Chapter 2

Super -Reflection of light from a
random amplifying medium with
disordered complex refractive
Index

2.1 Introduction

The bosonic nature of light that allows for the possibility of phase coherent am-
plification/absorption o light gives rise to a new class of problems involving light
propagation in a spatially random but coherently amplifying or absorbing media
(RAM). As discussed in Section-1.5.1 of Chapter-1, this can lead to the phenomenon
o mirrorless lasing in such active media and has been supported by the several exper-
iments carried out on these systems [16, 86, 87, 88, 54]. However, the experimental
findings of a narrowed spectral emission [16, 54] and a pulse narrowing of the emission
[86, 88] above a well defined threshold of pumping could be explained merely as an ef-
fect of the long diffusive pathlengths in a random medium with gain (gain narrowing)
and the consequent amplified spontaneous emission (ASE) [86, 89]. More recently,
the observed super-narrowing of the emitted spectra from strongly scattering semi-
conducting powder [60, 61} and from weak scatterers dispersed in high gain organic
media [90] has been attributed to coherent feedback (distributed, but non-resonant),
caused by recurrent multiple scattering [91).

In this chapter, we study the propagation of light and lasing in a random ampli-
fying medium(RAM), specifically keeping in mind the coherent nature of the ampli-
fication. The spatial, temporal and spectral coherence of the laser light is essentially



2.1. Introduction 36

due to stimulated emission, where the emitted photon has exactly the same phase,
polarization and directionality as the incoming (stimulating) photon. This fact cou-
pled with the coherent feedback offered by incipient Anderson localization of the light
in a random medium makes us to expect new non-perturbative, synergetic effects,
whereby the disorder induced localization of light enhances the amplification by con-
finement (essentially providing a virtual cavity), while the amplification increases
the strength of localization by enhancing the coherent backscattering involving the
longer return paths [55, 57, 58]. This enhanced folding manifests as the narrowing
of the CBS cone at the central peak [87, 51]. In all these earlier studies, the active
random medium is considered to scatter the propagating light (wave) due to fluctua-
tions in the real part of the refractive index (7,.) (real potentials) while the coherent
amplification is modelled by a phenomenological spatially constant imaginary part
o the refractive index (n;) (imaginary potential). Here we will study the case of a
spatially fluctuating i magi nary part of the refractive index. The case of a spatially
fluctuating imaginary part of the refractive index, or potential is interesting in its
own right, from the theoretical point of view and is necessary to realistically describe
the experimental situation. In experiments [16, 88, 54, 53], where the scattering mi-
croparticles (e.g. polystyrene microspheres or titaniarutile particles) are imbedded in
alasing medium, as the scattering particles are not active, a corresponding mismatch
in the imaginary part of the refractive index is seen to exist. In other experiments
[87, 86, 60, 61], where the microparticles (e.g. ZnO, GaN or Ti: Sapphire powder) are
the active medium imbedded in a non-active polymer matrix or air, again a similiar
mismatch is seen to exist. As it has been pointed out by Rubio and Kumar [92] a
mismatch in the imaginary part of the refractive index (imaginary potential) would
always cause a concomitant reflection (scattering) in addition to the absorption or
amplification. Mismatch in #; alone in an amplifying medium (negative imaginary
potential) with no mismatch in 7, can cause resonant enhancement of the scattering
coefficients. To make matters more clear, let us examine the one-dimensional case
o asingle §-potential with complex strength (Vg + iV;) placed at the origin. Now,
solving the Schrodinger equation for a plane wave incident on the potential from the

left, we get for the transmission and reflection amplitudes:

1
T = 2.1
1 —x(V; +iV) 21)
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_ x(K+iyy)
R = 1- x(V, i) (22)

where x = m/(ih%k). As can be seen immediately, the reflection and the transmis-
sion coefficients can even diverge for a purely imaginary potential with V, = 0 and
V; = x~! (corresponding to the case of amplification). This would correspond to
the experimental situation where the scatterers (polystyrene microspheres, say) are
suspended in a fluid with the same n, (index matching fluid) in which a laser dye is
dissolved and optically pumped. Thus, the mismatch in the imaginary part would
be expected to have a much more drastic effect on the scattering than the mismatch
in the real part. This makes it interesting to study the effect of the fluctuation in
the imaginary part of the refractive index on Anderson localization and lasing in
random media. Particularly, in the case of light, where extremely large scattering
coefficients are necessary to cause Anderson localization [44], enhanced scattering
due to mismatch in the imaginary part of the refractive index, i.e., amplification or
absorption, can offer a novel mechanism for localization. The scattering caused by
the fluctuations in n; would, therefore be expected to have non-trivial effects on the
wave propagation in the medium.

More specifically, we will investigate here the statistics of fluctuations of wave
propagation in random media with quenched disorder in both the real and the imag-
inary parts of the refractive index. It is well known that the emergent quantities
such as the reflection (or the transmission) from (or through) a disordered conductor
are non-self-averaging quantities and a knowledge of the entire probability function
of these quantities is required to describe the system. The transmittance across a
randomly amplifying and absorbing chain was recently considered by Sen [93] numer-
ically and was shown to decay exponentially with the increase in the length of the
chain, presumably dueto localization. But the effects of the fluctuation in the imagi-
nary part of the refractive index on lasing in such random media has not been studied
so far. In this work, we consider the statistics of the non-self-averaging fluctuations
o the reflection coefficient for light incident on a one-dimensional active random
medium with spatial correlated disorder in theimaginary part aswell asthe real part
of the refractive index. A physical realization of interest herewould be an Er3* doped
and pumped polarization maintaining optical fibre intentionally disordered along its
length. The probability distribution of the reflection coefficient for light reflected



2.2. Time dependent wave eguation 38

from a one-dimensional random amplifying medium with cross-correlated spatial dis-
order in the real and the imaginary parts of the refractive index is derived using the
method of invariant imbedding. The statistics of fluctuations have been obtained
for both the correlated telegraph noise and the Gaussian white-noise models for the
disorder. In both cases, an enhanced backscattering (super-reflection with reflection
coefficient greater than unity) results because of coherent feedback due to Anderson
localization and coherent amplification in the medium. The results show that the
effects o randomness in the imaginary part of the refractive index on localization
and super-reflection are qualitatively different.

It isto be noted that our treatment is for a classical wave obeying the Maxwell
equations. Thus, our results do not include the quantum statistical fluctuations of the
electro-magneticfield. Thelight istaken to be in a coherent state, viz., an eigenstate
of the annihilation operator for the electromagneticfield with alarge mean occupation
number for a single photon mode.

2.2 Time-independent Maxwell's equationsand am-
plifying media

The linear time-independent Maxwell's equation
V2E(7) + w?/Pe(FE(7) = 0 (2.3)

where E is the wave amplitude of the light wave, assumed to be time-harmonic with
frequency w (and a scalar wave here for simplicity) and e(R) = ¢,(7) +ie;(7) the com-
plex dielectric constant, has been successfully used to describe a random amplifying
media (¢; < 0) by several workers [55, 57, 58, 94, 63, 59, 93]. In these treatments
one finds that the transmission through such media decreases with increasing ampli-
fication. This result appears counterintuitive as one would expect the amplification
to aid propagation, and naively think that the transmission should increase with the
amplification. Unlike the case of an absorbing medium, where the reduced transmis-
sion occurs trivially due to increased absorption, this result for amplifying media is
thought to indicate an increase in the strength of localization due to increased proba-
bility of return of the wave amplitude through coherent backscattering involving long
paths which now contribute more due to amplification. This effect has now become
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well known as implying a symmetry between amplification and absorption [94, 49]
and has been shown to hold in the case of the time-independent equation.

It is generally believed that the linear time-independent wave equation (TIWE)
describes well the wave propagation in amplifying mediafor conditions corresponding
to below-the-threshold of laser oscillation. Above thethreshold, thislinear equationis
known to be inadequate for describing the actual lasing phenomenon as the coupling
between radiation and matter is not properly accounted for. Recently, it has been
argued by Soukoulis et a. [95], that that the TIWE and the associated stationary
state scattering does not describe the situation above the threshold of lasing (oscilla-
tions) when the gain-length product exceeds criticality. Infact, their numerical result
based on the time-dependent wave equation(TDWE) gives a transmission amplitude
which grows exponentially in time.

