
Chapter 1 

Introduction 

In this thesis, we report our investigations on several aspects of wave propagation in 

disordered multiply scattering media, both passive as well as active. The study of 

wave transport in scattering media has a long and rich history since almost a century 

ago in the context of radiative transfer in the stellar atmospheres [I, 2, 31. Also, 

the wave propagation and localization properties in spatially random media have 

been studied extensively for almost half a century[4, 5 ,  6, 71. Now, in the modern 

context these are of importance in highly diverse areas such as mesoscopic systems, 

e.g. quantum wires, quantum dots and chaotic cavities [7], and medical imaging 

using laser light[8]. More recently, wave propagation and multiple scattering in the 

random amplifying media has assumed importance in the last decade, and its study 

has led t o  a new class of lasing media and random lasers. Inasmuch as it  would be 

impossible t o  review all the previous work, we will attempt in this Chapter t o  pro- 

vide a self-contained introduction pertinent to  the work reported in this thesis. The 

work in the thesis can be classified broadly into two parts: one, concerning coherent 

wave transport in one-dimensional disordered systems, and the other concerning the 

development of stochastic models t o  describe the wave propagation in terms of an 

incoherent energy transport. An overview of the thesis is given in the preface of the 

thesis. 

1.1 Scattering systems 

Since most of the work in this thesis pertains to  scattering, we will begin with a brief 

description of the scattering process. By scattering we mean a change in the energy 

and/or momentum of an incident particle, caused by a (change in the) potential. 
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Figure 1.1: Schematic depiction of scattering of a flux of particles incident on a 
fixed scatterer, resulting in changes in the energies(Ein, + Efin) and the momenta 
(p'i,, + $fin) of the incident particles. The scatterer in this case is assumed to  be 
a 'hard' body. The shadow region for a classical particle is indicated by the shaded 
region. 

The particle is taken to  be asymptotically free, initially as well as finally. In the 

case of a quantum particle or a wave, this will also be accompanied by a change 

in the phase of the wave-function, which needless to  say, does not have a classical 

particulate analogue. These changes in energy, momentum and phase are governed by 

the conservation laws for energy and momentum, and by the nature of the scatterer. 

A notable difference between the classical and the quantum cases is that  there is 

a "shadow region" for the classical case which is not there for a wave because of 

diffraction. This is schematically depicted in Fig. 1.1, where scattering from a 'hard'- 

body is considered: the shaded region is inaccessible for a classical particle. Any 

change in the shape of the potential in that region would not be felt by a classical 

particle, while the scattering of a quantum particle or wave will be affected. The 

scattering process can be elastic, where the kinetic energy is preserved, or inelastic 

where there is exchange of kinetic energy with some internal degree of freedom ( e.g. 

atomic/molecular excitations) or with an external system (e.g. phonons in an atomic 

lattice or other electrons). In the case of quenched disordered systems that  we will 

consider here, the scattering will always be elastic. Inelastic scattering events such 

as electron-phonon or electron-electron scattering lead to  dephasing of the electron 

wave, i.e., disappearance of interference of the complex wave amplitudes following 

alternative paths. In contrast elastic scattering by static disorder, however strong, 
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cannot cause dephasing. 

The strength of scattering from a scatterer is characterized by the differential 

scattering cross-section which is the ratio of the intensity scattered in a given direction 

per unit solid angle to  the incident intensity. The total scattering cross-section(a,) 

is the total scattered intensity over all directions, and is given by the integral of 

the differential scattering cross-section integrated over all directions. Although the 

scattering cross-section are defined in terms of intensity, the wave interference affects 

them and as such must be taken into account to  compute the cross-sections. 

In the following, we will explicitly talk about light scattering (as a matter of 

personal preference), though the general philosophy is applicable to all kinds of waves: 

electrons, neutrons and classical waves such as light and sound. One point that  has 

to  be kept in mind is that  light is a vector wave, i.e., i t  has a polarization transverse 

to  the direction of propagation. The polarization properties are, however, ignored 

for most purposes in this thesis and the treatment is for a scalar wave. Scattering of 

light is caused by a spatial change in the refractive index of the medium. One can. 

of course, also consider the cases of reflection and transmission as special cases of 

scattering. 

1.1.1 A single scatterer 

Consider the scattering of a light wave by an isolated scatterer. The description of 

scattering and absorption of light by even a single small particle is quite involved. 

For details, the reader is referred t o  Refs. [9, 101. It suffices for our purposes t o  note 

that there are three different regimes of scattering depending on the length-scales 

in the problem, namely, the wavelength (A) of the incident light and the size of the 

scatterer (a). 

For a small scatterer (a << A ) ,  the entire scatterer gets uniformly polarized by the 

incident light, and acts as a single dipole. When it re-radiates, the scattered field is 

that of the dipole radiation - this is the well known Rayleigh scattering. The scattered 

intensity is isotropic in the plane perpendicular to  the polarization of the incident 

light and has a cos2 0 dependence (0 being the angle of scattering - see Fig. 1.2a) in 

the plane of polarization. It  also has a A-4 dependence on the wavelength, implying 

that the shorter wavelengths are scattered more efficiently. This was used t o  explain 
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Figure 1.2: (a) Schematic depiction of Rayleigh scattering for a wave with polarization 
in the plane of scattering. (b) Interference of waves re-emitted by different parts of 
a scatterer resulting in an angle dependent scattering pattern 

the blue colour of the sky as due to  the scattering of sunlight by air molecules, the blue 

light being scattered about five times more strongly than the red. When the size of the 

scatterer is comparable to  the wavelength of the incident light (a - A) ,  then the entire 

particle no longer behaves as a single dipole. Different parts of the inhomogeneously 

polarized particle re-emit coherently, but now with different phases and we get an 

interference between these re-radiated waves. This is shown schematically in Fig. 

1.2b. The coherence and the mostly constructive interference cause a great increase 

in the scattering cross-section. This is the reason for the water droplets in clouds t o  

strongly scatter light. If there are N-dipoles oscillating coherently within the particle 

of size NA, then the scattering cross-section increases as N 2! ! !  Of course, increasing 

the size of the particle to  sizes much greater than a wavelength does not help because 

then there is as much destructive interference as constructive on an average. It  might 

so happen that  the constructive and destructive interferences might choose t o  channel 

the light into some direction(as in reflection) due to the morphology of the situation. 

In the limit a -- A, the scattering properties of the small particle are quite complex 

and one needs a full solution of the wave equation for the system. Thus, we have 

the Mie theory, where analytical solutions for spheres, spheroids and cylinders for an 

incident plane wave have been obtained [9]. The salient features of these solutions are: 

(i) a t  small sizes or low frequencies, we get the Rayleigh scattering behaviour, (ii) a t  

intermediate sizes (a -- A) ,  the scattering cross-section increases and passes through a 
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number of peaks - the Mie resonances where the scattering cross-section can become 

as large as six times the geometric cross-section, and (iii) the high frequency or the 

large size limit (a >> A) where the cross-section saturates to  the geometric optics 

limit of 27ra2 which is twice the geometric area, an effect caused by the wave nat'ure 

of light (the scattering due to the shadow region). This is the third macroscopic 

regime - in the limit of (L >> A), when the geometric optics can be applied and the 

scattering can be considered as reflection from a dielectric interface/discontinuity of 

linear dimension L. Another notable feature is that the scattering which is nearly 

isotropic for small scatterers (a << A ) ,  scatters more in the forward direction as the 

scatterer size is increased (a - A), and for very large scatterers, almost all the light 

is scattered in the forward direction. This is due to the fact that the light scattered 

by N independent scatterers always interferes constructively in the forward direction 

due to  the symmetry of the problem 191. This forward scattering behaviour will have 

to be incorporated in any realistic theory. A useful parameter which captures the 

essence of this forward scattering nature is the anisotropy factor g which is defined 

as the average of cos 6' (6' being the angle of scattering) over all the angles for a given 

scat terer . 

