Chapter 6

The evolution of corrdation
functions in the Zd'dovich
approximation and its implications.

6.1 Introduction.

In chapter IV we have used the moments o the equations o the BBGKY hierarchy to
perturbatively calculate the lowest order non-linear correction to the two point correlation
function. The equations that we have used are vaid even in the multi-streamed regime.
The inviscid hydrodynamic equations without pressure and vorticity (referred to as the HD
equations in the rest o this chapter) are often used for similar perturbative calculations
(referencesin chapter 1). These equations are vaid only in the single streamed regime and
they break down once multi-streaming occurs. The disturbances that have been considered
are such that initially the flow is single streamed. Such a situation is correctly described by
the HD equations. As the disturbances evolve the particle trajectories intersect and there
are particles with different velocitiesat the same point i.e. the flow becomes multi-streamed.
When this occurs the HD equations are no longer valid. Thisis because the HD equations
neglect the local stress tensor associated with the moments d the velocity about the mean
velocity at a point. In chapter IV we havefound that at thelowest order o non-linearity the
results obtained using the two methods discussed above match. Based on this we concluded
that there were no effectsd multi-streaming at the lowest order o non-linearity. In this
chapter we investigate if by going to higher orders in the perturbative expansion we get any
effectsdf multi-streaming or whether it isalimitation o the perturbative technique that it is
not possibleto useit to follow the transition from a single streamed flow to a multi-streamed
flow.

Because d thedifficultyin calculating the higher order termsin a perturbative treatment
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d gravitational dynamics (GD), we look at a simpler system where we use the Zel'dovich
approximation (ZA, Zel'dovich 1970) to determine the motion o the particles. In this sit-
uation too the transition from a single streamed flow to a multi-streamed flow occurs and
we can analyse it to seeif in a perturbative calculation using distribution functions we can
include any effectsof multi-streaming which would be missed if the HD equations were used
instead.

In section 2 we discuss the evolution equations. 1n section 3 we use distribution functions
to calculate the evolution o the two point correlation function. Theequations used in section
3 are valid even in the multi-streamed regime. In section 4 we do the same calculation using
the HD equations and compare the result with that obtained in section 3.

Bond and Couchman (1988) have studied the evolution d the two point correlation
function using ZA and the calculation presented in section 3 ison similar lines. In a recent
paper Schneider and Bartelrnann (1995) have also studied the two point correlation function
and the power spectrum using ZA. For a comprehensivearticleon various aspects o ZA the
reader is referred to a review by Shandarin and Zel'dovich (1989). In section 5 we consider
the evolution o the pair velocity and its dispersion using ZA. In section 6 we numerically
investigate the formulae for the evolution d the two point correlation and the pair velocity
derived in sections 3 and 5. In this section we focus our attention on the behaviour at small
scales.

In chapter V we investigated the lowest order non-linear correction (using GD) to the
two point correlation for initial power spectra o the form P(k) < k™ at small k and an
exponential or Gaussian cut-off at large k. We found that for 0 < n < 3, the numerical
results for the non-linear correction to the two point correlation function at large = could be
fitted by a smple formula. We also interpreted this formula in terms d a simple diffusion
process. In section 7 d this chapter we investigate the evolution o the two point correlation
function at large separations using ZA and compare it with the results from GD.

In section 8 we look at the evolution o theinduced three point correlation function using
ZA. Wefirst calculate the three point correlation function at thelowest order of non-linearity
and compare it to the results from GD (chapter III). We then go on to study the effect of
the higher order non-linear terms at large separations.

The calculations using ZA are vaid for any value d g, but whenever we make compar-
isons with GD it is for the specific value @ = 1.

A similar calculation has been done by Grinstein and Wise (1987) who have used ZA
to study the evolution o skewness d the density field averaged over a Gaussian ball. Also,
Munshi and Starobinsky (1994) have considered the evolution d the skewnessd the density
field for ZA and various other approximations, and Bernardeau et. al. (1993) have calculated
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 the evolution (using ZA) o the skewnessd the density field averaged over top hat filters.
All o these calculations have been done at the lowest order o non-linearity.

In section 7 we present a discussion of the results obtained and the conclusions.

We would also liketo point out that the notation used in this chapter isslightly different
and largely independent o the notation introduced in the previous chapters. This chapter
is more or less Hf contained as far as notation is concerned.

6.2 Evolution of the distribution function

The Zel'dovich approximation (ZA) defines a map from the initial position o a particle to
its position at any later instant. If z,(t) is the comoving co-ordinate o a particle at any
timet, theinitial instant being to, and b(¢) the growing modein thelinear analysis o density
perturbations, this map is
zu(t) = zu(to) + b(t)uy. (6.1)
For a particle the quantity u,, is aconstant and it is related to the peculiar velocity vu(t)
at any instant by
u(t) = alt) ou(t) = alt)(e)un (62)
where a(t) is the scale factor.
We consider a system o particles whose motion is governed by this mapping. This can
be described by a distribution function f(z,u,t), where f (x, u,t)d®xd>u is the number o
particles in the volume d®k around the point z and having a value d u in an interval d3u
around u. We can think d equation (6.1) as a mapping in the phase space d the variables x
and u. We can also seethat Liouvilletheorem is truefor this map. Using this we can obtain
the equation for the time evolution o the distribution function f,

f(z,u,t) =f(z = b(t)u,u,to). (6.3)

We can also use equation (6.1) to obtain a differential equation for the evolution of the
distribution function 3

a
53 (@ 8) T g f(a,u,6) = 0, (6.4)

where we use the growing mode b instead o time as the evolution parameter.

We are interested in the evolution o the statistical properties o an ensemble o such
systems.