We will now seek to understand the above result in the above-the-threshold para-
mater regime. In other words, the question we seek to answer is " What isthe response
o the system to a weak probe when the system can behave as an oscillator 7”.
Obviously for frequencies, when the (laser) resonance condition is satisfied (when
ro1rase®* L > 1 and kL = nn, see below), the output diverges exponentially in time
due to the onset of laser oscillations - the system is no longer an amplifier but be-
comes an oscillator. The exponential growth eventually tapers off due to non-linear
processes such as saturation of the gain which are not considered here. However, for
frequencies not satisfying the resonance condition of the cavity, the propagation(gain)
at these frequencies in the cavity will be inhibited and the transmission should be
attenuated.

To illustrate our point, we will consider a Fabry-Pérot setup (seeFig. 2.1) treated
in Ref.[95] for ease of comparision. Thus we have a gain medium of length L between
the facets with reflection coefficients r;; and transmission coefficients ¢;; respectively
placed between two distant absorbers. The reflection and transmission coefficients at
the facets are related to the complex wave-vector k = k' + ik" (k™ < 0 for the case
of amplification) in the medium as (see Fig. 2.1) oy = ro3 = (K — ko)/(k T ko) = R,
tio = 2ko/(k T ko), and ta3 = 2k/(k T ko). where k¢ is the wave vector in free space

outside the cavity. The TIWE can be solved easily for this case to yield a transmission
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Figure 2.1: A schematic diagram of a Fabry-Pkrot etalon. The reflection and trans-
mission (amplitude) coefficientsfor the facets are indicated.

amplitude ‘
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T = (2.4)

1— 7-217~2362ikL’
which is well behaved for all frequencies and lengths except for rq;m93e®*L = 1, which
is the resonance condition. In fact, at large lengths, the Transmission is attenuated
exponentially with length. The above result can also be obtained by using the method
of partial waves caused by multiple scattering and summing the geometric series

T = t12t23€ikL [1 + 7'217‘23€2ikL + (7"21T23)2€4ikL + .- ] N (25)

where the first term represents the partial direct transmission of the incoming wave,
the second term representsthe partial wave reflected at the right facet then at the left
facet before final transmission, and so on. Soukoulis et al. have argued that the above
series can be summed only if |rq;ro3e?*F| < 1 and that the attenuated transmission at
large lengths of the cavity isan artifact dueto the assumption of afinite output in the
TIWE. Consequently, they have concluded that the full TDWE has to be considered
in order to describe the situation and have shown from a numerical calculation that
such a treatment yields a transmitted wave amplitude that increases exponentially
in time.

Now let us consider the exact solutions to the full time-dependent wave equation
for the above case of the Fabry-Pkrot etalon. For the case of linear gain with no
dispersion, an incident pulse propagates in the medium without changing its shape

while undergoing amplification. Hence, the response function of the system for §-pulse
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incident from the left is

G(t) = t1otase®8(t — 7) T t1oraarortay€®0(t — 37) + tiorastarTagrartase®®8(t — 57) ..

(2.6)
where 7 = L/c, A = —k"cr the gain in one pass and ¢ is the speed of propagation in
the medium. It can be readily shown that for a time-harmonic wave (e~**) incident
at thefirst facet at timet = 0, the wave amplitude outside the second face at timet
IS given by,

] (R2€—2(k”L—in))n+1
1 — R2e—2(k'L-iwt) ] — R2e-2K'L—twr) |’

T(t) = tygtgge” (F'Lmiwn) gmit (2.7)
where n = Int[1/2(t/7 — 1)] with I nt denoting the integer value. It isseen that the
first part on the right hand side is what we would get from a scattering treatment
based on the TIWE, i.e., as far as this term is concerned the expression obtained
below threshold continues analytically in the expression obtained above the thresh-
old. The second term on the right hand side, however, is what is not contained in
this analytic continuation. It, indeed, gives the exponential growth of the transmit-
ted amplitude (intensity) as in Ref.[95]. This growing oscillatory term (which may
eventually get limited only by non-linearities not considered here) essentially is a
noise imposed on the relatively weak transmission noted above. Further, rewriting
the second part as

t12t23 exp[——Z(k”L — iLUT] exp(qu)
1 — r2exp[—2(k"L — iwT)] exp(2i¢)

r/TD) exp[—k"L/7 1] exp[i—? ], (2.8)

where R = rexp(i¢), we see that this exponentially growing part is at an effective
frequency ¢/7. Note that this frequency is nothing but the rate of change of ac-
cumulated phase shift arising from multiple reflections at the interfaces, due to the
mismatch in the imaginary part of the refractive index. The growing amplitude is
extremely sensitive to the change in the parameters (e.g. R, T) of the system in
the limit t — oo. Indeed, in principle, it is possible to pickup the small finite part
referred to above as it is synchronous with theincident wave. The above exponential
growth is at a different frequency and hence, not contained in the solutions of the
TIWE which is essentially a harmonic analysis and only givesthe Fourier component
at the frequency of the incident wave. Hence we conclude that the treatments based
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on the TIWE are, indeed, valid within the linear response theory and for the ampli-
fying media as well. We have considered here the case of transmission for the ease
o comparision with Ref.[95], but the case of reflection can be treated similiarly. Of
course, the above is a deterministic treatment that we have chosen for the purpose

o illustration. For the random case, the interpretation has to be probabilistic.

2.3 Random amplifying medium with disordered
complex refractive index

We consider a one-dimensional active disordered medium of length L with a random
complex refractive index n, 0 < x < L. For simplicity, polarization effects are
neglected and light is assumed to be a scalar wave. Further, only the linear case of
the gain/absorption being independent of the wave amplitudeis considered and the
non-linear features such as gain saturation are not considered. Here we would like to
re-emphasize that our treatment is for the possibility of super-reflection (r > 1) i.e,
for an amplifier and not an oscillator!. The complex wave amplitude E(z) obeys the
Helmhotz equation inside the medium,

PE(x)

5e T K [1+n()] B) =0, (29)

where k isthe wave vector inthe medium (k2 = w?/c%¢y) and n(z) = 0, (z)+ao[7+7:(2)]
isthe complex refractive index. Here n,.(z) and 7;(x) are random and 7; is a constant
representing the average amplification or absorption in the medium according as 7;
is negative or positive. It iswdl known that Eq.(2.9) can be transformed to give an
equation for the evolution of the emergent quantity, namely, the complex amplitude
reflection coefficient R(L) = [r(L)]'/? exp[:6(L)] asa function of the sample length L,
via the method of invariant imbedding [96, 97] (see Appendix-A) as

d};—(LL) = 2ikR(L) + %n(L) 1+ R(L)]*. (2.10)

Equation (2.10) is a stochastic differential equation and we are interested in the cor-

responding Fokker-Planck equation for the probability distribution P(r,6;L) which

can be readily obtained following the standard procedures. Thus, let II(r, 8; L) be the
'See thelast part of Section. 1.5.1
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density of pointsin the (r,#) phase space. Now II(r, 8; L) must satisfy the Stochastic
Liouville equation [98],
d

W = -5, e L) 5 (611(r,€: L)), (2.11)

and by the van Kampen lemma[98], the probability distribution function P(r,6;L) =
(I1(r,8; L))y, n;» where the angular brackets denote averaging over all the realizations
of the random refractive indices n, and 7;.