1.1.2 Collection of scatterers: Single scattering and multiple 
scattering 

Now let us consider what happens t o  a wave as it enters a medium containing ran- 

domly placed scatterers. On a gross macroscopic level, it is treacherously simple. The 

incoming beam gets attenuated due to the scattering out of the incident beam and a 

diffuse glow emanates from the medium. On the microscopic level, however, the situa- 

tion is extremely complicated. The light could be scattered thousands of times before 

leaving the sample. It is clear that there are two limiting scattering regimes. One, the 

single scattering regime, when the scatterers are weakly scattering and the density 

of the scatterers is also small, so that the probability of the light which is scattered 

once to  be scattered again before leaving the scattering region by other scatterers is 

extremely small. In this case, the mean free path of the light is much larger than the 

sample size and the scattering acts only as small perturbation on the incident light'. 

The total scattered wave amplitude in any direction is given by the sum of the scat- 

tered amplitudes by the individual scatterers, i.e., EL(?, 6) = xi E [ ( c  6 ) .  In the 
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case of the positions of the scatterers being random, the phases of the waves scattered 

by different scatterers would be random, and so the intensities would add up. This is 

true in all directions except the forward scattering direction, where all the scattered 

waves interfere constructively. The scattered intensity in different directions (angular 

scattering profile) would be N times that of a single scatterer (if the N scatterers are 

identical). As the density of the scatterers increases, we can incorporate the first or- 

der corrections in this single scattering picture, by considering that the incident wave 

gets attenuated by scattering (and absorption) as it propagates into the medium. 

The second regime is that of strong scatterers present with high density so that 

the light is multiply re-scattered many times before finally emerging. In this mul- 

tiple scattering regime, the scattering is a very strong perturbation on the incident 

light field and the wave amplitude at  any given scatterer is strongly modified by 

the presence of other scatterers. In this situation, two problems arise. First, we do 

not know the incident field on a given scatterer, and second, we know the scatter- 

ing cross-sections only for a plane incident wave (that too only for simple shapes of 

the scatterers). In fact, the near-field wave amplitudes can vary in a very complex 

manner. Now, we realize that we are faced with the problem of solving the full wave 

equation over the entire configuration of the scatterers. However, we are not inter- 

ested in a particular configuration, but want ensemble averaged behaviour over all 

the possible configurations. Thus we realize that the detailed information is quite 

unnecessary and only quantities such as the average cross-sections and the average 

density of scatterers would matter. Hence, we define characteristic length scales for 

the problem, i. e., the scattering mean free path 1 = ((pa,)-') and the transport mean 

free path I* = 1/(1 - g), where p is the density of the scatterers, a, is the scattering 

cross-section and g is the average anisotropy factor for the scatterers. The transport 

mean free path accounts for the forward scattering nature of the scatterers. Simil- 

iarly, we can also define the attenuation, or gain length, depending on the absorption, 

or the gain, in the medium. 

We are faced here with two possibilities to proceed further. One, we can carry on 

our studies in the multiple scattering domain by considering the wave propagation 

with all the interference effects. This is the multiple scattering wave theory resulting 

in the Twersky-Foldy integral equations for the wave amplitude and the correlation 



function[ll] and are equivalent to the Dyson and the Bethe-Salpeter equations for 

the single and the double Green functions[l2]. Obviously, it is not simple to solve 

these equations, and approximations are made in a systematic perturbation theory by 

considering only scattering events of a particular class and summing the perturbation 

series of that class to all (infinite) orders. Only in one-dimensional problems has a 

non-perturbative treatment been possible. The second approach is much simpler. 

Here we proceed on the assumption that interference effects may not be dominant, 

and treat the whole problem heuristically by considering only the transport of energy, 

or particle flux subject to conservation. It turns out that this approach fails in the 

limit of strong scattering(kl* N 1) when interference effects become important. We 

will be using both these approaches in this thesis, within their respective domains of 

validity and utility. 

1.2 Random media, stochastic media and models 
of disorder 

Before we proceed further, we will note that the randomness in the potential or 

the refractive index can be of two kinds. In the first case, the potential is static 

in time, but can vary in space, the variation being random. This is the case of 

quenched disorder and in this thesis, we will call this kind of media as random or 

disordered media. In this case, the interference effects will never really be washed 

away, although the phase of the wave propagating in the medium can vary randomly 

in space. The other case is that of temporally random media, or stochastic media, 

where the randomness of the potential is not in space but in time - the scatterer 

strengths or positions vary in time in a random manner. In this case, the interference 

effects are not important (See Section 1.3.1). The important difference between these 

two cases is that, if a wave returns to  its initial position after some scattering events, 

it feels the same scattering potential in the former case of spatial randomness, but 

a different potential in the latter case of a stochastic medium (as the potential has 

changed over that time). This has important implications for wave interference and 

coherent backscattering (See Sections 1.3.1 and 1.4.1). In the next three chapters of 

the thesis (Part A), we will consider the case of spatial randomness and the associated 

wave interference effects. The treatment in the remaining three chapters (Part B) 
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is applicable to stochastic media, where we consider only an energy (particle flux) *, 

transport. 

To describe the randomness of the potentials mathematically, we need to  have 

rnodels for the randomness which we present in the following. The simplest model is 

to assume an Gaussian white uncorrelated noise: If V(x) be the potential as a function 

of the co-ordinate x,  then we have (V(x)) = 0, (V(x)V(xl)) = K2S(x - XI).  All the 

odd moments vanish and the higher even moments can be expressed in terms of the 

second moment due to the Gaussian nature of the fluctuations about the mean[l3]. 

This model is simple to treat mathematically and has been used extensively. The next 

step is to recognize that in no real case would the potentials be completely uncorre- 

lated, and to consider a correlated random potential with a finite correlation length. 

The mathematical treatment becomes much more complex, and only exponentially 

correlated randomness has been amenable to  mathematical treatment so far, i.e., for 

(V(x)V(xl)) = h2 exp(-I'lx - xll), where is the correlation length. In this con- 

text, the Telegraph disorder or the dichotomic Markov process, is important. Here 

the random variable can assume only two values and is exponentially correlated. In 

this thesis, we have used the Gaussian White-noise and Telegraph-disorder models 

to describe the randomness. As to the relevance to real optical scattering media, the 

continuum Gaussian white-noise would describe well a scattering intralipid suspen- 

sion or a biological tissue where the correlation is quite minimal. On the other hand, 

a telegraph noise model would be apt for a colloidal suspension of monodispersed 

microspheres. In the electronic case of scattering of Bloch waves by atomic impuri- 

ties, either the strength or the position of the scatt,ering potential can be treated as 

random corresponding respectively to the substitutional disorder or the topological 

disorder. In Chapter-4, where we describe a one-dimensional chain by a tight binding 

Hamiltonian, we have used a random site energy uniformly distributed within a given 

range - the uniform diagonal disorder model. Other models of disorder are also pos- 

sible, but the Gaussian white-noise model remains the clear favourite of researchers 

in view of its mathematical simplicity. 
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1.3 Wave propagation, diffusion and energy trans- 
port 

In the study of wave propagation in a multiply scattering medium, one must nec- 

essarily distinguish between two cases, vix., weakly scattering media and strongly 

scattering media. In the former case of weak scattering, the mean free path of the 

wave in the medium is much greater than the wavelength, and wave interference 

effects are found to be negligible in this regime. The entire phenomenon can then 

be described as a gross energy transport by classical diffusion. In the latter case 

of strongly scattering media, there are important effects of wave interference on the 

wave propagation, and this can even result in a total localization of the wave. In 

this Section, we will present a brief introduction to  the transport of wave energy 

in weakly, but multiply, scattering media. The case of coherent wave transport in 

strongly scattering media will be discussed in the next Section. 

In the modern context, the description of wave propagation in weakly scattering 

random media as an incoherent (where wave interferences are neglected in a sense 

described in Section 1.3.1) energy transport has found important applications in 

biomedical imaging and therapy. This is, of course, apart from its traditional appli- 

cations in astrophysics[2], atmospheric sciences and remote sensing 131. The use of 

light and lasers in medicine have increased manifold in the past decade. Enormous 

efforts have been devoted to the development of new diagnostic techniques such as 

near-infra-red imaging [8] and flourescence spectroscopy of tissues [14], as well as 

therapeutic uses such as photothermal coagulation and Photo-dynamic therapy [15]. 