Every member o the ensembleinitially has the particles uniformly distributed. Initially
each particle can be labelled by its co-ordinate z,,. The particles are given velocities u,(x).
The velocity field is the gradient of a function ¥(z) which for each system is a different
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realisation o a Gaussian random field. It isassumed that ¢ isstatistically homogeneousand
isotropic. The statistical properties d the ensemble are initially fully specified by the two
point correlation o 4 which is defined as ¢(z) =< ¥(0)y(z) >, where the angular brackets
<> denote ensembleaveraging. It should be noted that this ¢(z) is dlightly different from
the potential ¢ used in the previous chapters. The function used here is haf the function

used in the previous chapters,
The statistical quantity whose evolution we shall focus on in this chapter is the density
two point correlation function é(z,t).

6.3 Thetwo point correation usngdistribution func-
tions

In this section we look at the evolution o the ensemble averaged two point distribution
functions p,. This is defined as

pa(zt, z? ul,u? t) =< f(a!,ul, ) f(2? u?,t) > . ; - (6.5)
From homogeneity and isotropy we can also say that
pa(at, 22, ul,u?, t) = pa(z,ul,u?,t) C (6.6)
where
' Ty = T2 — T, | (6.7)

The density two point correlation function is related to the zeroth moment o the two point
distribution function with respect tou.

<p> L+ D)= [ pala,u’ v, )Pl (6.8)

In this chapter we normalise < p >= 1.
The initial two point distribution is a Gaussian in the velocities and hence specified by

the covariance matrix
T (z) =< ulub > (z) = /u;u;pz(m,ul,uz’to)d3u1d3u2 (6.9)

where a, b take values 1,2. The initial two point distribution function then is the Gaussian
distribution

1

pa(z,ul, exp [—Eu u (T'1 (a:)J (6.10)

u2’ tO) =

_
(2r)*
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where AT(z) is the determinant d the covariance matrix. In terms d the potential 4 we
have
< upul >= ~8,0,4(x) (6.11)

and
<ulul >= -%v’¢(o)6“,. (6.12)

We use equation (6.3) to obtain the time evolutiond pa
pa(z,ut,u?,t) = pa(z — (Ud—u")b(t) u', U to). (6.13)
This may also be written as
o(z, u?,u?, t) = f 8 [x = (x— (u? - u)b(t))] pale’, ul, w2, to)da’ . (6.14)
Using the Fourier expanSI ond the Dirac deltafunction and using equation (6.10) we have

plz,ut,u?,t) = /(él;r—)sexp [zk ( - )] exp [zk (u —u )b(t)]

p[——u ub(T1)% (2’ ]dskda ’ (6.15)

(2r)° \/AT( )
Using thisin equation (6.8) and doing the U integrals we get-

1+ ¢(z,t) = (-21;)3 / exp [iky (z,, — z4) | exp [-—E—égkuk,ﬂ,( | d*z'd®k,  (6.16)
where

Fuu(@) = ~ 2V H0)5 + 20,5,9(2) (6.17)
Daoing the k integral we obtain the two point correlation as
F’l(m )] d*z’

1 1
1+§(w,t) = W/Wexp I:-—-z—b-zfa—)( X—:v,‘)(

(6.18)
Instead of integrating equation (6.16), if we do a Taylor expansion o

b*(t) '
9 kuky Fl (@ )]

e |-

and then do the k and the =’ integrals, we obtain

ON

= b2n
L+ot) = 3 20Ol | (Ona(e) — i
n=0 )

(a,,"a,n¢(z) — S v2¢(0))] . | (619

3

94



Nowhere above has any assumption been made about the number d streamsin theflow.
Equation (6.18) obvioudly has the effectsd multi-streaming built intoit. Equation (6.19) is
what one would'obtain if one did & perturbative expansion d the distribution function and
calculated the two point correlation function. Whether by doing the perturbative analysis
this way (i.e. using distribution functions) we are able to include the effects d multi-
streaming is what has to be checked.

6.4 Thetwo point corrdation usngthe hydrodynamic
eguations

In this section we shall work in the single stream approximation. We consider any one
member o the ensemble described previoudy. Its evolutionis described by equation (6.4).
We take the zeroth moment d this equation with respect to u. Using the definitions

p(z,b) =m / F(z,u,b)d%u (6.20)

and
p(z,d)vu(z,b) = m/u,,f(:c,u, b)d’u, (6.21)

we have the continuity equation
8 | B
337(:8) + 0u(p(@, BJua(=,)) = 0. ~(6.22)
Next, taking the first moment d equation (6.4) and using equation (6.22) we have

P, D) gy u(3,8) + 0z, 02, 8) +
1 m/(v,(m, b) = wy)(vu(z, ) — wu)f (=, v, b)dau = 0. (6.23)

In the single stream approximation the last term in the above equation is dropped, and we

have a
( apvu(@:b) + v,(z, b)B,v,(z,b) = 0. (6.24)

We shall use equations (6.22) and (6.24) to perturbatively evolve the density and velocity
fieldsd the system and useit to calculate the two point correlation function.

Using equation (6.22) we can obtain an equation for the first derivatived the two point
correlation function

1< 057 (L (e )] = ~ < BLp(e un(#)o(a) > — < p( )0 (o(e () >
| | : (6.25)
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Using the normalisation < p>= 1, the above equation may be written as

2 o) = —85 < AU > (6.26

We can'use equation (6.22) and (6.24) to obtain equations for the higher derivatives o the
two point correlation

an' n Na. a: a. a a: a.
a—ﬁf(m, b))=(—1)"83:852...05" < p(1)ugi ugd..ufrp(2) > . (6.27)
Next we write the two point correlation function as a Taylor seriesin powers o the growing

mode b
& bn an

é(z,b) = nz=:1 1555 (@ bs=0 (6.28)
and using equation (6.27) we get
{COEDY @ajmmaﬂn < p(1)u w224l p(2) >pep - (6.29)

n=1
Then using the fact that the initial density is uniform, we have
= bn a. a a an
é(z,0) = ) ;—'(——1)"6;;6:;...6,,: < Ut Ul Uy Spp (6.30)
n=1"""
Also theinitial velocity field is Gaussian and hence dl the odd termsin equation (6.30) are
zero. We can then write this equation as