2.3.1 The Gaussian 6-correlated (white-noise) disorder

First, let us consider the simplest case namely that of a Gaussian 6-correlated (white-
noise) model. In this model, . and n; are assumed to have 6 correlated Gaus-
sian distributions with (n,(L)) = 0, (m(L)) = 0, (n.(L)n-(L")) = A25(L - L") and
(ni(L)n; (L") = A26(L — L"). This model would most appropriately describe the case
of a continuous random medium such as a laser-dye doped gel or intralipid suspension
[99], where the fluctuations in . and 7; are uncorrelated. Using the Novikov theorem
[100] (See Appendix-B) to average over al configurations of 7, and 7;, we obtain in
the random phase approximation (RPA) (i.e., P(r,8) = P(r)/2w),
oP (rP)

5 = ¢rLrP + 4ilaP +24—2=, (2.12)
where the linear operators Lg and L; are given by
Lgp = L ( —1)28—2+(52—6 +1)—8—+2(2r—1) (2.13)
R VT g T T T gy ! '

1, o2 \ )
= = — 1)— +2(2 2.14
L; 2[7‘(7" +10r+1)8r2+(5r + 307 + )ar+ (2r+5)|, (2.14)
and the non-dimensional sample length 1 = 1/2maz{A% A?}k?L = L/I., ¢, =
AZ/maz{AZ A?}, ¢; = A?/maz{A2 A%} and A = 27;/maz{A2, A2}k = I./lymp

Here lump = (k)" is the amplification length in the medium defined by the aver-
age of the imaginary part of the refractive index and max implies the superior value
of the arguments. The RPA is known to be vaid in the the weak disorder limit,
kl. >> 1, where [, is the localization length [97]. We point out that even if , and 7,
were cross-correlated, the final equations do not differ in the RPA for the white-noise

model (because (L;L2P)y = 0 see equations (2.19), (2.20).
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Figure 2.2: The probability distribution of reflectivity P(r;!) in the case of the white-
noise disorder given by eqn.(2.12), and the real disorder dominating (¢, = 1.0, ¢; =
0.1), for the different sample lengths indicated. The line joining the dots is the
analytic result for P(r;o0). The amplification parameter isA = —0.25.

The asymptotic 1 — oo limiting solution of Equation.(2.12) obtained by setting

0P/dl =0 isgiven by,
P(r:oo) = P,exp{-— 2A/7t
( ) 0 ¢r+¢z
for

wherey = /12¢;|¢, — 2¢;| and P, isa normalization constant given by [f5°
The limit [ — oo implies physicaly L >> |..

Py

1—[4'% + 2 5¢1 Or)

¢7‘ > 2¢17

(¢r + &i)r + 50; —

(@r + ¢) (1 +72) +2(5¢;

for

¢7’: < 2¢z

- ¢r)r [(¢r + ¢z)r + 5¢z -

(2.15)
¢r — 7} Al
br +
(2.16)
P(r,00)dr]™".

This expression goes over straightfor-

wardly to the result o Pradhan and Kumar[55] in the limiting case of pure real

disorder (¢; = 0). Thus the statistics qualitatively differ in the two regimes for an
amplifying medium : (i) when the real part of the disorder dominates (¢, > 2¢;) and

(ii) when the imaginary part of the disorder dominates (¢, < 2¢;).

We have aso solved equation(2.12) numerically for a finite length to investigate
the approach to the asymptotic forms given by eq.(2.15). The parabolic differential
equation(2.12) was solved by discretizing the equation and using a numerically stable

implicit scheme [156].

In Fig. 2.2, the plots of P(r,!) for the case of real disorder

dominating (¢, > 2¢;) for different lengths of the medium are shown. The prob-
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Figure 2.3: The probability distribution P(r;1) in the case of the white-noise disorder
given by eqn.(2.12), and a pure imaginary mismatch (¢, = 0) for different lengths
o the sample. The line joining the dots is the analytic result for P(r;oc). The
amplification parameter is A= —1.

ability distribution for the case of a pure imaginary mismatch (¢, = 0), with the
real part n, being index-matched is shown in Fig. 2.3. The line joining the dots
in both the figures corresponds to the asymptotic P(r;o0) solution. In the case of
amplifying medium, the value of reflectivity (rmq,) at which P(r;{) peaks increases
with the average value of the amplification factor |A|. For the case of the imaginary
part disorder dominating, P(r;!) has a peak at small values of the reflectivity even
for moderate values of the amplification. In the case of an absorbing medium with
the imaginary disorder dominating, the probability distribution has a monotonic de-
creasing behaviour and is maximum at r = 0. A finite probability of reflection at
r > 1in the absorbing case and at » < 1in the amplifying case (A < 0) is recognized
to be a consequence of the two-sidedness of the white-noise process for the complex
refractive index, which allows the imaginary part o the refractive index (7 * n) to
take on locally both positive and negative values for any given value of the average.
It should be noted that this limiting form of P(r,o0) gives a weak logarithmic di-
vergence for (r) (for ¢; # 0 ), regardless of the sign of A for both absorption and
amplification. Thus, amplification has a much more drastic effect on the reflectivity
than attenuation. The white-noise process alows the local fluctuations in n; to be

very large and the effect of a finite mean value 7; is small. It is thus a case of the
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fluctuations dominating over the mean. We also find that the numerical solutions
saturate to the limiting formsfor {2,1. So most of the reflection occurs from within a
localization length. This enhanced backscattering is quite different from that caused
by light diffusion[86, 89]. In the latter case, the distribution of optical path length,
because of exponential growth of wave amplitude due to coherent amplification in
one-dimension, gives PP(r;o00) ~ In(r)!/2/r for r >> 1. This decays much slower

than the P(r; co) for r — oo, as given by eq.(2.15).

2.3.2 Correlated telegraph disorder

In the case of the white-noise disorder, the imaginary part of the refractive index was
alowed to take on both positive and negative values:.e., the medium could be locally
both amplifying or absorbing. With a view to studying purely amplifying/absorbing
random media, we use the telegraph disorder model to describe the fluctutations in
the refractive index. Moreover, since the gain/absorption coefficient is physically al-
ways bounded from above, the fluctuations in the imaginary part of the refractive
index are better described by this dichotomic Markov process (i.e., spatial Telegraph
noise). Further, we recognize that in discrete random media such as microparticles
suspended in a laser dye solution used in experiments, the real and the imaginary
parts of the refractive index fluctuate spatially in the same manner and can, there-
fore, be described by the same stochastic process. A telegraph noise with a finite
correlation length is most appropriate to describe such a situation. Accordingly, we
will choose 7,(L) = ax(L) and n;(L) = Bx(L) with an average value for the imagi-
nary part 7;. Here x(L) istaken to be a dichotomic Markov process which can take
on the values +x such that (x(L)) = 0 and {x(L)x(L")) = x*exp(-T|L — L'|),where

['~!is the correlation length in the medium.

Now, defining as before, P(r,8;L) = (II(r, 8; L)), and W (r,8; L) = (x(L)II(r,8; L))y,
and using the "formulae of differentiation” of Shapiro and Loginov{101] (see Appendix-
C) to average over the dichotomous configurations of x(L), we obtain

oP oP

T —Qk% + L2 P + (aLy + fL2)W, (2.17)
88_1/[‘// = XQ(OéLl + 5L2)P - Qk'aa—vg + ;LW —T'W, (218)
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where the linear operators L, and L, are:

Ly =—k [sm@ f(l—r)—k%—i— <\/_+ %) %cos@] (2.19)
L=k [cos 05\/7?(1 +71) + 26%7“ + % (ﬁ — %) %sm 9] (2.20)

We thus get a closed system of equations for P(r,6,L) and W (r,8,L). These equa-
tionsgo over correctly to the corresponding eq.(2.12) in the white-noiselimit obtained
by taking the limit x> — oo, I' — oo while keeping x%/I' = A? constant. In this
limit, the equation for P(r,8;L) becomes autonomous i.e., it gets decoupled from
W (r,8;L).