Tissues are highly scattering media and an accurate knowledge of light transport 

is indispensible to developing more accurate diagnostic techniques using light. The 

scattering by biological media is, however, weak and a description in terms of an 

incoherent energy transport suffices for most purposes. This is also called the photon 

migration problem in turbid media. Another context, where such a description is 

applicable, is the random diffusion laser [16] i.e., dense, weak scatterers randomly 

imbedded in an amplifying medium. We will deal with the latter case in Section 

1.5.1 in more detail. 

In the description in terms of an incoherent energy transport, light is treated 

as particles (photons) bouncing off randomly placed scatterers with the coefficient 
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of restitution being unity, i. e., elastic scattering (absorption removes particles while 

amplification adds more particles). Now, these particles execute a random walk in 

the medium. Conservation of energy (number of particles), yields a Boltzmann-like 

transport equation (presented in Section-1.3.2). As can be expected, the random 

walk problem is accurately described by the diffusion equation a t  length scales much 

larger than the mean free path of the wave(L >> I * ) .  This has resulted in the diffusion 

equation becoming the work-horse of the biomedical community. However, at  smaller 

length scales, the diffusion picture becomes inaccurate. Recently there has been 

considerable interest in the description of multiple light scattering a t  small length 

scales (L - I*) and small time scales (t N t*, where t* is the transport mean free 

time), both from the point of fundamental physics [17] and from the point of medical 

imaging, where the early arriving 'snake' photons are used to  image through human 

tissues [18, 191. It has been experimentally shown that the diffusion approximation 

fails to describe phenomena at distances of L < 81* [20]. Moreover, the diffusion 

approximation, which is strictly a Wiener process for the spatial co-ordinates of a 

particle, is physically unrealistic. This is the motivation for our attempt to  develop 

more realistic models of photon migration presented in the last three chapters (Part- 

B) of the thesis. 

1.3.1 Random phases: connection between wave propagation 
and diffusion 

One knows that the wave propagation is strictly governed by the Schrodinger equation 

for the quantum electron waves and by the Maxwell's equations (or the Helmholtz 

equation) for the case of light (classical waves). On the other hand, we do know 

that the energy transport in a random medium at a macroscopic level is t o  a large 

extent diffusive, and hence, described by the diffusion equation. The main problem 

is to reconcile the final irreversible diffusive dynamics of a system propagating under 

the completely reversible wave equation. The loss of coherence and phase memory in 

such a random system is not completely understood yet. 

In a multiply scattering random medium, there are infinitely many possible paths 

for a wave to  propagate. The total probability amplitude for the wave to  propagate 

from one point to  another is given by the sum of the probability amplitudes of these 

waves for traversing all these allowed paths. Consider the partial waves traversing 
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Figure 1.3: Two possible paths for a wave multiply scattered in a random medium. 

through two such paths shown in Fig. 1.3 from A to B. The amplitude a t  B is given 

by the sum of the amplitudes for the partial waves going through the two paths: 

$(B)  = $1 + $2 and the intensity is proportional to 

where are the phases of the two interfering partial waves. Now, the relative 

phase of the interfering partial waves will vary randomly with the choice of the ran- 

dom paths. For any given configuration of the spatially random medium we end up 

with a random interference (speckle) pattern, i.e., at  some points the partial waves 

propagating through all the possible paths in that configuration add up construc- 

tively and at  some others destructively. The spatially quenched disorder will always 

result in such a speckle pattern which cannot be washed away by any amount of 

static disorder. These are characteristic fluctuations of the random medium. For the 

ensemble average of all possible configurations of the random medium, however, the 

interference terms are expected to  cancel out on an average and we would expect 

that the probabilities (intensities) t o  add on too. This, indeed, turns out to be the 

case for weakly scattering media in higher dimensions and such a behaviour is called 

self-averaging behaviour (See Section-1.7). Such an averaging can be accomplished 

temporally, for e.g., by Brownian motion of the scatterers in a colloidal suspension 

of microparticles. 

We will now define characteristic coherence lengths of the wave in the random 

medium: the longitudinal coherence length and the transverse coherence length. The 

longitudinal coherence length is related to  the fact the coherence is broken by a 

stochastic process in time and after a certain coherence length, the phase of the wave 

changes suddenly. For the case of electron, this would correspond to  the inelastic 
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mean free path, a limit set by the inelastic scattering processes and for the case of 

light, it would be the coherence length of the laser or the light source itself. The 

transverse coherence length comes about because of the spatially random phases of 

the wave a t  different spatial points caused by random scattering events. This acts 

effectively as an incoherent (or partially coherent) source for propagation to  another 

point. Thus, we have coherence bundles of paths (if they originate from within a 

transverse coherence length) where interference is important. If the problem involves 

transport through many different coherence bundles of paths, then the interferences 

would be expected t o  effectively wash out and an incoherent energy transport results. 

Obviously if very long paths (much longer than the longitudinal coherence lengths) 

are important for the transport, then again an incoherent transport of energy results 

(e.g. Drude conductivity in a metal). 

For the case of dynamic (time-dependent) disorder when the potentials V(r',t) 

vary randomly in time, the Schrodinger equation describing wave propagation 

can indeed be reduced t o  a diffusion equation for the probability density. Writing 

the wave function @ = fiexp(i6'), and substituting into the Schrodinger equation, 

we obtain 

Now, we can take $6' t o  be randomly varying in time due to  the inelastic scattering 

processes such as electron-phonon scattering etc. Specifically, for the case of e6' being 

a white noise, the above equation reduces to  a diffusion equation for the average 

quantity (p )  :' 

where ( ) indicates averaging over the stochastic process and A is the r.m.s. fluctu- 

ation in IVO1. 

In the case of purely static disorder, however, it has not yet been satisfactorily 

understood as t o  how the diffusive solutions can be obtained from the wave equations. 

The diffusion equation is recovered as an approximation when only a subclass of the 

multiple scattering terms, i.e., those corresponding t o  the ladder terms are taken 

'Here use of the Novikov's theorern has been made - see Appendix B. 
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into account[7, 12, 211. The radiative transfer equation for the specific intensity can 

be obtained from the wave equation for the mutual coherence function(tw0-point 

correlation function), if wave fluctuations at small scales are neglected. The mutual 

coherence function is approximately related to the specific intensity through a Fourier 

transform. For very highly scattering media, and at large length scales, the radiative 

transfer equation goes over to the diffusion equation (See Section 1.3.4). 

1.3.2 Radiative transfer and diffusion 

As we have seen above, the randomization of the phase of the wave in weakly, but 

multiply scattering media enables us to  describe the entire problem in terms of an 

incoherent energy transport. Historically, the latter approach was developed much 

earlier in the context of astrophysics as a radiative transfer theory for light propa- 

gating through stellar atmospheres[l, 21. One of the most basic quantities needed 

to characterize the energy transport is the specific i n t ens i t y  I(?, fl, t), defined as the 

average power flux density within a unit frequency band at  a frequency v within a 

solid angle for a given direction fl a t  any point Fin the medium. Mathematically, 

is the power(dP) flowing within a solid angle dS2, through an elementary area da' 

oriented along the direction of the unit vector fl, and in the frequency interval (v, v +  

dv). The specific intensity has also been variously termed the brightness or radiance 

in literature. Two other important quantities are t,he average intensity defined as 

U(F, t) = 114s J,, I(?, fl, t)dR, and the average flux density defined as p(< t) = 

11471 Jq, I(?, 6, t)fldR, 

The radiative transfer equation is essentially a statement about the conservation 

of energy flowing through the random medium and is a Boltzmann like transport 

equation: 

+ €(?, fll, t ) ,  (1.6) 

where p is the density of scatterers, at is the total scattering cross-section defined 

as a, + a,, a, is the scattering cross-section, a, is the absorption cross-section, 



1.3. Wave propagation and diffusion 14 

r ( c  fil , t)  is the strength of the additional sources in the medium and p ( 6 ,  6') = 

47r/ot 1 f (6, fi')12 is the phase function, 1 f (6,  fi')I2 is the differential cross-section and 

1/47r J,, dfi' p(fi, i?') = 2 = W ,  the albedo. 