(o bZn )
{(z,b) =Y ma;;a,’:;...a;;aﬁ; <ultud ulruln Speo . (6.31)
n=1 * ) oo

For a Gaussian field we have

<ullubtuf?ell utrubt >= 3" <ullel S<uBul > L <ultuln >, (6.32)
P

where the sum is over all possible ways d pairing the u’s.
Using this and the fact that the derivativesare symmetricin al theindicesinvolved, we
have

OB b - otnehs < uul . ufinubn >

1 Tat 5
= .(2;)!0;;6;;,,,0;;6;; [<uttuft > .. <ulrule >], (6.33)
n! n

This, when used in equation (6.31), give us

&0 2n :
é(z,b) ==Y :!2,.-631‘63.% 083653 -+-0gn oka [< ultull >< uBul? > .. < ulruly >] . (6.34)
n=1
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Summing the superscripts a, by, «..an, by Over thevalues1 and 2 and using

2
< ulud >= -——V;L(O)-é" ifa="b ‘ (6.35)
and
< ulup >= 8288 ¢(z) if a#b (6.36)
we have

1+{(=,t) = Z bznama +Bpin O [(ama"‘ $(z) — b vz:”:(O))

"-_-o(ap,.am(w) b 2D) | e

This is the same as equation (6.19) which was obtained using distribution functions.
Thus we see that the perturbative calculation d the two point correlation function using
distribution functions is equivalent to doing it using the pressure free HD equations. It
therefore has no effects of multi-streaming and hence we reach the conclusion that it is not
possible to perturbatively follow the transition from a singlestreamed flow to multi-streamed
flow.

6.5 The pair velocity and its dispersion.
The Zd'dovich approximation can be used to calculate the pair velocity which is the mean
relative peculiar velocity at some separation x,. The pair velocity is

(2 — ul)pa(z, ul, w2, t)dPul d®u?
J p(z, ut,ul, t)d3ul d3u? ’

vu(x,t) = ab (6.38)

which is related to the first moment o the two point distribution function. Using equation
(6.15) we obtain for the first moment o the distribution function

/(u — ul)pa(z,u',u? t)d3u'd®u? = b(t) ( -z, )g(z, x', b)dx’ (6.39)
where '
' : 1 1 ) 1 ’ ) ' -1 w/ ‘
g(z,z,b) = M—AF\/__T;-)- exp [—W (a:” - :z:,,) (:x:,, - m,,) Fo( )] ,  (6.40)
and

f g(z, X' ) = 11 &(z, 1), (6.41)
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For 2 = 1 this gives for the radial component (the only non-zero component) o the pair
velocity
§

v(z,t)= az(1 — A(z,1)) : (6.42)
where [ o(e,0',t)0'
_Jglz,z,t)za’z
(2,t) = x [ g(z,2',t)d3x’

We aso obtain for the dimensionless pair velocity
h(z,t) = = A(m t)—1. (6.44)

We next use the Zd'dovich apprOX|mat|on to study the ensemble average o the dispersion
d the relative peculiar velocity between two points. This dispersion has a contribution from
the spread o velocities across the different realisations. In addition to this, in the multi-
streamed epoch it also has a contribution from the velocity spread at a single point in any
individual realisation in the ensemble. The dispersion o the relative peculiar velocity is
defined as

(6.43)

_oinaJ (= ul)(ud = ul)pa(z, ut, u?, t)dPuld®u?
< vy > (2, 1) = (ab) =—* "fpz(m,u‘,uz,t)ds“’lds;z

Thisis a symmetric tensor and since all statistical quantities are homogenous and isotropic
we can write this as

(6.45)

(Bu(tu

< v, > (Xt)= 6 B'(z,t)T 220 (2,t) (6.46)

where the B'(z,t) is the dispersion in the component d the relative peculiar velocity in

any direction perpendicular to £ and B'(:c,t)+ C'(z,t) is the dispersion in the component
paralel to £. We aso define a dimensionless peculiar velocity dispersion tensor

ew(z,1)= <”“’(’Z:)2(”’ ) = 6, B(s,t)+ ‘”“”””0( ). (6.47)

Using equation (6.15) for the distribution function we have for its second moment

[t~ k) — ub)oale,w wt U = L [(2a—2)(zs — op)a(z, ', t)d’". (6.48)
Using this for £ = 1 we can write for the two components o the dimensionless velocity
dispersion tensor

B(z,t)= (J % [m’f g f—] 9(z, 2, t)dz )/(x /g(m z';1)d3) (6.49)

and
C(z,t)=1-24(z,t)T D(z,t) - B(z,t) (6.50)

where

D(z,t) = ( [@-&7gz,2,0d%) / (x* [ g(m,w',t)da) (6.51)
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6.6 The two point correlation at small separ ations.

Here we consider the evolution d the two point correlation function and the pair velocity
using the formulas derived for the Ze'dovich approximation. We consider a power spectrum
P(k) = .5k%e~* which has a power law form k?-at small k with an exponential cut-off at
large k. This cut-off introduces a length scalein theinitial conditions. Wefirst consider the
evolution d the statistical quantities at scales much smaller than the scale introduced by
the cut-off. Figure 6.1 shows theinitial two point correlation function ¢()(z) and the initial
dimensionless pair velocity A®)(z) at small z. These quantities are defined so that in the
linear regime

e, = (28) ¢ (652
and )
Ke, 0 = (20 e, (6.5)

Wefirst look at theevolutiond the two point correlationfunction and compare the results
from ZA with the linear evolution and the evolution taking into account the lowest order
non-linear effectsin gravitational dynamics (GD) discussed in the preceding two chapters
(i.e. 1V and V). Figure 6.2 shows the two point correlation functibn as a function o the
scalefactor for al these three cases for different small spatial separations.