In the RPA (P)y = 0 arid (W)y = 0, and in the asymptotic limit L — oo, these
equations simplify to

Bl P + &*LgW + BPLiW =0 (2.21)
&*LgP + °LiP + 2Aa((;f ) _ %L@-LRW =0. (2.22)

where Ly and L; are given by eq.(2.13) and eq.(2.14) and A = 2I'%;/x2. Interestingly
in the case of the pure real part disorder (8 = 0), the form of the telegraph noise
equation for P(r;oc) is identical to that for the white- noise case, but with the
coefficient A= 2I';/kx?. Similiarly, in the case of the pure imaginary part disorder
(a= 0), theform of the telegraph noise equation for P(r; oc) isagain identical to that
for the white-noise case, but with the coefficient A= 2T'7;/k(x* — 7;2). However, for
Bx < |7, theimaginary part of the refractive index is always positive (absorbing) or
negative (amplifying). Hence the solution for these two casesisalso given by eq.(2.15),
the solutions being valid in the interval 0 < r < 1 for the absorbing medium, and
1 <r < o for the amplifying medium. Outside the intervals, the probability density
P(r;L) vanishes.
A complete solution for the eq.(2.21)and eq.(2.22) is obtained as

1 1
P(r;oo) = B l§+(1+c+7“+7”2) +€_(1+C_r+7"2)] X

X  exp[—2A4 (Lo(r) + I-(r))], (2.23)

) @
L(r) = In |1

Y R

r—Ty
= --———1 tan™! (——Ci o ) IC+] < 2,

£44/CE — 4 NC

|<:|:I > 27
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where & = @t 8% £ B7i/x, G+ = [10(8%  Bi/x) — 207)/[1 £ VBT o, {) =
~1/2[¢: T (& - 9V, v = —1/2[Cx — (2 - 42 and Py is a normalization
coefficient. These expressions become the same as given by eqn.(2.15) in the white
noise limit (x> — oo, T — oo and x2/T being constant).

The solutions for one-sided disorder in the imaginary part exhibit three qualita-
tively different behaviours corresponding to choices of the parameters a, 5 and 7; (y
isan arbitrary constant and can be set to unity without loss of generality). First, we
note that the case of & + 32 — 37|/ x = 0, corresponds to a singular perturbation of
thedifferential equation for P(r; c0). Thiscondition can be interpreted as a threshold
condition by noting that the localization length is given by ;! ~ (a2t 4?%) and the
effective amplification length is given by I}, ~ 87;. This condition then corresponds
to a matching of length scalesin the problem, I, = l;mp. In the regime where the am-
plification dominates the localization (a2t 32 - BI7:] <0 orl. > lumy), the solutions
exhibit a monotonic decreasing behaviour in the region of interest (1< r < o). Here
thedisorder in the real part (a)issmall and does not affect the statistics appreciably,
as can be seen from Fig. 2.4a. For (a?+ 82 — 8|%| > 0 or I, < lamp), @ Natural bound-
ary arisesfor the solutions of the equation at r® which fallsin the domain of physical
interest (1 < r < oo). Now the solutions given by the expression(2.23) are vaid in
the range r® < r < oo with P(r;o0) = 0 outside. In this regime the localization
dominates (1, <,  if 2A/[_(¢* — 4)7/2] > 1 and we have a broad distribution
with peak at rmer > r® and P(r(_z);oo) = 0 (Fig. 2.4b). The value of 7y, islarge
for small disorder in the real part (a2t 3% — 8|#;] 2 0), and decreases as a increases.
The behaviour in this region is dominated by the disorder in the real part of the
refractive index. A third qualitatively different behaviour occursfor , < |  and
2A/[6_(¢2 — 4)1/2] < 1. Then the expression given by eqn.(2.23) diverges at r®.
This divergence is, however, normalizable implying that P(r;cc) is peaked (in fact,
sharply) at that point. This behaviour can be readily understood by noting that the
second condition which can be rewritten as 7,2(I'/k)? < 33(|%| — 8) [&+28(|7:| - B8)],
is basically a condition on the correlation length (I.,., = [™!). This condition is sat-
isfied for small T" (largel...+). Then the reflection isessentially from a single potential
barrier and thus has a sharply defined value. It should be noted that, as a — oo,
P(r;o00) — 6(r — 1), as expected.
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Figure 2.4: The probability distribution P(r;!) in the case of the correlated telegraph
noise. (&) le > lamp and (b) I, < lgmp are for one-sided disorder (8 < |7]) with
disorder in both the real and the imaginary parts. (C) 1, > lgmp and (d) I, < lym, are
for two-sided disorder (8 > |7;|) and pure imaginary mismatch (a= 0).

The solutions for the case of a two-sided disorder for the imaginary part (8 > |7;])
are similiar to the solutions for the white noise case. It should be noted that there
does not exist real ¥ which falls into the physical region of interest (0 < r <
oo). In this case the large disorder in the imaginary part (3) causes the effects of
localization to dominate. However, in all cases of amplification, for a finite A and
a2tp?_ B|%| # 0, thereisa universal 1/r? tail for the P(r; co). For the case of pure
imaginary disorder(cc = 0), we similiarly see a monotonically decreasing behaviour
of P(r;o0) with r for one-sided disorder (8 < |;| or I. > lum,) (Fig. 2.4c), and a
P(r;00) with a peak for two-sided disorder (3 > |7;| or . <lump) (Fig. 2.4d). With
increase in 3 for two-sided disorder, the peak shiftsto smaller values of reflectivity as
the effects of absorption show up, until for large enough 3, the peaks occursat r =0

and we again have a monotonically decreasing P(r;co). It should be mentioned that



2.4. Conclusions 50

all these effects are seen for the case of absorption also, with the roles of rY and r®

interchanged.

2.4 Conclusons

In conclusion, we have studied the statistics of super-reflection from a one-dimensional
disordered system with spatial randomness both in the real and theimaginary parts of
the complex refractive index. We have discussed the models of disorder qualitatively
applicable to experimental systems such as intentionally disordered optical fibres
with gain (Er*t-doped) and obtained the probability distribution function of the
reflectivity for the cases of a white-noise disorder and a correlated telegraph disorder.
In both cases, an enhanced reflection results because of coherent feedback due to
Anderson localization and coherent amplification. In the case of white-noise disorder,
the statistics are qualitatively different in the two regimes of the real part disorder
dominating (A2 > 2A2?) and the imaginary part disorder dominating (A2 < 2A2).
In the case of telegraph disorder, we obtain three qualitatively different behaviours
for P(r; oc) depending on threshold conditions involving the localization length, the
amplification length and the correlation length. Thus the fluctuation in the imaginary
part of the refractive index is seen to have a non-trivial and qualitatively different
effect on localization and lasing from such random media.

Finally, it is to be noted that the domain of validity of our treatment and the
results therefrom, for the super reflection from a random amplifying medium is re-
stricted to operating conditions corresponding to below the threshold of lasing, :.e,
to the parameter regime I, < l,mp. INdeed the random amplifying medium operating
in the reflection mode acts as a one-sided cavity of size [, essentially open (hence
leaking) in the direction of the incident beam (Of course, deep inside the medium, a
photon injected, for example, through spontaneous emission will undergo indefinite
amplification in an effectively closed cavity of sizel, Such an amplified spontaneous
emission will lead to large storage of photons which will eventually be limited by
non-linear effects in real systems). As [, approaches lym,, from below (I Slamp), the
statistical weight for the reflection coefficient moves to higher values of reflectivity
asindeed can be seen in Fig. 2.4b and Fig. 2.4d, and finaly at I, > l4,,, we would

expect the random amplifier to become a random oscillator with self-sustaining os-
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cillations at the eigenmodes of the system. Thus one may suspect the results for
1 > lump (Fig.2.4a and Fig.2.4c) to lie outside the validity of our treatment. We
have shown in Section(2.2) that the treatment based on the TIWE is indeed valid to
describe an amplifying system as well and hence, give an operational meaning (inthe
sense of a response to a probe at that frequency) to the results given by eqn.(2.23)
in the above-the-threshold regime.