The main disadvantage of the above formulation is that the Radiative transfer 

equations have not been solved analytically even for the simplest geometry. Hence, 

in most treatments of the problem, one resorts to  the dzflusion approximation. 111 

the diffusion approximation, it is assumed that the light has encountered sufficiently 

many scatterers and as a result of many random scattering events, the angular dis- 

tribution of the specific intensity is almost uniform. The angular dependence cannot 

be absolutely constant,because then the average flux density would be zero and there 

would be no preferred direction of the net flow. Thus, the specific intensity is assumed 

to  be Quasi-Isotropic: 

Further, we assume that  the time variation of the flux vector is slow compared t o  

the mean free time, i.e, laP/atl  < lpotPl, and that the scattering phase function 

depends only on the cosine of the scattering angle. Then, we obtain the following 

diffusion equation [l 11 

where D = cl*/3 is the diffusion coefficient, l* = l /pa , ( l  - g) is the transport 

mean free path in the medium and r(< t )  represents the diffuse sources or sinks in 

the medium. Absorption or amplification can be included in the source term as 

r(F, t )  = ca,U(?, t ) ,  where a, is the effective absorption/amplification coefficient. a, 

is negative for absorption and positive for amplification. The solution of the diffusion 

equation in an unbounded medium is a Gaussian in space, which expands in time. 

The absorption(amp1ification) causes an exponential decay(increase) in time. 

The diffusion approximation has been utilized to  describe phenomenologically, 

transport theory in numerous contexts in physics, chemistry and biology. It  describes 

an irreversible process of evolution whereby any singularities are smoothened out and 

eventually a uniform background will prevail. 
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1.3.3 Inadequacy of the diffusion approximation 

The diffusion approximation is valid for multiply scattering media with small ab- 

sorption (gain) a t  points far away from any source (L >> I*). Similiarly, for a pulse 

of light incident on the medium, the diffusion approximation becomes valid only a t  

times much greater than the mean free time (t  >> t* = l*/c). The crucial assumption 

in the diffusion theory is that the specific intensity is quasi-isotropic. As can be ex- 

pected, this isotropization is bound to  take a few scattering events and will not be 

valid in a region of space close to  the source. 

One of the most striking experiments t o  verify the length-scales and time-scales 

a t  which the diffusion approximation is valid, was performed by Yoo and Alfano[20]. 

In this experiment the time-dependent transmission of a femtosecond pulse through 

a slab of disordered medium (a colloidal suspension of polystyrene microspheres) was 

directly measured by a streak camera, for several concentrations of the colloid. It  was 

found that for slab thicknesses smaller than 101*, the measured light arrived earlier 

that that predicted by diffusion theory. Clearly, this is an effect of the ballistic aspect 

of transport, which the diffusion theory does not account for. 

The diffusion approximation is strictly speaking a Wiener process for the spatial 

position of the particle. The stochastic Langevin equation for the velocity of a particle 

undergoing pure diffusion is ?(t) = fit) ,  where fi(t) are independent, Gaussian, white 

noise random variables and fi(t) are independent of r i ( r )  for r 5 t (The Markovian 

property). This process is unphysical in that,  the paths are non-differentiable almost 

everywhere and the velocity is undefined. Strictly, the diffusion approximation holds 

in the limit: the mean free path l* -+ 0, the speed (group velocity) c + oo such that 

the diffusion coefficient D = cl*/3 is a constant. In other words, the particle scatters 

at every point in space. Thus, the diffusion approximation neither accounts for a 

finite mean free path nor the constant speed of the wave in between the scattering 

events. Essentially, the pure diffusion process has no directional memory i.e., i t  has 

zero persistence in the velocity space. In reality, the directional persistence is non-zero 

and the transport occurs in the phase-space. The stochastic process describing the 

spatial position is expected to  have a long persistence citemajumdar due t o  the non- 

Markovian nature. Essentially, for the diffusion approximation to  hold, we need t o  

coarse grain the description over length scales much greater than the characteristic 
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length scales in the problem, i.e., the transport mean free path (similiarly for the 

time-scales) . 

Thus, there is a need to have a more accurate, alternative model to  describe 

photon migration at  length scales and timescales comparable to  the mean free path 

and the mean free time respectively, particularly for medical imaging purposes where 

the ballistic and snake (near ballistic) light is used. This lack of a simple and yet 

comprehensive model to  address the quasi-ballistic regime has led to  several ad-hoe 

proposals involving parametrization of the coefficients and the boundary conditions 

in the diffusion theory. For example, there has been much debate on whether the 

diffusion coefficient should depend on the levels of absorption or not 1231. The diffu- 

sion coefficient by the very definition should depend only on the scattering properties 

and absorption should be taken into account separately as another parameter in any 

theory. 

1.3.4 Connection between the specific intensity and the mu- 
tual coherence function 

In the radiative transfer theory, interference effects arising from multiple scattering 

are neglected. Only the interferenceldiffraction effects in each scattering event is 

accounted for explicitly by a rigorous wave theory calculation of the phase function 

used in the equation. Now the question is, do we lose all information about the in- 

terferences in the approximate radiative transfer equation? It actually turns out that 

much information concerning the field quantities is included in the radiative trans- 

fer equation. The mutual coherence function or the two-point correlation function 

I'(ri, r;Z) is defined as 

where r'= 1/2(r< + r:), A?= 1/2(ri - r:), E is the wave amplitude and ( ) denotes 

the averaging over the disorder. When the correlation function is a slowly varying 

function of r' (in space), i.e., when wave fluctuations on a small length scale can be 

neglected, the mutual coherence function can be written as the Fourier transform of 

the specific intensity:[24, 251 

r(K A;) - / I ( <  fi) e x p ( i ~ , f i .  A;) do 
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where KT = ~ [ k + 2 a  f (0, 0) /k ]  and f (0, 0) is the complex differential backscattering 

coefficient. Using the above and the coherent potential approximation (CPA) for the 

single Green's function[7], the Twersky's integral equations for the intensity [ll] can 

be shown to  reduce to  the integral form of the radiative transfer equation(l.6) for the 

average energy density. 

Thus, we see that some information about the wave quantities, is indeed preserved 

in the radiative transfer theory. In fact, the above is equivalent to  only including 

the ladder terms in the Bethe-Salpeter equations for the intensity (double) Green's 

function [12]. Basically, the phase space in the radiative transfer theory consists of r' 

and 6, which are essentially Fourier conjugate variables. In wave theory, the Fand fi 
cannot be specified simultaneously. By analogy with quantum theory, this makes the 

specific intensity a non-measurable quantity [26]. There is an inherent ambiguity of 

the energy flux vector in the near field of a source or scatterer. The specific intensity, 

if defined, as the Fourier transform of the mutual coherence function, can turn out 

to be even negative in the near field zone[27], and does not possess all the properties 

of the specific intensity defined in conventional radiative transfer theory. Thus, the 

above should only be taken in an approximate sense, whereby the wave fluctuations a t  

small length scales have been smoothened in a coarse-grained description. Specifying 

the direction of the energy flux intuitively in RTE seems to  capture some of the 

coherence properties. It should be noted that the simple radiometric calculations can 

be considerably accurate and very effective to  describe even coherence propagation 

with partially coherent sources, where rigorous wave calculations are difficult to carry 

out [28]. In our context, the simplification that the radiative transfer theory offers 

over the multiple scattering wave theory, can be exploited t o  incorporate as many 

wave properties as possible in a simple radiometric calculation. 

1.4 Wave interference and Anderson localization 

1.4.1 Coherent backscattering 

In this Section, we will consider the case of wave propagation in strongly scattering 

media with quenched disorder, where we cannot neglect the interference effects. All 

the partial waves traveling through different paths in the medium will, of course, in- 

terfere with each other. This will result in a random but static speckle pattern, which 
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Figure 1.4: A typical path in real space which co~istructively interferes with its time- 
reversed counterpart in the backward direction. Both the paths have the same inci- 
dent and exit wave-vectors. The net path length difference is l2 - 11, corresponding 
to a phase difference of (kf - ki) (x, - xl) .  

will change from direction to direction and from sample to sample, as the phases of 

these partial waves change randomly from path to path. The coherent backscatter- 

ing (CBS) effect arises from the constructive interference of any partial wave with 

its time-reversed counterpart in the medium. In the exactly backscattered direction, 

both these two partial wave amplitudes have the same phase and constructive int,er- 

ference results. The partial wave traversing the backward path has the same path 

length and scatters through the same set of scatterers as the forward path, though 

in the reverse order. (see Fig. 1.4).  