The first thing to notice is that ZA, GD and the linear evolution start differing from
one another at nearly the same epoch. The two point correlation calculated using ZA grows
faster than the result obtained from the lowest order non-linear GD. This could be a result
o thefact that we are considering only the lowest order o non-linearity in an epoch when
al the termsin the perturbative series may be comparableand it is possible that if we take
them into account GD may predict a faster growth. The linear two point correlation grows
the dowest o all. We find that after initially increasing, the two point correlation function
calculated using ZA reaches a maximum value and then decreases. This corresponds to the
structures at that particular scale getting washed out after particle crossing. We find that
the maximum value reached by the two point correlation function has a significant variation
over the small range of separations that we consider here. Wefind that at smaller separations
the two point correlation function reaches a higher value compared to larger separations. We
nest consider the evolution d the dimensionless pair velocity. We see that the behaviour
d this is quite smilar to that d the two point correlation function. An important thing
to notice is the fact that at the smallest scales that we have considered the dimensionless
pair velocity reaches the vaue 1 beforeit starts decreasing. When A(z,t) has the value

A
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Figure 6.1: The linear two point correlation and the llnear palr veloc1ty at small separations

for the initial power spectrum P(k) = .5ke~¥
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Figure 6.2: This shows the two point correlation function as a function of the scale factor
for different small separations. The solid curves show the evolution in ZA. The dotted curve
" shows the prediction of linear theory for the separation z = .01 and the dashed curve shows
the evolution at the same separation if we include the effects of lowest order non-linear GD.
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one at a particular separation, in the proper (non expanding) co-ordinate system the mean
relative peculiar velocity of the particlesat thisseparation just balancesthe Hubbleexpansion
between the two ends. In other words, in the proper co-ordinate system the particles which
were initially moving away from each other are now at rest with respect to each other (on
the average at a particular separation). This epoch is often referred to as the epoch when a
certain scale turns around. Wefind that at small scales we can follow the pair velocity until
turn around and beyond using ZA. At dlightly larger scales we find that the pair velocity
does not reach the value 1 but starts to fall off at a much smaller value. This is because
at these separations not only are there particles which are moving towards one another but
there are particles which have already undergone multi-streaming and are moving apart. Itis
the latter which causes the pair velocity to decrease. The resultsfrom ZA are quantitatively
incorrect during this phase o the evolution. This is because in ZA the particles keep on
moving away from one another after they have crossed, whereas in reality they form bound
objects. This aspect o gravitational instability which is missed out by ZA isincorporated
in the adhesion model (Gurbatov, Saichev and Shandarin, 1989) which makes the particles
stick together by introducing an artificial viscosity. Another interesting epoch is the epoch
when the pair velocity crosses zero. When the dimensionless pair velocity is positive it
means that the particles at that separation are approaching each other (in the comoving co-
ordinate system). Once the pair velocity becomes negative it means that at that particular
separation the particles are on the average moving away from each other. This is when the
structures at that scale start getting washed out and we see that the epoch when the pair
velocity becomes negative corresponds to the epoch when the two point correlation at that
scale starts to decrease. Thus is the epoch when the Zel’dovich approximation breaks down
in that its predictions no longer tell us anything about the evolution under gravitational
dynamics.

In figure 6.4 we show h(z,t) as a function o &(z,t) for different separations. At the
small scales considered here the quantities £(z,t) and "¢(z,t) are nearly equal. The scaling
relations discussed in the previous chapter assume that there is a unique relation between
these two quantities. We find that in the ZA all the curves do not coincide but they do
show a similar behaviour. We see that initially for small values o €(z,t) the various curves
follow the prediction o linear theory h = (2/3)é(z,t). For larger values we find that the
curvesfrom ZA are steeper than the this. We also find that the curves are steeper at smaller
scales.. At even large values of £(z,t) we find that the various curves flatten of and then
start to fall off. Although the behaviour is similar for the different scales considered, we find
that the curves do not coincide and they have a distinct spread. In contrast to this, the
investigation based on gravitational N-body simulations indicate that h(z,t) and £(z,t) are
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Figure 6.3: This shows the dimensionless pair velocity as a function of the scale factor for
different small separations. The solid curves show the evolution in ZA. The dotted curve -
shows the prediction of linear theory for the separation z = .01 and the dashed curve shows

the evolution at the same separation if we include the effects of lowest order non-linear GD.
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Figure 6.4: This shows the dimensionless pair velocity'h(m t) as a function of (z,t) for
different small separations. The solid curves show the evolutlon in ZA.. The dashed curve

corresponds to the equation h(w t) = (2/3)£(w t) ,
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related as h(z,t) = (2/3)€(z,t) until A(z,t) ~ 1 (Hamilton et.al 1991).

We next consider the evolution of the various statisttical quantities at intermediate sep-
arations which are comparable to the scale introduced by the cut-off. Wefirst consider the
evolution o the two point correlation function (figure 6.5). We see that at the separations
X = .4 and x = .7 the behaviour is somewhat different from the behaviour at the smail
scales. We find that unlike the small separations where the non-linear correction increases
the growth o the two point correlation function, here the effect o the lowest order non-
linearity from GD is to dow down the growth o the two point correlation function relative
to the linear evolution. We aso see that at the separation x = 0.4 the evolution of ¢(z,t)
in ZA is faster than that predicted by linear theory where as at z = 0.7 it is Slower. At
the separation z = 1 the initial two point correlation function is zero and it remains so ac-
cording to linear theory. The effect of the lowest order non-linearity from GD is to generate
a positive correlation. ZA has the same effect but it grows slower compared to the lowest
order non-linear GD. At the separation ¢ = 1.4 theinitial two point correlation function has
a negative value which keeps on decreasing (i.e. increasing in magnitude). The effect o the
non-linear correction in GD is to dow down this decrease (i.e. the growth of the magnitude
dows down) and make the two point correlation function positive. The evolution of the two
point correlation function in ZA is quite similar. In ZA the two point correlation function
reaches a maximum value and then starts to decrease again. We next consider the evolution
o &(z,t) (figure 6.6). We find that the evolution of this quantity in ZA is very similar to its
evolution when we take into account the lowest order non-linear effects from GD. We find
that when ZA predicts an evolution faster than linear theory, so does non-linear GD and
when ZA predicts an evolution sower than linear theory non-linear GD predicts the same
behaviour. The behaviour o A(z,t) (figure 6.7) is very similar to the behaviour o &(z,t).