In our case, the imaginary potential not only causes the coherent amplifica-
tion/absorption of the wave but also scatters the wave due to mismatch in the complex
potential. It isto be noted that the amplification/absorption can also be modelled
by using additional fake channels connected to reservoirs [49] or by stochastic am-
plification/absorption [102}, where the amplification/absorption isintroduced by an
amplification/absorption constant per unit-length in the free propagation region be-
tween scatterers. In these cases, there will not be any extra scattering due to the
amplification/absorption and the different cross-overs between the regimes of real
disorder dominating or the imaginary disorder dominating in our case, might not
carry over to the case of stochastic amplification/absorption. Here, we should per-
haps point out that coherent amplification/absorption due to the imaginary potential
Is more applicable to the case of light, while the models of stochastic absorption are
more applicable to electron (fermion) propagation.

Finally, as the phenomenon considered here is concerned with the issue of sta-
tistical fluctuations (noise) in a random amplifying medium, we propose for it the
acronym RAMAN (Random Amplifying Medium And Noise).



Chapter 3

Correcting the quantum clock:
The sojourn time in a scattering
potential

3.1 Introduction

Thetime scales associated with the motion of a deformableobject, such asa quantum-
mechanical wave packet, scattered by a potential are operationally not context-free
and raise some fundamental questions of interest for mesoscopic systems (for recent
reviews see [67, 66, 68]). This is due essentially to the fact that for a deformable
object in motion, there are no sharply defined starting and finishing lines, even
classically! This problem is further accentuated for the case of quantum tunneling
(evanescent waves), where the wave vector becomesimaginary and even the velocity
o propagation is ill-defined. Thus, for example, the well known Wigner phase delay
time [69], (defined in analogy with the problem o the group velocity) based on an
identifiable fiducial feature, such as the peak of the wave packet, becomes meaning-
less under the conditions of strong distortion of the wave packet by the scattering
potential{70, 103, 104]. Perhaps, the most striking manifestation of this feature is
seen in the recent claims for superluminal propagation of a light pulse[66, 105].

One of the time scales relevant for many physical situationsis what may be aptly
caled the sojourn time that literally measures the time of sojourn of a particle in
the spatial region of interest, under given conditions of scattering. Clearly, this time
must be positive definite. One can, of course, define the conditional sojourn times
separately for the transmission and the reflection in the context of barrier crossing,

e.g., we have the traversal (or tunneling) time for transmission through a barrier.
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We could also generalize the sojourn time to include the dwell time for a parti-
cle initially prepared in a spatially confined state - this covers the decay time of a
metastabl e state(see Section-1.6 for other possible time scales). The sojourn time is
clearly distinct from the Wigner phase (¢) delay time, Ad¢/0E, which can in fact,
go negative. Operationally, the local sojourn time can be defined meaningfully by
invoking a mathematical artifice called a "clock" involving attachment of an extra
degree of freedom that co-evolves with the sojourning particle. Thus, we have the
Larmor clock[76, 75] that involves the precessional angle accumulated by a spin asso-
ciated with the particlein an infinitesimal magnetic field introduced for this purpose
over the scattering locality of interest. Another ‘clock’ involves the time-harmonic
modulation of the potential, and the timescale of traversal isidentified with a certain
(adiabatic to non-adiabatic) crossover phenomenon that occurs when the traversal
time matches the period of modulation[70] (see Section-1.6.1for details).

In this chapter, we will investigate yet another 'clock’ (a ‘non-unitary’ clock),
[79, 78, 106, 107] wherein the absorption/amplification caused by an infinitesimal
imaginary potential formally introduced over the spatial region of interest, acts as a
physical clock to ‘count' the time of sojourn within the locality of interest. A rather
subtle problem, however, associated with the 'non-unitary' clock, and possibly also
with the Larmor clock, is that the very clock mechanism affects the sojourn time
to be clocked finitely even as the perturbing clock potential is infinitesimally small
(V; — 0 limit). This raises the question " Can the quantum-mechanical sojourn time
be clocked without the clock affecting the sojourn time?*. Thus, for instance, the
conditional sojourn timescal culated for certain non-random potential scatterers turns
out to be negative. We recognise that the scattering concomitant with the mismatch,
however weak, due to the very clock potential(iV;) would affect the propagation of
the wave in the sub-interval of interest. We propose a formal procedure by which
the sojourn time can be clocked ideally using the non-unitary counter by correcting
for these spurious scattering effects. The resulting sojourn time for traversal is then
positive definite, has the proper high- and low-energy limits, and for a wide barrier
goes over to the Biittiker-Landauer traversal time given by the Larmor clock. In the
case of reflection, we find that the partial waves corresponding to the prompt part
of the reflection have to be removed (suppressed) in order to obtain meaningfully a
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positive sojourn time in the region of interest. This procedure is justified in that
the partial waves corresponding to the prompt part of the reflection arising from the
surface mismatch, would not have sampled the sub-interval of interest in order to get
affected by the imaginary potential. In the case of a random potential, we find that
the effects of the 'spurious' scatterings average out (due to the very random nature
of the scattering) and hence, remains hidden. We have also worked out the delay
times of reflection using the WK B approach, which suggests that the delay time for

reflection is the same as the traversal time [73] within the WK B approximation.

3.2 Imagnary potential as a counter of sojourn
time

The idea of the imaginary potential clock is simple and physically appealing. In
the presence of an imaginary potential, a wave grows (or attenuates) exponentially.
Thus, for an arbitrarily small imaginary potential, we expect that the sole effect of the
imaginary potential would be that, the reflection or transmission coefficient becomes
exponential with thetimeendured in the presence of theimaginary potential and thus,
provides a natural counter for the sojourn time. Mathematically, the Schrodinger
equation for the wave function (7, t) of a particle in the presence of an imaginary
potential is
o, n*

) _ V2 S sam
ihzr =~ 5V o+ [V.(7) Vi) (3.1)

can be transformed to a Schrodinger equation without the imaginary potential for
the function ¢(7,t) = exp(—Vit/h)¥(7,t). Hence, we write for the stationary (time-
independent) case, |¥(7)|? = exp(2Vim,i/h)|v(7)|?, and interpret 7,; as the time of
sojourn in the sub-region where the imaginary potential is present. Now, we will fur-
ther intuitively define the conditional sojourn times for the reflected and transmitted
waves (in 1-D) as:

h .. Oln|R|?
R f— —
T _ By Oln IT|?
T’Ui - 2 ‘l/;IE]O a‘/; ? (3.3)

where |R|? and |T'|? are the reflection and transmission probabilities respectively in
the presence of the imaginary potential V;. In the limit V; — 0, the imaginary
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potential was expected not to affect the dynamics of the wave propagation. In this
approach, the local dwell time in any part of the scattering potential can also be
calculated, by applying the infinitesimal imaginary potential only over that region of
space. It isto emphasized here that the growth or attenuation of the wave is still a
classical concept, but it issuch an "irreducible™ concept, that it is difficult to doubt

its physical significance even at the risk of appearing naively realistic.

3.2.1 The average dwell time

Let us now consider the reflection and transmission from an arbitrary real potential
with an added spatially constant imaginary potential (in 1-D). In the stationary case,

the Schrodinger equation for the wavefunction  yields an identity

2V

Ve, Y

(3.4)

s,
~ 2%im

where [ & indicates the difference of the quantity within the brackets evaluated at
L and O respectively. This yields that the sum of the reflection and transmission is
greater (lesser) than unity for an amplifying (absorptive) potential. We can further
write that

[T(V; = 0)Prf + |R(V; = 0)rff = = / (o) Pz = (3.5)

where 7, isthe average dwell time defined earlier and is positive definite. Note that in
the case of equal reflection and transmission times, they become equal to the average
dwell time as well. This can be generalized in a straight-forward manner to the case
of multi-channels and higher dimensions. This time has been claimed to represent the
actual timeof dwell [74, 68]. Thisquantity, however, scales differently at low energies
(sub-barrier energies) compared to timescales obtained by other methods such asthe

Larmor clock [75].