For the case of light this shows up as an enhancement of the backscattered inten- 

sity, with the intensity in the backward direction being twice than the intensity in 

directions far away (enhancement factor of 2 )  [29].  Away from the backscattered direc- 

tion, the counterpropagating paths develop a phase difference depending on the rela- 

tive positions(separation N I * )  of the first and last scattering events in the medium. 

For the ensemble of all possible light paths, these phases will randomize and the re- 

flection is enhanced within a narrow cone in the backward direction with an angular 

width of the order of All*.  This peak shows up only after the ensemble averaging over 

the large scale sample specific fluctuations (speckle) that originate from the random 

medium [30]. An experimental measurement of CBS from milk is shown in Fig. 1.5. 
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Figure 1.5: The CBS peak seen in the backscattering direction for light scattering 
from milk. The enhancement factor is lesser than 2 because of the finite resolution 
of the experimental setup. [Taken from S. Anantha Ramakrishna and K. Divakara 
Rao, Pramana J. Phys. 54, 255 (2000)l 

The CBS causes an increased probability of return of the wave to the origin. For large 

I * ,  its effect on the wave transport is small. For small I*, however, the angular range 

over which CBS is effective becomes very large, and this causes a renormalization of 

the diffusion constant, which is in fact a negative quantum correction t o  the classical 

Drude diffusion coefficient. This correction is, however, dependent on the sample size: 

because for a small sample, the CBS from very long paths would not contribute as 

they escape from the sample. The correction is proportional to  (1/L - 1/1*), ln(l*/L) 

and l* - L in one, two and three dimensions respectively [31, 71. This negative cor- 

rection to  the conductivity (diffusion coefficient can make the conductivity go to zero 

for small enough I* and large enough size L, beyond which the diffusion picture is 

no longer valid. What happens then is a localization of the wave caused by disorder 

and multiple scattering - The Anderson localization 141. The CBS is thus thought 

to be a precurser to the Anderson localization transition and is also known as weak 

localization. 

We note that the time-reversal symmetry is a necessary condition for CBS. If the 

time reversal symmetry were broken, say, by applying a magnetic field for electrons 
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or by optical activity of the medium for light, then the enhancement factor reduces 

from 2 1321 and CBS becomes less effective for localization. 

1.4.2 Anderson localization 

The Anderson localization theorem states that for a non-interacting quantum system 

(one body problem) in a disordered medium, if the disorder strength is greater than 

a critical quantity, then all the eigen-states of the system are localized. This result 

was derived by Anderson by considering a tight-binding Hamiltonian on a 3-D lattice 

and disordered site energy [4]. The critical condition for the localization transition 

involves the strength of the disorder, the hopping strength and the co-ordination 

number - all the states are localized for A /W > (A/W)c,itic,l, where A is the range 

of the disordered site energy and W = bandwidth = 2ZV, where V is the hopping 

strength and Z the coordination number. The result is very general and not restricted 

to this model alone. Localization means that if an electron is injected at  a given point 

in the medium, then even after a long time (t + oo), the probability of finding the 

electron decays exponentially away from the point of injection with a length scale 

known as the localization length (&,,), i.e., ($ -- exp(- lr' - r; l / < l , , ) .  In this case, 

there are no propagating modes and no transport takes place, making the sample an 

insulator. 

A simplistic way of thinking about the Anderson localization is the following dy- 

namical argument. Consider an electron trapped at  one of the lattice sites. This 

electron can hop on to  the neighbouring sites and so on thus carrying a current. In 

order to hop the electron has to first find another suitable potential well with an 

energy level close to its original site energy. After all energy has to be conserved even 

though in the process of tunneling it can borrow energy temporarily from the "Heisen- 

berg bank". As the disorder level increases, the probability of finding a suitable site 

nearby diminishes. While the number of distant neighbours increases algebraically 

with distance, the probability of tunneling to a far-off site, of course, decreases expo- 

nentially with distance. These considerations lead to a critical disorder beyond which 

no transport can occur. In this sense, the localization problem is similiar to  the prob- 

lem of classical percolation. It should, however, be stressed that the underlying cause 

of localization is wave interference and multiple scattering. For the localization to  
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occur, the scattering should be so strong that the wavelength of the wave should 

become comparable to  the transport mean free path. This condition is known as the 

Mott-Ioffe-Regel (MIR) condition[33] and implies that multiple scattering beconles 

effective within the passage of a wavelength and the description in terms of propaga- 

tion is no longer valid. With regard to the CBS, the CBS cone width now encloses 

almost all the backward direction (68 - (kl*)-l) and the probability of return to the 

origin is very high. 

An important quantity in the theory of localization is the Thouless conductance 

[34]. Consider the eigenenergy levels of a d-dimensional hypercube of linear size L ~ .  

If AE(L)  be the average energy level spacing near the Fermi-level, and 6E(L) be the 

width of the energy levels caused by the hybridization with the free space continuum 

modes outside, then the conductance G(L) of the hypercube measured in units of the 

quantum of conductance e2/7rh is the Thouless conductance [g (L) - G(L)/(e2/7rh)] 

given by g(L) = SE(L)/AE(L).  This is the analogue of the finesse factor defined 

in optics for a resonator cavity. When we put several such blocks together, then if 

g(L) << 1 at  the scale of L - l* (the transport mean free path), the electron in one 

block will not penetrate another and we have an insulator (localization). On the 

other hand, g(l*) >> 1, there will be no barrier to transport and the system will be 

a conductor. In an influential paper, Abrahams et al. [35] assumed that g(L) is the 

only scaling parameter that affects the behaviour as the blocks are put together, i.e., 

as L -+ oo. This is the single parameter scaling assumption which states that the 

quantity which controls the scaling of the conductance with the system size is the 

conductance itself. Using this assumption alone, it was argued out that in the limit 

of large system size, there exist no extended states in two dimensions and a fortiori in 

one dimension. There is a continuous metal-insulator transition in three dimensions, 

with extended and localized states separated in energy by the Mobility Edge for 

the case of a sub-critical disorder, as indeed observed experimentally. This idea of 

the Mobility Edge for a subcritical disorder was first proposed by Mott [36], who, 

however, argued for a discontinuous metal-insulator transition implying a minimum 

metallic conductivity. 

The result that all states are localized, for arbitrarily weak disorder, in a one- 

dimensional random medium is exact. This is simply a manifestation of the fact that 
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transport in 1-D can be described by transfer matrices that multiply in series and the 

product of random transfer matrices can be shown to  yield exponential localization 

[37, 381. A similiar results holds for the 2-D case too. 

1.4.3 Localization of light 

Although Anderson first proposed electron localization in 1958, the idea that classical 

waves such as light, acoustic waves or phonons could be localized as well, gained 

momentum only in the 1980's 16, 39, 401. Light localization is attractive as it  forms 

a non-interacting system in a medium with small optical non-linearity. Due t o  this 

reason it can offer a direct experimental verification of the scaling theory for pure 

disorder without interparticle interaction. Further, the bosonic nature of light allows 

for coherent absorption and amplification and makes i t  int,eresting t o  study. We will 

discuss this aspect in the next Section. 

There are some important differences between light localization and electron lo- 

calization. The wave equation governing the propagation of light (in a region without 

free charges) 

is similiar to  the Schrtidinger equation where €05 (co - the average part of the dielec- 

tric constant) plays the role of the energy eigenvalue and is always positive. The role 

of the spatially fluctuating random potential is taken by rflUct$ ( r f l u d  is the  spa- 

tially fluctuating part of the dielectric constant). The dielectric constant is assumed 

positive implying that the energy of the electron in the equivalent case is positive. 

Thus, light localization corresponds to  the equivalent case of localization of electrons 

with energy higher than the highest potential barrier. 