We have also considered the evolution o h(z,t) as a function  &(z,t) at the different
intermediate separations (figure 6.8). Wefind that in all the cases the curves obtained using
ZA lie below the prediction h(z,t) = (2/3)€(z,t) (in contrast to the behaviour at small sep-
arations). We also find that although the curvesat the various intermediate scales |ook very
similar they are actually different. This is most obvious if we look at the value of £(z,t) at
which h(z,t) reaches its maximum value and starts to decrease. We find that this exhibits
a distinct scale dependence and this value decreases as we go to larger separations.

6.7 The two point correlation at large separ ations.

In this section we investigate the evolution o the two point correlation function in the regime
where it can be studied perturbatively and we look at the behaviour at large separations.
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Figure 6.5: This shows the two point correlation function as a function of the scale factor for

different intermediate separations. The solid curves show the evolution in. ZA. The dotted -
curve shows the prediction of linear theory and the dashed curve shows the evolution if we
include the effects of lowest order non-linear GD. ’
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Figure 6.6: This shows the aver'age d the two point correlation function &(z,t) as a function
o thescalefactor for different intermediate separations. The solid curves show the evolution
in ZA. The dotted curve shows the prediction d linear theory and the dashed curve shows

the evolution if we include the effects o lowest order non-linear GD.
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Figure 6.7: This shows the dimensionless pair velocity as a function of the scale factor for
different small separations. The solid curves show the evolution in ZA. The dotted curve
shows the prediction of linear theory and the dashed curve shows the evolution if we include

the effects of lowest order non-linear GD. .
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Figure 6.8: This shows the dimensionless pair velocity A(z,t) as a function of £(z,t) for
differebt separations. The solid curves show the evolution in ZA.. The dashed curve corre-

sponds to the equation h(z,t) = (2/3)é(z,t)
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Theinitial conditionsfor the evolutiond the cosmological correlations may be expressed in
terms o the potential ¢(z) or equivalentlyin terms d the matter two point correlation in
the linear epoch, ¢)(z,t). The two are related by the equation

€z, 8) = b2(H)V*)(x). (6.54)

Usually theinitial conditionsaregivenin termsd the matter two point correlation ¢®)(z,t)
or its Fourier transform b2(t)P, (k) which is the power spectrum. One then has to invert
equation (6.54) to obtain the potential ¢(z) and its derivatives. In doing so one has the
freedomin choosing boundary conditionsand the effect o changing the boundary condition
is

Vi¢(z) - Vi(z) + Oy (6.55)
and
012}2
¢(z) = ¢(z) + —— + (1. (6.56)

Equation (6.19) for the two point correlation function is invariant under these transfor-
mations and we are free to choose any boundary condition. For initial conditions where
the integral f° ¢éM)(z)zdz (or f° Pi(k)dk) is finite we can choose the boundary condition
limit,—0 V3¢(x) = 0. We then have

<ul>= —V2¢(0) = /w éV(z)zde. . . (6.57)

In addition, if at large x the function 8,8, ¢(z) is monotonically decreasing and 8,8, ¢(z) <
(8,0/3)V2$(0), we can then neglect al but oned the 8,8, ¢(x) termsthat appear in equation
(6.19). 'For initial conditions where the power spectrum has the form P(k) o k" at small k
and if it has a cut-off at large k, the conditionsdiscussed above are satisfied for n > —1. For
these cases we obtain for the two point correlation function at large x

to)= 3 o (FRE) (v et (6.56)

Using this we obtain the lowest order non-linear correction to the two point correlation
function at large z, ?
E(z)(m7t) = 'é" <u> sz(l)(m»t) (659)

In chapter V we have considered the samequantity using GD and wefound that for 0 <n < 3
at large « the results can be fitted by the formula

* ((g, 1) = 1048 < u? > VED(z,8) (6.60)

We find that the.two equations are very similar and they differ only in the numerical coef-
ficient. In chapter V we also interpret equation (6.60) in terms o a simple heuristic model
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based on a diffusion process. We consider a particular member o the ensembleand look at
the evolution o the density in volume elementslocated at a separation x from each other.
We assumethat the density in each volume element grows according to linear theory and the
volumeelementsget rearranged randomly on small scales because d their peculiar velocities.
Based on this model we obtained an equation identical to equation (6.59). Thus we see that
this model gives an exact description d what happens in ZA at large scales in the regime
when the perturbative treatment is valid. In ZA, likein our heuristic model, the velocity o
the particles is fixed whereasin GD the particle velocity changes as evolution proceeds. We
believethat thisis responsible for the smaller diffuson coefficientfor GD compared to ZA.

Going back to equation (6.68) and writing it in Fourier space we obtain for the power
spectrum

| —b2k2 < 42> n
Plk $) = [V‘ il {# 2
- \"7"./ l.f-j) nl \ 3 ) ] b Pl(k).) (661)
Summing up the termsin the square brackets we have
3212 2
P(k,t)= exp (b—";—'i-i) b2Py(k). (6.62)
which in real space gives us
e @ = X) | )’ 1)y
where 1
L2(t) = -3-b’(t) <u?>, (6.64)

Thelength scale L(t) isther.m.s. deviationd the particlesfrom their Lagrangian (or initial)
positions at any timet. We see that the non-linear evolution d the two point correlation
function at large « correspondsto a convolution o the linear two point correlation with a
Gaussian whose width is proportional to L(t). Thisis consistent with our interpretation o
the evolution in termsd a diffusion process.