3.2.2 The case of unitary reflection

It followsfrom the previous discussion that the sojourn time for reflection is positive
definite in the case of unitary reflection (JR} = 1). In this case, it can be literally
interpreted as the time of sojourn in the region. Further an interesting relationship
between this dwell time and the Wigner phase delay time arises due to the analytic
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properties of the S-matrix, corresponding to unitary wave reflection. The S-matrix
in this case issimply the complex amplitude reflection coefficient, R(E) = exp[if(E)]
with [R|> = 1for readl E. Now from the analyticity of the S-matrix in the complex
energy plane, we have d(Re 6)/0(Re E) = d(Im 6)/0(Im E), where Re and | m
denote the real and the imaginary parts respectively. As we approach the real axis,
i.e., in thelimit ImE — 0, we have d(Re #)/0(Re E) = T/h (Wigner time delay),
while 8(Im 6)/0(Im E) — Im 8/V; as V; — 0 (along with | m 8). Thus we have
|R|? = exp[2ViT/h] giving |R|?> — 1 = 2V;T/h in the limit V; — 0 (the latter corre-
sponds to treating our electronic problem as a limit of vanishing imaginary part of
the scattering potential).

It isto be noted that in the above, the variation of V; was assumed to be global,
i.e., over the entire space (—o0,00), as is the variation in the wave energy (E).
However, the imaginary potential is applied only locally within the region of interest
in our proposal for the non-unitary clock. The two times are not strictly equal.
The non-Unitary clock acts as a local clock compared to the Wigenr phase delay
time which is a global quantity. From the Feynman path integral point of view, the
particle (virtual) paths could go several times in and out of the region of interest

(seeFig. 3.1). The imaginary potential amplifies/absorbs locally only the part of the

id Global {b) Local

Figure 3.1: A schematic diagram showing a possible trajectory in the Feynman path
integral sense. (a) shows the portion affected by a global variation of the potential
and (b) shows the portion (solid line) affected by a local variation of the potential.
The dotted portion of the trajectory is not counted.

path which lies within the region of interest. Hence, it can be taken to count only
when the particle isinside the region. The variation of wave energy is by comparison
global. It affects all parts of the path (inside as wel as outside the region).
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Figure 3.2: The potentials considered here (a)The rectangular barrier and (b)The
§-dimer. The hatched region indicates the presence of the clock potential (iV;).

3.2.3 Negativity of the conditional sojourn times

Though the average dwell timesis positive definite, there is no such restriction on the
conditional sojourn times, which can be positive or negative. Indeed, it turnsout that
the conditional sojourn times calculated as defined above, can become negative for
certain deterministic potentials. For example, an absorptive potential can increase
the transmission, instead o reducing it - a manifestation o the Borrman effect in the
context of X-ray scattering [108]. Below, we will consider the one-dimensional case
with two output channels for a rectangular barrier and a 6 dimer (two 4-potentials
separated by a spatial interval; see Fig. 3.2) and explicitly verify that the conditional
sojourn times, indeed, go negative.
We calculate the reflection and the transmission coefficients for a plane wave
o energy(E) incident on the barrier, by solving the Schrodinger equation (in the
presence of iV;, the clock potential) in each case and obtain the following results.
The sojourn time in the entire barrier 72T defined as above, for reflection(R) /
transmission(7’) for the case of the rectangular barrier of height (V;) and thickness
Lis
&’ _ 22— v)p — v, /kL sin(2pkL)
e 4-4v, ToZsin’(pkl)

wherep = /1 —v,, v, = V,/E, 7y, = mL/hky/|v, — 1| (the Biittiker-Landauer time)

(3.6)
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and k = v/2mE/h. These reflection and transmission sojourn times are equal, and
equal to the average Smith dwell time. Thus, the imaginary potential was thought to
be incapable of distinguishing reflection/transmission. The ratio 77>% /7, however,
tends to zero for barrier penetration in the low-energy limit, and thus, does not give
the proper low-energy limit[70]. We note though, that the sojourn time, so cal cul ated,
remains positive for this particular case. However, when we proceed to calculate the
local dwell timein any given sub-interval of the rectangular barrier (e.g. in (zq, zo+96),

see Fig. 3.2a), we obtain different sojourn times for transmission and for reflection

Tl _ 2(2 _v)p — 2u,/kd sin(pkd) cos[pk(2xq T+ 6)] cos(pkL)

TBL 4 _ 4v, T v2sin®(pkL) , (3.7)
T {sin[pk(Q:z:o +6)] sin(pké)} (3.8)
TBL TBL vrpsin(pkL) ‘

We check that these expressions correctly go over to those for the entire barrier when
zo=—L/2 and § = L. In thiscase, 77 = 7% when zo = —§/2, i.e., when the region
we are interested in is symmetric about the center of the potential. But importantly,
we note that 7% can now become negative, and can even have negative (and positive)
divergences at the resonances of the barrier (for pkL = nr). We note that the local
sojourn times in different parts of the barrier add up (in spite of negativity etc.) to
yield a positive sojourn timein the entire barrier.

Similiarly, we obtain the sojourn times for the transmission and the reflection
from the 6-dimer potential as

oo b {2(51+ﬁ2) sin?(kL) + [4+ (82 + BYIKL — (62 + 52) sin(kL)cos(kL)}

* T 2E [4 4 (B1 + B2)? + B1B2(Br1B2 — 4) sin®(kL) + B1Bs(B1 + B2) sin(2kL)
(3.9)
R _ T i(ﬁ _3) { (81 + Bo2)[kL + sin(kL) cos(kL)] + 2 cos? (kL) }
Tso = Ts Top VLT P08, B2)? cos?(kL) + [Bifs cos(kL) — (Br + Bz) sin(kL)]2
(3.10)

where B12 = 2mVy2/kh*. We note that 77 and 7 are now different in general, and
are equal only for 81 = B» (the symmetric 6-dimer). Again, we observe that the
sojourn times for reflection so obtained can become negative. Unlike the phase delay
time which only compares the arrival of the peak in the presence of the potential to
the potential-free case and is allowed to go negative, the negativity of the sojourn

time (which is more like an interaction time) is clearly unacceptable.
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3.3 Correcting the 'non-unitary' clock

In the following, we will trace this 'unphysical' feature to the 'spurious' scattering
concomitant with the very clock potential (:V;). We will first consider the case of
transmission for the above-the-barrier wave energy(non-tunneling) and sub-barrier
wave energy (tunneling) separately. The case df reflection where a further refinement

of our proposal was required will be considered separately |ater.

3.3.1 The case of propagation (non-tunneling)

Let usfirst consider the case of propagation (non-tunneling),i.e., the wave energy to
be above the barrier (E> V;). For this, we calculate the transmission and reflection
amplitudes using the method of partial waves by multiple reflections arising from the
interfaces of the rectangular barrier (See Fig. 3.2). In the case of propagation we
obtain [47]

SKL 4

_ k'L 3k L
T = t1oto3€™ “ + t19793T21toge + t12793T21 723 21823€ , (3.11)

43k’ L
1k 4.

R = 75+ tioragty el 4 t12T23721T23t21€ ; (3.12)

where k' = \/Qm(E — V, — iV})/h and, T1a, To3, 791 and t1g, ta3, ta1 are the reflection
and the transmission amplitudes at the interfaces respectively (See Fig. 3.2). The
transmission coefficient has a generic form T = ¥, Axet® L where Ay, ¢ and oy
are real numbers representing the amplitude, phase and the growth of the partial
waves. Consider, now, the sojourn time associated with this quantity

o A1 od

s ‘l'lgl() ﬁWﬁ [ Z AieQakL + Z AkAlei(¢k_¢l)€(ak+al)L] . (313)

k k£l
The imaginary part ¢V; of the clock potential modifies the reflection / transmission
coefficients (r;x, t;x) at the interfaces, where there is mismatch due to the imaginary
clock potential. Now, the derivative with respect to the imaginary potential would
cause terms of first order in V; to contribute to 77°%, even in the limit of an infinitesi-
mal potential V; — 0. Thus, the counter modifies 'spuriously’ the propagation of the
wave itself in a non-trivial manner, in addition to the amplification or attenuation of
the wave, for which it was introduced.