Now, the scattering strength a t  low frequencies (long wavelength) becomes very 

small due to the w2 factor multiplying the fluctuating potential (this corresponds t o  

the XP4 Rayleigh limit). The high frequency (short wavelength) limit, on the  other 

hand, corresponds t o  geometrical or ray optics. Clearly, there cannot be localization, 

neither in the low energy Rayleigh limit due to  weak scattering nor in the high energy 

geometrical optical limit where again the MIR condition cannot be satisfied, and we 

have extended states. Thus, an intermediate frequency window, between these two 

limits has been suggested for the observation of light localization. For example, use 
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of the enhanced Mie scattering cross-sections at  the Mie resonances [41] and the 

plasmon resonances of metallic microparticles [42] have been suggested 2. Sajeev 

john has suggested the localization of Bloch waves propagating in a photonic band- 

gap medium at the edge of a band-gap[43], where the Bragg scattering favours the 

MIR condition. In lower dimensions D 5 2, however, all states will be localized in 

an infinite medium, for arbitrarily small disorder. 

Experimentally, observation of the strong Anderson localization of light has been 

reported recently[44], in a densely packed highly scattering powder of GaAs semicon- 

ductor (sub-micron) particles. The transmission decayed exponentially with increase 

in thickness of the sample suggesting localization of light. Although, the authors 

claim to  have taken precautions to  minimize absorption in their samples which would 

also give an exponential decay of the transmittance, their claim has been strongly 

contested [45]. It is further unclear if the above behaviour is a purely disorder induced 

localization. A densely packed monodisperse powder would tend to  get periodically 

stacked (whether a random close packing of spheres is possible, itself remains an open 

question [46]). Hence it is difficult to  rule out the possibility of a Bragg stop band 

having played a role in the experimental observations. 

1.5 Active random media 

Now, we will turn to  the case of active random media. By active media, we will 

mean in this thesis, coherently absorbing or amplifying media. Coherent absorption 

or amplification for a wave propagating in a medium is usually modelled by adding an 

imaginary part of the proper sign to the potential or the refractive index [47]. This is 

the case of coherent absorption or amplification, where the absorption/amplification 

occurs probabilistically and does not affect the phase coherence of the wave as an 

inelastic scattering process in general would. For the case of light, coherent amplifi- 

cation can occur due to the stimulated emission. Moreover, the coherent state of a 

laser is an eigenstate of the annihilation operator - removal of photons by absorp- 

tion simply multiplies the state by a complex number, and hence the coherence is 

2However, the situation is more complicated here. The large cross-sections at these resonances 
affects the wave over considerably larger regions than the scatterer sizes, and for a dense system of 
scatterers leads to correlated scattering which can effectively reduce the scattering. Also it appears 
that the main effect of these scattering resonances is a renormalization of the group velocity of the 
propagating wave, caused by the large delay times of scattering near these resonances [160]. 



1.5. Active random media 2 4 

maintained. These are Bosonic properties without a Fermionic analogue. In the case 

of electrons, coherent amplification is not applicable. However, coherent absorptio~i 

is possible in the sense qualified below. Of course, electrons cannot disappear in 

ordinary processes as the number of electrons are conserved. But, one can agree t o  

consider only electrons in one coherent mode (channel). Inelastic scattering processes 

such as electron-phonon scattering will deplete the probability amplitude of electrons 

in this channel and that will appear as coherent absorption when we measure only 

the coherent part of the wavefunction by an interference measurement. This can also 

be modelled by adding extra side, or 'fake' channels for scattering through which the 

electrons can be lost from the system into electron reservoirs [48, 491. This has been 

called stochastic absorption. This is in contrast to the determinist ic  absorpt ion by a 

randomly operated chopper which blocks (absorbs) with complete certainty when the 

vanes intercept the beam. The coherence of the wave is not preserved in this case to  

the same extent [50]. 

We now ask the question, what happens if a disordered medium is made coherently 

absorbing/amplifying as well ? Would it destroy Anderson localization? Most studies 

indicate that it does not! In fact, localization in an absorbing medium has been shown 

to cause enhanced absorption/amplification [39, 55, 581 and the localization seems 

to get strengthened in amplifying media due to enhanced CBS - involving prolonged 

return path lengths [51, 871. This also brings up the recent phenomenon of lasing in 

such random amplifying media (RAM), which we will discuss here. 

1.5.1 Random lasers 

First of all, let us consider what happens in a conventional laser. The amplifying 

(homogeneous) medium is placed in a one-dimensional optical cavity, which traps 

the light emitted sponta~ieously by the excited medium, forcing it to  repeatedly pass 

through the amplifying medium while undergoing amplification due t o  stimulated 

emission in each traverse. Laser action occurs when the amplification in each round 

trip exceeds the loss at  the cavity output couplers and the optical elements in the 

cavity. Then a coherent mode builds up in the cavity and results in a unidirectional, 

monochromatic, coherent beam. The frequency of the laser light is a t  an eigen- 

frequency of the cavity, near the maximum of the gain spectrum of the amplifying 
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medium. Thus, the laser action occurs due to a resonant coherent feedback of light 

from the mirrors. We note that even the presence of a small inhomogeneity, or 

disorder in the cavity can cause mode-hopping, intensity fluctuations etc. and can be 

a major source of noise in an otherwise highly ordered output. Can this seemingly 

antithetical nature of disorder and lasing be reconciled and can lasing be actually 

aided by the deliberate introduction of scatterers into a cavity? This question has 

evoked much scientific debate for the greater part of the past decade. 

It all began with the experimental discovery [16] of the original proposition by 

Letokhov[52] in 1968, that placing random scatterers in a gain medium could en- 

hance the frequency stability of the laser emission. In these experiments, it was 

found that the introduction of disorder (by suspending titania microspheres) into 

a homogeneous Rhodamine laser dye solution caused a drastic spectral narrowing 

of the emission from the dye above a well-defined threshold of pump light intensity. 

Sure, this is a well-known phenomenon which occurs even in homogeneous amplifying 

media due to  amplified spontaneous emission (ASE). But the remarkable aspect of 

these experiments was that,  the threshold of the pump laser intensity a t  which the 

flourescence spectrum collapsed dramatically was almost two orders of magnitude 

smaller in the case of the microsphere-laser dye suspension, compared t o  the case 

of the ASE in the neat laser dye solution. A typical experiment seems deceptively 

simple. Take a beautiful laser crystal and grind it into a fine powder (size -- lpm). 

Now excite this powder by pumping it in the absorption band with pulses from a 

powerful laser. Spectral and temporal measurements of the emission from the pow- 

der in different directions are carried out. Another option would be to  suspend the 

scattering microparticles such as titania or polystyrene microspheres in a laser dye 

solution, or to  imbed the scatterers into a laser dye-doped polymeric matrix. 

Now, let us look at  a multiply scattering amplifying medium with weak, dense 

scatterers, where the diffusion picture holds. The light emitted spontaneously by 

the medium will have to  undergo a long random walk inside the medium (which 

could be orders of magnitude longer than in a homogeneous medium) before exiting. 

During every part of this random walk, the light is continuously being amplified due 

to stimulated emission. Thus, gain can become larger than loss due t o  leakage at the 

system boundaries and one can have lasing action caused by the diffusive feedback. 
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The output loss scales as the surface area of the medium through which the light exits 

while the gain scales as the overall volume of the medium. As the size of the RAM 

is increased beyond a point, the gain becomes larger than the loss and a strong flash 

of light will occur in all directions. This is exactly analogous t o  what happens in a 

fission nuclear bomb or reactor where neutrons are scattered and amplified by nuclear 

fission (multiplied by chain reactions) - the system becomes supercritical beyond a 

critical size of the system. In such random laser, one notes that  there will be a large 

gain narrowing of the emitted spectrum as the photons a t  the emission maximum 

would be much more amplified in their long passage through the medium. Thus, it is 

a non-resonant "feed-forward mechanism" here that causes lasing action compared t o  

the feedback mechanism in a conventional laser. It is this large extension of the path 

length in the RAM due t o  multiple scattering that is responsible for the lowering of 

the threshold pump intensity. Note that  in comparision t o  the unidirectional output 

of a conventional laser, the random laser will emit in all directions. In Fig.l.6: 

experimental spectra obtained from a RAM (consisting of polystyrene microspheres 

suspended in a Rhodamine 6G solution) obtained below (curve-a) and above (curve-b) 

the threshold of lasing are shown. Above the threshold, the FWHM of the spectrum 

is about 6nm. Also, due to  the very large intensities which occur during the lasing, 

the population inversion in the RAM is quickly depleted (or 'bleached7), leading to  

a sharp temporal peak or pulse shortening of the emission. If the exciting pump 

beam is still present, then the population inversion will again build up and deplete 

successively, resulting in a train of spikes in the emission. 