For the case when the initial power spectrum has the form

Py(k) = Ae~"¥'kn, o (6.65)
using equation (6:58) at small k, we havefor the non-linear power spectrum at small k
P(k,t) = Ae @ +E(NF g2 pn , . (6.66)

Using equation (6.65) and (6,66), and using the fact that

/oo g‘k’e"ﬂ:“’kz Pk = ﬂ31+,, /,°° e* g—oK pn g3, ; (6.67)
oo ; . } :

-0
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we obtain for the non-linear two point correlation function at large z

_34n
_ LY 7w X
(=, t) = [1+( - ) } & ( 1+(£(9)’.’t)' (6.68)

This formularelates the non-linear two point correlation at some separation x at a time
t tothe linear two point correlation at a smaller separation at the sametime. Thus, at large
x, for small values d the two point correlation, we have information being transferred out
from the smaller scales to the larger scales.

We next numerically investigate the evolution d the two point correlation function at
large separations for the initial power spectrum P;(k) = Se ¥k, Figure 6.9 shows the
function £)(z) as a function d x for large separations.. This function multiplied by the
square o the scale factor gives the linear two point correlation ¢()(z,t). At large x the
function ¢M(z) has a negative sign and a power law behaviour z—%. We investigate the
evolution d the two point correlation function at the large separation x = 10. We do this
using four different approximations which we list below:

(a). linear perturbation theory

(b). linear theory + the lowest order non-linear correction usi ng GD (chapter V).

(c). the result obtained from summing the whole perturbation series for the ZA with the
extraassumptions about the evolutionat large separations madein thissectioni.e. equation
(6.68)

(d). the non-perturbative two point correlation calculated using ZA (6.18). This exercise
alows us to investigate two different issues. The first thing that we can check is how well
ZA approximates GD. This can be done by comparing (b) with (c) and (d), In this section
we have made some assumptions about the large x behaviour d the two point correlation
function and arrived at the diffusion picturefor theevolution. We can put these assumptions
to test by comparing (c) with (d). The results are shown in figure 6.10. Wefind that al the
four approximations match in the early stages of ,the evolution. The two point correlation at
this separation isinitially negative and this value evolves according to linear theory whereit
gets multiplied by b2 The different approximations start to differ as the evolution proceeds.
The first thing to note is that they start to differ much before é(z,t) ~ 1 when one would
naively expect the perturbation seriesto break down. Thisis a consequenced the non-local
nature o the non-linear termsfor the two point correlation. As discussed in chapter V, this
can be understood using equation (6.57)

<Ul>= / ” ) (z)edz

which shows that the non-linear correction dependson thelinear two point correlation condi-
tion at all the scales and the major contribution to thisintegral comes from the small scales.
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Figure 6.9: The initial two pomt correlation as 8 functlonﬁof the sepa.ra.tlon at large scales

for the power spectrum P(Ic) = 5e”°’k
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The small scales become strongly non-linear very éarly in the evolution and it is because o
this that the non-linear term starts contributing at<large x even when §(z,t) < 1 In all the
approximations (i.e. (b),(c) and (d)) the effect o theinitial deviation from the linear theory
is to makethe growth ratefaster than b%(t). In theinitial stages approximations (b), (c) and
(d) exhibit qualitatively similar behaviour but as the evolution proceeds we find that (d)
starts showing a behaviour completely different from (b) and (c). Wefind that the rapidly
decreasing function (d) dows down its decrease and then starts to increase, This is quite
different from the behaviour d (b) and (c) which continue to decrease. This differenceis
because o the effectsd multi-streaming. In ZA the correlationsget washed but after multi-
streaming occurs. Until the onset d multi-streaming the diffusion picture (c) matches quite
well with the full ZA i.e. (d). A comparisond (b),(c) and (d) shows that ZA qualitatively
predicts the same behaviour as GD and the quantitative difference may be attributed to
the differencein the diffuson coefficients. In the case of the actual gravitational dynamics
(non-perturbative) we expect that the results may be different because there the particles
will get 'stuck’ in bound objects once multi-streaming occurs (e.g. the adhesion model;
Gurbatov, Saichev and Shandarin 1989) As a result of this the mean square displacement
d the particles will be much less than in ZA or in perturbative GD. Although we expect
this diffusion picture to hold for the actual evolutiond the two point correlation function at
large x, the perturbative treatment o GD and also calculationsusing ZA may overestimate
what would be obtained in N-body simulations. Incidentally, the regime treated here would
be difficult to study using such simulations since it involves the low amplitude tail o the
two point correlation function which would be limited by the size d the box and it would
require a large dynamical range.

6.8 The 3 point correation function.

We use ZA to follow the evolution d the N point correlation function. It is possible to do
this non-perturbatively by following a line d reasoning very similar to that in section 3.
However since ZA is a good substitute for the gravitational dynamics only in the weakly
non-linear regime we prefer to carry out the investigation perturbatively.

We first consider the evolution d the ensemble averaged N point distribution function
pn(z?,u%,1). Thisisageneraisationd theensembleaveraged two point distribution function
introduced in section 3 and the superscript a refers to the various points i.e., 1,2... N in
phase space which are arguments d this function. Using equation (6.3) we obtain for the
time evolution d this function

pn(z® u%,t) = pn(2® = b(t)u’,u®, to) . (6.69)
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Figure 6.10: The two point correlation at a fixed separation x = 10 as a function o the
growing mode (¢) for (a) linear theory, (b) linear theory + lowest order non-linear correction
using GD (c) non-linear evolution using ZA and the assumptions made in section 5 about

the large x behaviour, and (d) non-perturbative ZA
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Expanding this in a perturbative series and using a3, a;...a, for n indices that indepen-
dently take values between 1 and N, and using g1, 2 ... pn fOr n corresponding Cartesian
components, we have

pn(z% utt) =Y -(-_Tb!)—u“iu“’ LUl 93852 L. O pn(2®,ut to) . | (6.70)

[ e T IR " e i T I
n=0

For both the kinds o indices the Einstein summation convention holds and all the a‘s have
to summed over therange1to N whenever they appear twiceand the u;s haveto be summed
over the three Cartesian components whenever the indices are repeated.

