
 

 
1 3 4

2 3 4

( ) ,

( ) ,

a vac ra ta vac

a vac ra ta vac

+ + +

+ + +

→ +

→ −
 

in obvious notation, where ia+  is the Bose creation opera-
tor for the ith channel, and r and –t the (real) elements of 
the scattering matrix for the beam splitter.  
 Now, for the two-boson incoming state, we have 
 
 2 2 2 2

1 2 3 4 3 4 4 3( ( ) ( ) ) .a a vac r a t a rta a rta a vac+ + + + + + + +→ − − +  
 
Thus, for our beam splitter with r = t, we have only the 
doubly occupied outgoing states inasmuch as 3a+ and 4a+  
commute for bosons. (For fermions, of course, the reverse 
is true, and we will have only the singly occupied outgo-
ing states). This flocking of bosons of the same kind is, of 
course, crucial to BEC and to bosonic stimulation16.  

BEC and bosonic stimulation 

This is closely connected with the (1 + N) factor that mul-
tiplies the probability of a scattering event in which a 
Bose particle is scattered into a single-particle state that 
already has N bosons of the same kind. (This is, indeed, 
the ‘crazy idea’ that had intrigued Bose and Saha in the 
papers of Einstein and Ehrenfest17 and of Pauli18 written 
in the context of the probability of Compton scattering that  
  
 

 
 
Figure 2. Bosons emitted from nearby sources tend to be correlated 
in P and E or x and t. 

Bose–Einstein Correlation (bec) 

2 
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depended on the radiation density at the scattering fre-
quency that would arise in the process). Bosonic stimula- 
tion is clearly involved in the kinetics of BEC growth, 
and may be used to amplify certain extremely weak effects 
in condensed matter.  

Macroscopic wavefunction for BEC 

Einstein had considered only the quantum statistics and 
the resulting thermodynamics of BEC. Fritz London19 in-
troduced the idea of BEC as a single macroscopic quantum 
object. The proximity of TBEC = 3.13 K, calculated for 
4He regarded as an ideal Bose gas, and the observed 
Tλ j 2.18 K, led him to identify the lambda transition with 
the BEC. This eventually led to a non-linear Schrödinger-
like equation, the Gross–Pitaevskii equation7,8, for the 
macroscopic matter–wave function Ψ(r), of a single co-
ordinate r, describing the BEC in a realistic Bose system 
with interactions (e.g., 4He): 
 

 i¬ 2
0 0( , ) ( , )

2
r t r t

t m
ψ ψ

∂
= − ∇

∂
 

   
2

0 0
4

| ( , ) | ( , ), ,
a

g r t r t g
m

π
ψ ψ+ =  (8) 

 
with Ψ0(r, t) = Complex order parameter = 

0 ( , )
0 ( , ) ,i r tn r t e θ  n0(r, t) = BEC number density; θ0(r, t) = 

phase, v = velocity ≡ (¬/m) 0 ( , ),r tθ∇  where a is the s-wave 
scattering length that parametrizes the self-interaction 
(a > 0 for repulsive interaction). 

ΨΨ0 describes BEC 

Space-time coherent phenomena – interference, diffraction 
Superfluid flow through capillaries, past obstacles 
Quantized vortices (h/m = quantum of circulation) 
Tunneling through barrier 
Non-linear Matter Waves (4 wave mixing) 
Collective excitations (the sounds). 
At T = 0, the condensate fraction <1, but the superfluid 
fraction = 1. 

BEC localized in traps 

When Einstein derived the condensation for an ideal 
(non-interacting) gas of particles obeying the quantum 
(Bose) statistics, he had in mind helium, hydrogen (which 
are actually strongly interacting), and also the gas of electrons 
(wrongly, as electrons actually obey the Fermi–Dirac sta-
tistics, of course, not known then). A BEC with high 
condensate fraction requires a high phase–space density 
without having to encounter the adverse effects of strong 
interactions that not only deplete the condensate, but also 

actually pre-empt it by causing solidification. This suggests 
low densities and correspondingly low enough tempera-
tures, and of course, low-mass atoms. This is precisely 
what has been achieved in the dilute gaseous alkali atom 
BECs, with typically ~10 orders of magnitude lower than 
the normal condensed matter density and a temperature 
~100 nanokelvins. Thus, the domain of BEC has been exten-
ded far beyond helium, or shall we say, outside the helio-
centric boundary in the laboratory. Extreme BECs are 
suspected in the cores of compact astrophysical objects, 
and in the cosmological vacua. Very recently,20 superflu-
idity (and by implication BEC) has been demonstrated in 
solid 4He. Given below is the Zoo of BECs:  
 
4He (the inert noble, but Nobel-active gas) 
H� (spin -polarized hydrogen), an example of effectively 
spin-half Bose gas 
Excitonic condensates 
Composite bosons, e.g. (e– – e– ); (3He – 3He). . . 
Alkali atomic (bosonic) isotopes 87Rb, 85Rb, 7Li, 23Na,. . .  
Alkali molecules (fermionic-isotope pairs) 40K2, 

6Li2 

Protonic/neutronic and pion condensates – neutron star 
interior. 
Cosmological condensates – field vacua. 
 
Also, listed below are some parameter values typical of 
BECs in the laboratory for neutral bosonic alkali atoms: 
 
Temperature : 500 nk – 2 µk 
Number density : 1014 – 1015 cm–3 
Total number : 103 – 107 – 109 

Size and shape : 10–50 µm spherical 
  15 µm × 300 µm cigar shaped 
Cooling cycle time : few × seconds – few × minutes. 