Coming to  the other details of the emission, it was found that  a t  some interme- 

diate pump powers, a bichromatic emission results (See Fig.l.6, curve-c). This has 

been explained as a result of the displaced absorption and emission spectra of the 

RAM, based on Monte Carlo simulations [53]. Another extremely interesting feature 

observed in these media is that  there is a sharp reduction in the threshold of pump- 

ing even when the transport mean free path of light is much larger than the sample 

size[54]. This would naively imply that there are no multiple passes through the 

medium as the photons escape ballistically. This effect could, however, be explained 

[54] by considering the effect of the probabilistically rare sub-mean-free-path large- 

angle scattering events, which are now rendered important by the virtue of high gain 
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Figure 1.6: The normalized spectral emission from a RAM consisting of polystyrene 
microspheres suspended in a Rhodamine 6G solution (a) sub-threshold (b) above- 
threshold (c) bichromatic emission at  intermediate pump levels. The experimental 
data is the due to  the courtesy of S. Mujumdar [53]. 

in the medium. Thus, a manifestation of the well known St. Petersburg paradox, 

wherein rare events but with a very large multiplier value can become more important 

than the more frequent events but with a small multiplier value. 

Finally, we look a t  very strongly scattering (kl* N 1) and amplifying media where 

the diffusion picture breaks down and localization effects become important. Also, in 

the above picture of light diffusion with gain, the amplification could very well have 

been an incoherent process (such as in the generation of neutrons in a nuclear fission 

reaction where the outgoing neutrons have no phase correlations with the incoming 

neutrons). Stimulated emission is, however, a coherent process where the emitted 

photons have the same phase and direction as the incoming photon. In fact, this is a 

bosonic "stimulation" property without a fermionic analogue. This property of coher- 

ent amplification of light coupled with the coherent feedback offered by the Anderson 

localization can result in a new kind of coherent laser output. This enhancement 

of amplification due to a synergy between coherent amplification and wave confine- 

ment by localization was first theoretically predicted by Pradhan and Kumar [55] 

in 1994 and subsequently confirmed by several others[56, 57, 58, 591. In this case, 

the recurrent multiple scattering events forming closed loops[91] can provide feed- 

back much like in the ring cavity lasers. Of course, due to the random nature of the 
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medium, there would exist a distribution of many such random cavities with differ- 

ent Q-factors. As the pump laser intensity is increased, the laser threshold condition 

(gain = loss) would be satisfied first in the cavities with the highest Q-factors. Laser 

oscillation would occur at  frequencies determined by the cavity resonances. Thus, 

the laser emission would consist of sharp discrete lines. At higher pump intensities, 

oscillations would begin even in lossier cavities and more lines would be added to  

the emission spectrum. One notes that the random cavities formed by the recurrent 

multiple scattering would be totally different in different samples Thus, the lasing 

lines would vary from sample to  sample, a typical effect found in disordered systems. 

Also, the random cavities would have outputs in different directions and the emit,ted 

spectrum would be different in different directions and we have a multi-mode laser 

emission in all directions. In the recent experiments of Cao et ~1.160, 611 with very 

strongly scattering semiconductor powders (Zno, GaN), all the above effect were ob- 

served to  occur. The lasing lines had extremely small spectral linewidths(-- 0.2nm). 

Thus, a random laser with coherent feedback was claimed. One should note that,  in 

these experiments the semiconductor powders were deposited on glass substrates as 

a thin film of powder (-- IOpm). Hence, keeping in mind the large dielectric constant 

of the semiconductor material, it is possible that total internal reflection a t  the in- 

terfaces could have effectively acted as mode-guiding mechanism, thereby effectively 

reducing the dimensionality of the random system to  two. Thus, there are doubts 

that the fine spectrum observed in these experiments could be due to  a reduced di- 

mensionality of the system when the localization effects are easier to  achieve. In 

their recent work on spatial confinement of light [61], Cao et al. show that the lasing 

volumes can be as small as 2pm, almost comparable to  the wavelength. This seems 

to suggest that morphological resonances could be the reason. 

We note two additional points. The random laser with the coherent feedback 

provided by Anderson localization should be distinguished from the traditional dis- 

tributed feed-back laser 1621. In the latter case, the feedback is derived from a periodic 

modulation of the gainlrefractive index, the period of which satisfies a condition of 

resonance a t  the laser wavelength. By comparision, the feedback due to  Ander- 

son localization is coherent, but non-resonant. The second point is that,  in a one- 

dimensional RAM, the system never really becomes a laser (oscillator) and remains 
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only an amplifier. This is because the localization length sets an effective cavity 

length over which the coherent output develops. The threshold condition is that the 

amplification length (la,,) should become larger than the localization length (Jl,,). 

This condition is never really satisfied because the amplification enhances localiza- 

tion and the effective localization length ( 1 ~ ; ~  = J;: + l;Ap) reduces with increasing 

amplification [57, 631. 

1.6 Sojourn time in a scattering potential 

Till now we have been discussing the static aspects of scattering. Kow we turn to  

the dynamic aspect of scattering, namely, the time delay undergone by a wave in the 

process of being scattered by a potential. Obviously, this time is related to  the actual 

time of sojourn in the scattering region. For the case of a classical particle, both the 

times will be one and the same. But it is not obvious that the equality would hold for 

a wave. This time of sojourn (also called the dwell time) is of interest for mesoscopic 

systems. 

This issue of the time of sojourn raises some fundamental questions regarding 

role of time in quantum mechanics. There are two distinct question: (i) where is the 

particle at  a given time ' t '? ,  and (ii) at  what time (if any) is the particle in a given 

region of space? The former corresponds to a position measurement, for which wre 

have a well-defined position operator. The latter is the arrival time for which it has 

not been possible to  define a self-adjoint operator, in general [64] 3 .  Thus, the quantity 

in question does not appear to be an observable. The arrival time is, of course, not 

the parametric time that appears in the Schrodinger equation. It (the arrival time) is 

a dynamically determined quantity, determined by the conditions of scattering in the 

region of interest. This quantity appears to  be measurable as it can be determined 

experimentally. But it seems dependent on the nature of the experiment. Thus, 

there is no accepted single definition of this quantity and this has result'ed in several 

31t is possible to define an operator by first considering the classical time taken by a particle 
to propagate from one point (xo,po) in the phase space to another (x,p), and then quantizing the 
classical dynamical variables. But the procedure would not work for barrier tunneling, where there 
is no classical path linking the initial and final points. 111 that case, we would have to define an 
imaginary velocity which would not allow the 'time operator' to be Hermitian. In another approach, 
it is often stated that one can define a Hermitian operator O, which measures whether a particle is 
in a given region of space or not [65, 661. But a procedure of practically implementing the operator 
is yet to be found. 
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timescales defined in different manners. First of all, different time-scales can be 

defined depending on the input and output channels of scattering. These are the 

conditional t imes  and in the 1D case, we have the reflection and transmission sojourn 

times. In the following, we will briefly review a few of the important timescales. For 

recent reviews of the topic, we refer the reader to Refs.[66, 67, 681. 

One of the most common approach is to follow any fiducial feature or marker such 

as the peak of a wavepacket as it scatters off a potential. This view was first taken by 

Wigner[69] who defined the delay time in terms of the energy derivative of the phase 

of the scattered wave T~ = h(dO/dE). This procedure is, however, rendered mean- 

ingless when the scattering potential strongly distorts the wave packet. In particular, 

Biittiker and Landauer [70] have stressed that there is no causal connection in the 

incoming peak transforming into the peak of the outgoing wave. The same applies to  

the centre of mass of the wavepacket. Another wavepacket based approach, proposed 

by Stevens, is to follow the forward edge of the wavepacket with a sharp cut-off [71]. 

But the problem of associating the particle's position with the deformable wave-front 

remains. 