To calculate the N point correlation function we take velocity moments d the N point
distribution function

/pN(w‘.’,u“,t)dsNu =) (_nl:) Optony ... Opn < wugtug?l.ugh > . (6.71)

n=0

All the terms where n is odd are zero and only the terms with even n contribute. We aso
have

< uBu® Lulrudtul Luln >=< u;‘}luf’,‘1> .o < ulrulr > +permutations. (6.72)

.

Using the fact that 85053 ...852 is symmetric in all the indices, we can add up al the

permutations to obtain for the termswith even n

g gh..g ot <ufludl Lulnuin >= (6.73)
[ ' ’
Gk o0; o ... Ge Abs [Tosts ... Torke] .

where T2t =< wZ%uf, > is the covariance matrix introduced in section 3 evaluated for the N
point distribution function.
Using this in equation (2.10), we have
o0 (bZ)n

/pN (a®,u®, £)dNu = Z% Eﬁ;fa;: o ... Bn oy [Tesby .. Tgrkn] (6.74)
In the above equation, for afixed vaue d n, there will be a term with n pairs (a1by),(a1b2)
..« (anbn) Where each index is independently summed over values 1 to N. Thus, for a fixed
valued n, the total contribution is asum o N2 terms each corresponding to a different set
d values for the position indices. In any one o these N terms there can be two kinds of
pairs
A.if & = b;, then Tk = —36,,,,V3¢(0) is a constant
B. if & # b then Tgii = 8305 ¢(as, bs) is a function o the separation between these two
points.
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Any o the terms can be represented by a directed graph with N verticesand n edges. The N
vertices correspond to the N pointsin the N point correlationfunction. Each Tt in equation
(6.74) corresponds to an edge. The pairsd the kind A correspond to an edge connecting
a vertex to itsef and a pair o the kind B corresponds to an edge connecting two different
vertices. The integral [;° pn(2?,u®,t)d*Nu then corresponds to a sum o graphs with N
vertices and the number d edges going from 0 to infinity.

The quantity $pn(x?2, u?,t)d®Nu d3z!d3z? .. d3xN is the mean number of particles we ex-
pect to find in the volume d®z! at «! and d3x? at 22 and ... d3xN around xN. This has
contribution from the lower (i.e., N-1,...1 point) correlation functions also, The residue
when the contributions from the lower correlation functions have been removed, is called
the reduced N point correlation function. Henceforth we shall refer to the reduced N point
correlation function as the N point correlation function. The graphs that do not connect all
the N points correspond to functions that do not refer to all the N points and these are the
contributionsfrom the lower correlations. The reduced N point correlation can be calculated
by considering only the connected graphs with N vertices. The lowest order contribution to
the N point correlation correspondsto the connected graphs with the least number d edges.
These graphs are the tree graphs and they have N-1 edges. The other termsthat contribute
to the N point correlation can be generated by adding more edges to the tree graphs.

We use equation (6.74) to calcul ate the three point correlationfunction. The lowest order
at which the three point correlation developsis n = 2 and this can be written as

b 7 ol nd na! [ a e’
¢0(1,2,3,1) = - 05 053 652 03 [T% T] (6.75)

By TH2 TRy T |7 M2 paps

where a; ,a; and a3 are to be summed over all possible permutations o 1,2 and 3. Equation
(6.75) corresponds to the only possible tree graph with three verticesa; , a, and a3, and two
edges (ay, a,) and (a; ,a3).

Using 1
0.9°4(z) = 2 [” e(uldy = 52,80c) (6.79)
we have
(0(1,2,3,1) = Z (14 000, )60e, 0600, 1) ,
+ cos ezyédif(l)(z,t)y{—(ﬁ(y,t) + %(1 — 3cos? Gzy)f(l)(w,t)z(_ﬂ(y,t)
1 —_
= 5(1 - 3008 0, )E0(z, )E(y, 1)] (6.77)
where
T = 2% — 2% , y=:c°; — 2%
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and
Oy = %‘%‘i | - (6.718)

Thisexplicitly exhibits the dependenced the lowest order induced three point correlation
function on theinitial two point correlationfunction. We seethat the three point correlation
depends on both ¢®)(z,t) and é1)(z,t). Thus we see that the small scales can influence
the three point correlation at large scales through the quantity Zm(m,t). The lowest order
induced three point correlation function calculated using ZA is very similar to that calculated
by studying gravitational dynamics perturbatively at the lowest order beyond the linear
theory (chapter III) and the differenceis only in tke numerical factors .

We next calculate the higher order terms that contribute to the three point correlation
function. These are generated by adding more edges to the tree graphs. Consider a graph
with n > 2 edges. In.this graph the tree graph can be embedded in CF ways. Using thisin
equation (6.74) we have

oo 1.2(n+2) tor o
((1,2,3,t)=§022fr1n!3§§3’3‘l- . O Oln 0310220205 [T .

o Do TaiaaTadad) (6.79)

Asdiscussed in the previoussection, at large x the contributions from'the termswith a; = ¥
will dominate. Thus, at large = the three point correlation function may be written as

-] 2n
¢(1,2,3,t) = Z; z;n,(—%V“’qs(o))"(v“t)%vm)z (V)28 2,3, 1) (6.80)

where the index a, indicates at which point the Laplacian acts, and it is to be summed over
the values 1,2 and 3. In Fourier apace we have

(LR ) = 3 D GOk + () (k)R KR (681)

n=0

where F3 is the Fourier transform d the three point correlation and Fé” is the Fourier
transform o the lowest order three point correlation. The terms can be summed up to
obtain

2 2
Fy(k', k%, K> 1) = exp [—%b <3f‘ >-((k1)2+(k2)2+(k3)2)] F{O(R, B2, K31 (6.82)

which gives us in real space

C(zlywza w31t) =

1 (=° _ya)z ‘ 1,2 ,3 -
(—m/exP [_W] ((l)(y ¥ Y ’t)dgy- ‘ (683)
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Thus, at large separation, the effect o including the higher order termsfor the three point
correlation function is to convolved the lowest order induced three point correlation with
a Gaussian o width L(t). As with the two point correlation function, this too can be
interpreted in terms d a diffuson process.