This analysisimmediately suggests the key to correct the 'quantum clock’ for the

'spurious’ scattering. The whole point isthat the presence of the imaginary potential
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modifiesthe reflection and transmission coefficients at any point where the imaginary
potential changes abruptly. We have to, therefore, devise a method by which the clock
potential (¢V;) causes only the intended effect (amplification/absorption) without
causing the'spurious’ scattering, i.e., it must be well apodized. A littlethought of the
perturbative structure of the scattering processes should convince one that the clock
related growth/attenuation would only involve the paired combination V;A (A being
the spatial interval of interest) while the 'spurious’ scattering would involve unpaired
V;. This motivates the following formal procedure to eliminate the 'spurious' effects.
Treating V; and V;A = ¢ as independent variables, we keep £ formally constant and

let V; — 0 in the expression for T. The sojourn time is now obtained as
T = hA/2 Iéin(]aln IT(V; =0,&)[?/0¢. (3.14)
—

The same result is obtained by considering transfer matrices that explicitly suppress
the 'spurious' scattering due to the clock potential :V;.

Using either of the procedures, the sojourn timesfor the rectangular barrier can
now be calculated. Thus, in the case of propagation (v, < 1), we have

T 1— 2
Ts = (L—frarssf) (3.15)
Tpr 1+ |raires|? — 2R(roiroze?ikr L)

where R isthereal part, &, = mm, and the r;; and ¢;; are the scattering
amplitudes as before but with V; = 0. We note that since |r;,| < 1 for any real
potential, the above sojourn timefor transmission is always positive. For the case of
the symmetric rectangular barrier [ro; = 193 = (k — k,.)/(k + k,)], the transmission
and reflection sojourn times are equal and we explicitly obtain,

TL;F’R . 2(2 - UT);U
T, 4 — 4v, + vZsin’(pkL)’

(3.16)

where p = /1 — v,. We show plots of the sojourn time of transmission in a rectan-
gular symmetric barrier and the S-dimer as a function of the potential strength in
Fig. 3.3 (for v, <1).

We note that the expression given by equation (3.15) is a general expression for
a general class of problems. This is because the r;, can be the scattering matrices
for any arbitrary potential, with the only condition that the real potential within the

sub-interval, where we seek the time of sojourn, should be constant (see Fig. 3.4).
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Figure 3.3: The corrected sojourn times for transmission versus (a) v, = V,/E for
the rectangular barrier and (b) g = 2mV/kh for the symmetric 6- dimer. The times
are normalized with respect to the Biittiker-Landauer traversal times (7py,).

This is, however, not a real restriction as it can be straight-forwardly verified that
the local sojourn times for traversal in different parts of the potential add up to
give the total sojourn time (aschematic is shown in Fig. 3.4b). Since any arbitrary
potential can be constructed out of piece-wise constant potentials (in the limit of the
width going to zero), we realize that the sojourn time for transmission given by this

procedure is positive definite for any arbitrary potential.

3.3.2 The case of wave tunneling

For the case of tunneling (energies below the barrier energy E < V;), we note that
the wave vector becomesimaginary within the barrier. The real part of the potential
sets its own length scale for the exponential decay / growth with distance inside the
barrier. Essentially the roles of the real part and the imaginary part of the potential
get interchanged. The imaginary part to first order in V; causes an oscillation of the
wave function with distance. Thus, the paired combination £ = V;A, would affect
the phase of the wave, rather than the amplitude. Mathematically, we are unable to
analytically continue the expressions for propagation, i.e., for v, < 1, to the case of
tunneling (v, > 1). Thisis due to the fact that in determining the complex wave
vector, we used an expansion where we assumed v;/|1 — v,] < 1. In the limit of an
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Figure 3.4: The genera potential considered here (a)The region of interest is bounded
by two arbitrary potentials whose scattering matrices are shown and (b) Shows two
such regions, the local sojourn times of which add up to give the total sojourn time.
The hatched region indicates the presence of the clock potential (iV;). (c) The mod-
ified potential of (a), index matched to the continuum on the right from Region-2
onwards to have a reflection amplitude rys.

infinitesimal v;, this is true everywhere except at v, = 1. Thus, there is a branch
cut at E =V, in the complex energy plane. Indeed, if we analytically continue the
expression for the traversal time in Eg. (3.15) to the case of tunneling, we would
obtain a sojourn time which could be positive (v, > 2) or negative (1 < v, < 2).
Motivated by the success of using the paired combination for the case of propa-
gation, we will define the sojourn time for transmission in the case of tunneling as
the derivative o the phase with respect to the paired combination £ = V;A:
T >n=inas2 iy dwrgizog/rm=0g @

For the general case of Fig. 3.4a, we obtain the sojourn time of traversal as

T —4kTL)

s _ (1 — |7’21T23|26
TBL 1+ 17’217'23|2€_4er — 2%(7"217‘23)6_2]971”

T

(3.18)
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where k, = \/m/h now. We note that thistraversal timeis positive definite
for any arbitrary potential. Further, as before, the local sojourn times in different
parts of the potential add up to give the total dwell time. For the case of the
rectangular barrier we obtain

7.ST,R _ (1 o e—4er)
a1+ e %L — 21 — 8(v, — 1)/v2e-2kL"

(3.19)

The sojourn timeis plotted in Fig. 3.3 (for v, > 1). For an opaque barrier (L > k!
or v, > 1), i.e, in the low energy limit, the sojourn time in the above expressions
tends to the Biittiker-Landauer traversal time for tunneling (TST — 7g1). Finaly,
regarding the local sojourn time in any part of the rectangular barrier, we find that
the ratio of the time spent in the interval [z, zo + A] to the time spent in the entire
barrier is A/L, irrespective of zo in both the rectangular barrier as well as the S
dimer. We conclude that in these cases, the wave spends an equal amount of timein
equal intervals of the barrier region.

3.3.3 The conditional sojourn time for reflection

Now, let us consider the sojourn timefor reflection in the cases of the over-the-barrier
propagation and sub-barrier tunneling. The sojourn timefor reflection can be defined

as for the case of transmission:

E>v) = 2 lim 5—5‘5[111 IR(V; = 0,6)P, (3.20)
HE<V) = a2 iy SWRV=0.9/RM=08] @2

The reflection sojourn time for the general case of Fig. 3.4a straightforwardly works

out as,

THE > Vr) _ 1 (E>VT) N |ras|* — |rai|* (3.22)
TBL TBL |723]% + |ra1]? — 2R(royrozeisrL)

This expression is not positive definite and in fact, becomes negative as we go across

a transmission resonance (|R| = 0). In the case of tunneling, we obtain

TR(E<Vr) - TI(E <Vr) + |ros|2e 2kl — |ryy [2e2kr L (3.23)

TBL TBL Iroz|2e=2kr L  |rop|2e2krl — 2R(r3 €i%r93)’

which is again not positive definite. In fact, even for the case of a symmetric rectan-

gular potential, this time is negative.
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Now, if we look at the partial wave expansions for the transmission and the
reflection amplitudes in Equation(3.12), we would realize one difference between the
transmission and the reflection. All the partial waves o the transmitted wave sample
the region of interest and correspondingly pick up the paired combination § = VA |
in the amplitude, or the phase. In the case o reflection, however, there is one partial
wave corresponding to the partial reflection from the front edge of the potential upto
the region o interest (see Fig. 3.4), due to the element ry2 in the partial wave
expansion, that never samples the region of interest where the imaginary potential
is applied. This part corresponds to the prompt part o the reflection. Arguably, if
this partial wave never enters the region where the imaginary potential is applied,
it should never have been affected by it and the weightage corresponding to this
partial wave should be eliminated out o reckoning. But, it is clear from the above
expressionsthat this partial wave interferes with the rest o the partial waves, and

\ thus affects the time to be clocked spuriously. This problem can be overcome by
epr|C|tIy removing this prompt part o the reflection. This-ean-be-secomplished-by

. Now we obtain the sojourn time

all as for E < V,) as

arTeflection (o ag
This can be accomplished by explicitly
removing the term r12 in the hand side of R__T4
Eq. (3.12) in the 1D case. Ts =T * TBL: (3.24)

The reflection time in this interpretation is the sum o the transmission time and
a propagation time across the sub-interval. Consequently it is always greater than
the transmission sojourn time. But now the reflection time is also positive definite.
In fact, an experimental implementation of this procedure is also possible. One can
cause the reflection from a modified potential whose reflection coefficient is equal to
r12 to interfere destructively with the reflection from the potential in which we seek
the sojourn time. For example, one can use the same potential but index matched to
the continuum beyond from the point where the imaginary potential is applied (as
shown in Fig. 3.4c) asthe modified potential.