A second method of dealing with the sojourn time is to  define it in terms of the 

probability of finding the particle inside the spatial region of interest. Thus, we have 

an average time of dwell (the Smith dwell time)[ll2] in the region of interest [O, L], 

regardless of whether it is eventually transmitted/reflected: 

where j is the incoming flux and $(x) is the wave function in the stationary scattering 

picture, sub specie aeternetatis.  Also for a time-dependent case (pulse), the average 

dwell time is defined as 

Closely related to this, is the path integral approach of Sokolovski and Baskin [72], to 

describe the time of dwell in terms of a Feynman path integral over every path linking 

the incidence and the subsequent transmission/reflection of the particle. Yet another 

approach is to use the WKB wavefunction in the barrier region [73], where one can 

identify a forward and a backward velocity field from the wave function and hence, 

define an appropriate traversal time. This approach has been used in Section 3.4. 
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1.6.1 Quantum clocks 

A third option is to look beyond these phase delay and dwell time definitions based 

on the wave function and consider meaningfully the dynamical evolution of an extra 

degree of freedom ('clock') attached to the particle due to  local interaction with a 

potential applied in the region of interest. The effect of the interaction on the clock 

would depend on the time of sojourn in the region of interest. The external poten- 

tial, or field, is made as small as possible to avoid any effects on the propagation of 

the particle in question. Three such clocks have been proposed and will be reviewed 

briefly here. 

(i) The Biitt iker-Landauer oscillating barrier 

Here the original static potential is augmented by a small oscillation in the potential 

height or width. At low frequencies of the oscillation, the particle sees essentially a 

static potential with the scattering amplitudes (transmission/reflection) slowly vary- 

ing in time (the adiabatic regime). At high frequencies of oscillations, the particle 

no longer sees a static potential, but is affected by many cycles of the modulation 

during its interaction with the potential. The particle begins to  absorblemit quanta 

and the scattered wave develops energy sidebands (the diabatic regime). The point 

of crossover of this adiabatic-diabatic behaviour yields a timescale which is taken to  

be the interaction time of the particle with the potential. For an opaque symmet- 

ric rectangular barrier, the barrier traversal time turns out very reasonably to  be 

TBL = m L / h ~ ,  where L is the barrier width, and T ~ K  is the imaginary momentum 

in the barrier region. This TBL will henceforth referred to  as the Buttiker-Landauer 

time in this thesis. 

(ii) The Larmor clock 

Buttiker reconsidered the idea of using the accumulated spin precession angle of a spin 

in a magnetic field [75], earlier proposed by Baz' and Rybachenko[76], as a clock for 

the tunneling time. The proposed experimental situation, where a spin initially po- 

larized along the x-axis moves along the y-axis through the potential region in which 

a magnetic field along the z-axis is present, is schematically depicted in Fig. 1.7. 

Biittiker recognized that there is a tendency of the spin to  align along the magnetic 

field (spin rotation) in addition to  the Larmor precession in the plane perpendicular 

to  the magnetic field (spin precession). Biittiker associated time scales in relation t o  
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Figure 1.7: A schematic depiction of spin rotation and spin precession in the Larmor 
clock 
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is not clear and has been questioned [77, 681. For an opaque rectangular barrier, the 

Larmor time for transmission becomes the same as the Biittiker-Landauer time. 

(iii) Absorption as a clock 

The use of absorption as a clock was originally proposed by Pippard in a private 

communication to Biittiker[78], who subsequently examined it [78], along with Golub 

et al. [79] and Wang et a1.[80]. The amount of absorption suffered by a wave in the 

presence of an imaginary potential was associated with the time dwelt in the given 

region, where the imaginary potential was present. It turned out that for a sym- 

metric rectangular barrier this time was identical to the average Smith dwell time 

and consequently absorption was thought to be incapable of distinguishing between 

reflection and transmission [78, 771. 

Most of these approaches have associated problems, such as they yield complex 

times, or negative times for certain deterministic potential configurations. Perhaps, 

the clocks affect the spatial motion itself [79,77]. the Feynman path integral approach 

yields a complex time, though the real and imaginary parts of the time appear to 

be related to the Larmor times. The phase delay, of course, can go negative as it 
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only compares the phase shift in the presence of a potential to the case with no 

potential. However, the other times given by the clocks, defined more as interaction 

times, should remain positive. But that is not the case. So it begs the question if it is 

meaningful at  all, to talk about these times and is it necessary to bother about these 

times? When we think of the time of sojourn of a particle in a given region of space, 

we are merely taking an alternative viewpoint in quantum mechanics. Obviously the 

sojourn time cannot provide answers to questions which cannot be answered within 

quantum mechanics. Almost all questions in the realm of quantum mechanics can be 

discussed without recourse to the concept of the sojourn time. However, the sojourn 

time is a useful practical and conceptual tool, given our classical intuition about 

time. It is all a matter of wanting to  compare timescales. But in order to  do so, we 

need a prescription for the estimation of the sojourn time, which yields a reasonable 

answer to be useful as a practical and conceptual tool. for this to  happen, in our 

opinion, the sojourn time should be: (i) real, (ii) positive, (iii) additive (times so 

calculated for different parts should add up to give the total time), (iv) calculable, 

and (v) measurable, even if not observable as an operator in quantum mechanics. 

We have hopefully provided such a prescription in Chapter-3 of the thesis. In this 

context, we should perhaps mention the stochastic quantization of Nelson [Bl], where 

there are real stochastic paths associated with quantum motion and the average of 

the time spent by a particle traversing these paths can be taken to  be the sojourn 

time. Obviously, this time will stay real and positive, and this view has recently been 

explored[82]. Our prescription, by comparision, is within the conventional framwork 

of quantum-mechanics. 

1.7 Fluctuations and statistics 

As described earlier, there are several quantities in mesoscopic physics which fluc- 

tuate, often violently, as a function of the system parameters such as the length, 

potential strength, the presence of a magnetic field and so on. Examples are the re- 

sistance fluctuations in a mesoscopic conductor as a function of an applied magnetic 

field[83], non-periodic spatial fluctuations within a speckle pattern and the spectral 

fluctuations within a single speckle spot observed in microwave and optical scattering. 

These fluctuations are reproducible (not stochastic). This fluctuating behaviour is a 
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universal aspect of wave propagation in random media. Needless t o  say, it is wave 

interference that  is again a t  the heart of these fluctuations. In this context, there two 

kinds of statistical quantities: 

(i) Self averaging quantity 

Many thermodynamic quantities are of this kind. A statistically fluctuating quantity 

is called self-averaging, if the average of the quantity and the r.m.s fluctuations in the 

quantity grow with the system size (or number of particles), such that  in the (thermo- 
r.m.s luduation + O. are dynamic) limit of large system size, the ratio 

the pressure and temperature of a classical gas, density of states, classical resistance 

etc. In this case, the central limit theorem would apply and we can talk sensibly 

about the system and the statistical quantity using the mean value and fluctuations 

about the mean. 

(ii) Non-self-averaging quantity 

In contrast, the r.m.s fluctuations of some quantities increases with the system size 
r.m.s luctuation faster than its average value, so that  the ratio ate,age $, 0, or can in- 

crease without bound in the limit of a large sample size. The quantity of interest 

now depends on the detailed inner configuration of the sample. The quantum con- 

ductance of a mesoscopic sample is a canonical example where the conductance is dif- 

ferent for sample with differing impurity configurations and same impurity (average) 

concentration. Indeed, here we have a Universal Conductance Fluctuations (UCF) 

- Cd(e2/rh),  where Cd depends only on the dimensionality [84]. Non-self-averaging 

behaviour is a manifestation of wave interference. When a quantity displays non-self- 

averaging behaviour, we cannot meaningfully characterize the quantity by the mean 

and the fluctuations about the mean, but would require the entire statistical distribu- 

tion of the quantity. Examples are the conductance/resistance of a quantum resistor, 

reflection/transmission coefficients and the delay time of scattering in a disordered 

medium etc. One often resorts t o  considering the distribution of the logarithm of such 

fluctuating quantities as the latter often obeys a central limit theorem because of the 

levelling property of the logarithm [155]. The log-normal conductance fluctuations in 

a 1D disordered wire is a good example of this behaviour[85]. 