6.9 Discusson and Conclusons.

Wefind that when we calculate the two point correlation function as a seriesin powersof the
growing mode, we get the same answer if we do the calculation using distribution functions
or if we do it in the single stream approximation. Since the first set d equations is valid
even after multi-streamingoccurs and the second method breaks down once multi-streaming
occurs, we would expect to get different answers using the two different methods. But the
two results match to all ordersin the expansion parameter. We therefore conclude that even
though these equations are valid in the multi-streamed epoch, if westart from singlestreamed
initial conditions we cannot perturbatively calculate any effect due to multi-streaming e.g.
vorticity, pressure. This limitation arises from the fact that the full two point correlation
function for ZA, which includes the effects d multi-streaming, is an exponentia in 51, All
the derivatives d the function %e‘f% vanish at b= 0. Asaresult, if wetry to expand this
function in a seriesin powersd b around b = 0, wefind that coefficientsd al the powers o
b are zero. Shandarin and Ze'dovich (1989) present a formulafor N, the mean number o
streams at any point, in a situation where the particles are moving in one dimension under
ZA. At small b thisformulaisd theform N = 1+ ¢3 where A is a congtant characterising
theinitial conditions. If we expand thisin powers d b, the coefficientsfor al the terms are
zero and we find that the mean number o streamsisone. This confirmsthat the effects of
multi-streaming cannot be studied perturbatively. Althoughin this analysis we used ZA, we
expect this to hold for the full gravitational dynamicstoo, as derived at the lowest order'of
non-linearity in chapter V. ’

Wefind that at small separations ZA predicts an increasein clustering that isfaster than
the linear evolution. It is also faster than the evolution if we take into account the effects
of the lowest order non-linear correctionsin GD. We also find that the deviation from linear
theory predicted by ZA is d the same sign as that predicted by the non-linear correction
from GD. We have also investigated the relation between h(z, t) and £(z,t) and wefind that
this does not show an universal 'behaviour. We aso find that at small separations in ZA
h(z,t) grows faster than predicted by the relation h(z,t) = (2/3)é(=,t) which is valid in
the linear regime. At scales comparable to the length scale introduced by the cut-off in the
initial power spectrum wefind that evolutionin ZA could be faster or dower than the linear
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evolution. We also find that the evolutionin ZA is very similar to the evolution we get if we
take into account the lowest order non-linear correctionsfrom GD. In our investigation o
the relation between h(z,t) and £(z,t) wefind that at intermediate scales h(z, t) lies below
the vaue predicted by the relation A(z,t) = (2/3)(=,t).

In our comparison d the evolution d the two point correlation function at large sep-
arations we find that the results obtained using ZA are quite similar to the lowest order
non-linear results obtained using GD and both d them can be interpreted in terms d a
diffusion process where the rearrangement d matter on small scales affects the two point
correlation at large scales. In ZA, for an initial power spectrum with n > -1, the mean
square displacement o the particles from their original positionsis L2(t) = b(t) < u? >
and this makesits appearance in the formulafor the non-linear correctionsto the two point
correlation function obtained using ZA. Interpreting the resultsfrom GD in asimilar fashion,
for an initial gpwer spectrum with n > 0, we have L2(t) ~ ,580%(t) < u2 >, In chapter V
we also considered the case with n = 0 and for this case we found L%(t) ~ 1.49b2(t) < u? >.
The differences can be understood in terms of the fact that in ZA the particles move along
trajectories calculated using linear GD, whereas when we take into account non-linear cor-
rections, the trajectories get modified by the tidal forces. In the equations for the evolution
d the two point correlation function the tidal force acts through the three point correlation
function. The tidal forced the third particle (in the three point correlation), will cause the
other two particles to move towards or awvay from one another. This effect will be strongly
dependent on the spatial behaviour d the three point correlation function. For the cases
with n > 0 the induced three point correlation has the hierarchical form at large x wheresfor
the case with n = (0 the induced three point correlation does not have thisform. We propose
that it is because o this that the effectof the tidal forcesis different in these two cases and
in the former case the effect of the tidal forcesis to reduce the mean square displacements
relative to ZA whereas in the latter case it increasesit. Thus indirectly, it is a diagnostic
d the effect & the back-reaction o the three point correlation function on the pair velocity
which in turn effects the two point correlation.

We find that for ZA, at large x, we'can sum up al termsin the perturbative series and
the non-linear two point correlation function is related to the linear two point correlation
by a convolution with a Gaussian of width « L(t). We aso find that for special initial
conditions where the power spectrum has a Gaussian cut-off at large k, the evolution at
large x can be described by a simple scaling relation according to which the information
propagates outward.

We aso find that this picture based on diffusion gives a good description d the evolution
under ZA until the onset d multi-streaming. Based on this we suggest that the evolution
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o o the two point correlation function in GD can also be described by a diffusion process
until the onset d multi-streaming.

We have calculated the lowest order induced three point correlation function using ZA
and wefind that it is very similar to the result obtained using GD and the two differ only in
the numerical factors. We also investigate the effect o the higher order non-linear terms and
wefind that at large x we can sum the whole perturbation series. Wefind that the expression
obtained after taking into account the non-linear correctionsis related to the lowest order
three point correlation function by a convolution with a Gaussian o width « L(t). Thisis
very similar to the evolution o the two point correlation function at large separations.

It can be shown that a similar relation holdsfor the higher correlation functions also but
we do not pursue this matter here.
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