3.4 Thereflectiondday timein the WK B approach

The sojourn time problem can aso be dealt with using the WKB wave function
P(z) [109] within the barrier region. Using the particle current density j(z) =


library
Text Box
This can be accomplished by explicitly removing the term r12 in the hand side of Eq. (3.12) in the 1D case.
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Figure 3.5: A schematic of the potential showing the classical turning points and the
partial reflections in the WK B approach.

(B/2im)[*(dy/dx) — ¥(dy*/dz)], the total velocity field v(x) is given by the rela-
tion j(x) = v(x)y*(x)y(x). Evaluating the total velocity field using the WK B wave
function yields an expression [73] in which the total velocity field can be split into a
sum of the forward velocity field and a backward velocity field. The forward velocity
field is given by v(z) = p(x)/m, giving the traversal time as 77 = [’ m/p(z) dx,

where a and b are the classical turning points and p(x \/Qm — E. Thistime
is consistent with the Biittiker-Landauer time for a rectangular barrler. Using this,
the reflection sojourn time for tunneling can be written as a properly weighted sum
over the partial reflections from each point within the barrier (See Fig. 3.5) as (there
is no multiple scattering here):

s e

where R(z) is the (probability) reflection coefficient of the barrier extending from

only X upto a, and in the WK B approximation is given by [110]
R(z)=1—exp[- 2/ 2")/h dx] . (3.26)

Using the above expression, we will now proceed to calculate the delay timesfor two
symmetric potentials, viz., the rectangular potential barrier of height V; and width
L, and a parabolic potential barrier V(z) = —1/2w?x?. For the rectangular barrier,
we obtain the reflection delay time as

R_ mL mh  2m 6 h —9poL/h
T + 1—e % , 3.27
" poN PN PON(2P0) ( ) (327)
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where N = [1+ 7/2poL(1 — e=2PL/M)] and py = \/m We note that for a
sufficientlywide barrier poL/% > 1 and the reflection time can be expanded in powers
of h/po. To the zeroeth order, 7% = 7 = mL/p,, i.e., the reflection timeis the same
as the transmission time. In the case of the parabolic barrier, the transmission time
is7? = r\/m/w and the reflection time is

R _ m/m N 2y/m /2E/\/5 sin~! (-‘5’%) R(z') da’
w w

T _2E/va ﬁ%%']@(w/) da’ (3.28)

where
R(z) =1—exp (%) exp {ﬂ;\fﬁ (\;‘)2%1/1 — w?z2/2F + sin’l(wx/\/Q_E)>]
(3.29)

R(z) ~ 1 for a reasonably small w or a broad potential. Then the second part o
the expression for 7% is negligible, giving 7% = 7T. For R(z) < 1, the reflectiontime
is dlightly lesser than the transmission time. But within the validity o the WKB
approach, it appears that the reflection and transmission times are equal in this case
also.

3.5 The case of the random potential

Coming now to the case o the random potentials, let us consider Eq.(3.13). The
first part on the right hand side consisting o the diagona terms represents mainly
the growth o the wave, while the second part consists o the off-diagona terms
representing the interferences. For a disordered potential, we will expect the phases
to be random, and for any typical configuration d the random potential, the off-
diagonal terms to contribute very little. Thus, we do not expect the problem o
the negative times for a random potential. Due to the random phases o the partial
waves, the problem o the random potential becomessimiliar to the classical diffusion
problem. We will deal with the problem of the distribution o sojourn times from a

random potential further in Chapter-4.

3.6 Conclugons

In conclusion, we have pointed out that the non-unitary clock involving theimaginary

potential (iV;) can lead to a negative sojourn time for non-random potentials. This
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negativity can be traced tothe 'spurious' scattering caused by the very clock potential
introduced for clocking the sojourn time through coherent amplification/attenuation.
A simple, formal mathematical procedure has been given to remove the effects of this
spurious scattering. In the case of reflection, we further needed to remove the prompt
part of the reflection. With these corrections, the sojourn times are positive definite,
in general. We also find that the corrected non-unitary clock yields a sojourn time
with the proper low-energy limit in agreement with the Buttiker-Landauer traversal
time. We have aso given an expression for the reflection delay time within the WKB
approximation. It isalso clarified why the problem of spurious scattering effectively
does not arise for a random potential .

This problem of the ‘clock’ mechanism affecting the time to be clocked is not
special to the non-Unitary clock alone. It also affects the Larmor clock [75] and
possibly every clock where the perturbation due to the clock mechanism couples to
the Hamiltonian. Indeed, we have explicitly verified the case for the Larmor clock
and havefound that the corrected Larmor timesfor traversal, 7, and 7, corresponding
to spin precession and spin-rotation [75] are exactly our sojourn timesfor traversal in
the case of propagation (E> V;) and tunneling (E< V;) respectively. Additionally,
for the Larmor clock, there is a relation between the z-component of the spin of
the transmitted and the reflected waves due to conservation of angular momentum.
This makes it difficult to define separate conditional reflection and transmission times
using the spin-rotation (7).

The problem of negative conditional sojourn times calculated by different proce-
dures has been noticed by several authors, notably Golub et al. [79], Buttiker et al.
[111] and Hauge and St¢vneng [68]. Golub et al. [79], while proposing that absorp-
tion could act as a clock, noticed that the scattering due to mismatch in the clock
potential would affect the performance of the clock, but decided that conditional so-
journ times might not make any sense. The sojourn timeis a useful conceptual tool
and the sojourn time, defined in our sense as more of an interaction time, should
not only be real [68], but positive definite as well in order to be physically meaning-
ful. Any other quantity, though experimentally meaningful, such as the precession
o aspin in a magnetic field, cannot be interpreted as the time of sojourn, unless it
yields a positive definite quantity. Coming to the experimental implementation of
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the corrected non-unitary clock, it can be readily realized, in principle, in electron
tunneling through a mesoscopic barrier as absorption through fake channels (inelastic
electron-electron or electron-phonon scattering processes), where only the coherent
part of the transmitted/reflected wave is measured by an interference detection.

The main problem in defining a meaningful sojourn time for a quantum system
is because of interference between partial waves (the alternatives) that defies naive
realism or objectification of the alternatives. Thus, it is clear that there exists no
self-adjoint operator in quantum mechanics for the sojourn time and it is not an
observable[64]. But it is a calculable intermediate quantity (like a matrix element
for a transition), which is practically useful for calculating other quantities, and for
decidingfor or against certain conditions. For example, in a given mesoscopic device,
we would need to compare the dephasing/decoherence time to the time of sojourn in
order to seeif the dephasing would affect device performance. We view our correction
o the quantum clock in this spirit. For example, when we suppress the prompt part
of thereflection while calculating the reflection time, we take the view that the partial
waves corresponding to the prompt part would never sample that region where there
is dephasing, in order to get affected by it. To re-emphasize, in order for the sojourn
timeto be a conceptually and practically useful tool, we require a prescription which
yields a sojourn time which is (i) real, (ii) positive, (iii) additive (time spent so
calculated for different parts should add up to give the total time), (iv) calculable,
(v) measurable, even if not observable as an operator in quantum mechanics, and (vi)
it should causally relate to the region of interest, i.e., the partial waves should have
traversed that region. Hopefully, we have provided such a prescription here, in that
the sojourn time so calculated has the above properties. It only helps matters that
the experimental realization of this procedure is possible in principle.