Open problems 

Some of these are: (a) Connection between BEC and super-
fluidity; (b) Interaction and dimensionality; (c) Fragmented 
BEC for composite bosons with internal structure; (d) 
Kinetics of BEC growth; (e) BEC and decoherence; (f) 
Amplification of weak effects, e.g., the extremely small 
rotational magnetic moments expected of hydrogen mole-
cules may add up coherently to give a large macroscopic 
magnetic polarization in H2 BEC!; (g) Bosonic stimula-
tion – one may even speculate about the decay rate of a 
radioactive nucleus being enhanced many-fold if embed-
ded in the BEC of one of its bosonic decay products; (h) 
BEC being a superfluid solid – a supersolid.  

Timeline (fuzzy and annotated) of BEC 

1900 • Planck’s Quantum Hypothesis; Planck’s Law 
of Black Body Radiation (‘... happy guess-
work …’). 

¬2 

¬2 
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1924 • Planck’s Law and Light Quantum Hypothe-
sis; Satyendra Nath Bose, Zeit. f. Phys., 
1924, 26, 178. The pre-factor 2 × (4ðí2/c3) 
also derived. 

 • Beginning of Quantum Statistics: Loss of 
identity of light quanta. A new way of 
counting the indistinguishables.  

 • Photons indistinguishable but the phase 
space cells distinct. 

 • Photon number not conserved: Chemical 
potential µ = 0 

 

   Quantum theory of the monatomic ideal gas, 
A. Einstein, Preuss. Akad. Wiss., 1925, p. 3. 

 

1925 • Extension of the Bose Statistics: Particle 
Number Conserved – Chemical potential 
µ ≠ 0, e.g., Helium (4He). 

 • Gibbs paradox (the tyranny of N!) resolved, 
and the Nernst Theorem obeyed. 

 • Startling consequences: Macroscopic occupa-
tion of the lowest single-particle state –Bose–
Einstein Condensation (BEC). 

 • Purely quantum statistical phase transition 
sans interaction. 

 • Initial reaction to BEC: 
   Einstein … ‘… that is only by the way …’, 
  Planck … frankly disbelieved it, 
  Schrödinger … suspected an error in it. 
1926 • P. A. M. Dirac21 gave antisymmetric wave-

function for fermions (3He) obeying Pauli’s 
exclusion principle with the occupation 
numbers restricted to 0 and 1 (the exclusive 
Fermi–Dirac statistics); and symmetric 
wavefunction for the bosons (4He) obeying 
inclusive statistics with occupation numbers 
not restricted (the inclusive Bose–Einstein 
statistics). Matters of statistics were clari-
fied by 1927.  

1928 • W. Hendrik Keesom: He I (normal helium) – 
He II (superfluid helium) phase transition – 
the λ-transition at a critical temperature 
Tc = 2.18 K. 

1938 • Pyotr Kapitza: Discovers superfluidity of 
helium (4He). (Earlier in 1911 Heike Kamer-
lingh Onnes had discovered super-condu-
ctivity in Sn).  

 • Fritz London Hypothesis: Superfluidity of 
4He a manifestation of BEC. A macroscopic 
wavefunction proposed for this phase. Now 
called the order parameter.  

1940 • W. Pauli22 derived spin-statistics connection 
from special relativity and quantum mechan-
ics: bosons for integer spin and fermions for 
half-integer spins. 

1948 • N. N. Bogoliubov13: First microscopic theory 
of interacting Bose-gas: 4He – Superfluidity 

and BEC connected. Depletion of BEC due 
to strong interactions in liquid 4He. 

1956 • O. Penrose and Lars Onsager23: First esti-
mation of BEC fraction ~10% for 4He. 

1957 • Bardeen–Cooper–Schrieffer (BCS) theory 
of superconductivity: Condensation of Bose-
like Cooper pairs in the zero momentum 
state. 

1966 • Seminal suggestion of P. Hohenberg and P. 
Platzman initiates probing of the condensate 
fraction by high-energy (epithermal) neutron 
scattering – momentum distribution (Comp-
ton Profile). But conflicting results for BEC 
fraction14. 

1972 • Condensation of bosonic pairs of fermionic 
millikelvin 3He. 
1980s • Advances in laser cooling and trapping of  
microkelvin neutral alkali atoms down to microkelvins; 

Steven Chu and William D. Phillips; and 
Claude Cohen-Tannoudji. 

 
   BEC SAGA: 70 years after 1925 and end 

of helio-centricity6–8 

 
1995 • BEC RESURRECTED MIRACULOUSLY 
~nanokelvin Eric A Cornell (NIST) Wolfgang Ketterle 

(MIT) and Carl E. Wieman (JILA +Univ. 
Colorado) obtain BEC in dilute gases of 
87Rb alkali atoms at ~20 nK (0.00000002 K) 
and 23Na. BEC fraction ~100%, the ideal 
value. 

~1999 �  • New State of Matter: TUNABLE 
CONDENSATE  

 • Coherent matter waves – atom laser 
 • Bosonic stimulation 
 • Non-linear matter – wave interaction: 4 WM 
 • Quantum phase transition: BEC in optical 

lattice 
 • Interaction tunable through Feshbach reso-

nance 
~2003 �  • Fermionic atom pairs (Composite bosons): 

40K2, 
6Li molecular condensates. 

 • Close encounters: Cold collisions for scat-
tering length << de Broglie wavelength. 

~2004 �  • BEC (real-space pairs) – to – BCS (momen-
tum-space pairs) crossover in fermionic systems 

 • Molecular BEC: Chemistry with cold co-
herent matter; Photo-association of atoms 
into molecules.  

 • Highest spatial and spectral resolutions; 
sensitive detectors (possibly for gravita-
tional waves?). 

 • BEC on a microchip. 
 • BEC: A ‘laboratory’ for testing condensed 

matter models of strongly interacting systems, 
e.g., Mott insulator to superfluid transition. 
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