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Synopsis

Most models of the formation o the structure we seein the universe today are
based on gravitational instability. While very large scales evolve rather simply in
the linear theory, there is a significant amount of nonlinearity even at the largest
scales for which reliable observations are available. Numerical simulations suffer
from serious boundary effects on such large scales. Further, some conceptual issues
in this regime are best approached by analytic work. The understanding of weak
gravitational clustering isthe main motivation for the work described in this thesis
where the dynamical evolution o some statistical properties o disturbances in an
expanding universe is studied theoretically. The main points discussed in the thesis
are listed below.

Chapter 1I .

1 The universe is modeled as a system o particles interacting only through the

Newtonian gravitational force. Thisis appropriate on scales much smaller than the
horizon scale but large enough that gravity is the dominant force. We consider an

ensemble o such systems and we set up the equations d the BBGKY hierarchy in

thefluid limit to study the evolution o somed the statistical properties o such an

ensemble. A convenient parameter is used for the evolution instead of the cosmic
time.

2. Theinitial conditions are chosen such that the deviation o any o the systems
from the uniform state can be characterized by a small parameter . Theinitial con-

ditions are also such that all the members o the ensemble have a single streamed

flow. These initial conditions alow us to associate powers of e with various statis- ,
. tical quantitiesfor the ensemble. We consider the second and the third equations
o the BBGKY hierarchy. By taking velocity momentsd these equations we obtain

equations for perturbatively evolving the two point and the three point correlation

functions. At the lowest order o perturbation these equations give us the linear

evolution o the initial two point and three point correlation functions.

Chapter I1I.

3. We consider a situation where the initial disturbances are such that the density

fluctuation is a random Gaussian field in a universe with the critical density. For

these initial conditions the initial three point correlation function is zero. We cal-

culate the nonlinearity-induced three point correlation function at the lowest order

o perturbation for which it is non-zero. We obtain a general expression for thisin



termsd thelinear two point correlation function and its average over asphere. This
investigation brings out the limitations o the commonly used hierarchical form.
Chapter 1V.

4. In general the evolution o the two point correlation is influenced by the three
point correlation function. The BBGKY hierarchy equations are used to calculate
perturbatively, the lowest order nonlinear correction to the two point correlation
and the pair velocity for Gaussian initial conditions. Our formalismis valid even if
theflow becomes multi-streamed as the evolution proceeds. We compare our results
with the results obtained using the hydrodynamic equations which neglect pressure
and other effects o multi-streaming. We find that the two match, indicating that
there are no effects & multi-streaming at the lowest order of nonlinearity.

Chapter V. ;

5. We study the two point correlation induced at large scaes for the case when it is
initially zero there. Based on an analytic study confirmed by numerical results we
conclude that this has a universal z=¢ behaviour.

6. We numerically study a class d initial conditions where the power spectrum at
small k has the form k" with 0 < n < 3 and we calculate the nonlinear correction
to the two point correlation, its average over a sphere and the pair velocity over a
large dynamical range. Wefind that at small separations the effect of the nonlinear
term is to enhance the clustering whereas at intermediate scalesit can act to either
increase or decrease the clustering. We also find that the small scales significantly
influence the evolution at large scales and this may lead to a possible early break-
down o linear theory at large scales due to spatial nonlocality. We obtain a simple
fitting formulafor the nonlinear correctionsat large scales and we interpret thisin
terms o a diffuson process. We aso investigate the case with n = 0 and we find
that it differs from the other cases.

7. We use the perturbative calculations described above to numerically investigate
a widely discussed universal relation between the pair velocity and the average o
the two point correlation. We find that in the weakly nonlinear regime thereis no
universal relation between these two quantities.

Chapter VI.

8. The Zd'dovich approximation (ZA) is used to study some o the issues that
have been studied perturbatively for the full gravitational dynamics (GD) in the
previous chapters. We investigate whether it is possible to study perturbatively the
transition between a single streamed flow and a multi-streamed flow. We do this
by calculating the evolution d the two point correlation function using two meth-



. ods a Distribution functions b. Hydrodynamic equations without pressure and
vorticity. The latter method breaks down once multi-streaming occurs whereas the
~ former does not. We find that the two methods give the same results to all orders
in a perturbative expansion. We thus conclude that we cannot study the transition
~ from a single stream flow to a multi-stream flow in a perturbative expansion. We
expect this conclusion to hold even if we use the full GD instead o ZA, as already
checked at the lowest order o nonlinearity.
9. We calculate nonperturbative expressionsfor theevolution o thetwo point corre-
lation function, the pair velocity and its dispersion in the Zel’dovich approximation.
We numerically investigate these formulaeat various scales.
10. We use ZA tolook analytically at theevolutiond the two point correlation func-
tion at large spatial separations and wefind that until the onset of multi-streaming
the evolution can be described by a diffusion process where the linear evolution at
large scales gets modified by the rearrangement of matter on small scales. We com-
pare these results with the lowest order nonlinear resultsfrom GD. Wefind that the -
differenceis only in the numerical value of the diffusioncoefficient and we interpret
this physically.
11. We aso use ZA to study the induced three point correlation function. At the
lowest order o nonlinearity we find that, as in the case d GD, the three point
correlation does not necessarily have the hierarchical form. We aso find that at
large separations the effect o the higher order termsfor the three point correlation
function is very similar to that for the two point correlation and it can be described
in terms d a diffusion process.
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