
Chapter 5 

Investigating the two point 
correlation function. 

In this chapter we investigate the lowest order non-linear correction to the two point corre- 
a lation function for various initial conditions. We also investigate the non-linear correction 

to the pair velocity. 

5.1 Effect of small scales on large scales. 

In this section we study how the small scales affect the large scales. We consider a situation 

where initially ( ( l ) ( z )  = 0 for x > xo. In the linear regime ( ( a )  will continue to have the 

value zero for x  > xo. This will not be true in the non-linear regime and there will be 

non-zero correlation for x  > xo due to the streaming of particles and the non-local nature of 

gravity. In this section we want to find out, to the lowest order of non-linearity, the nature 

of the induced correlations. 

We first consider an extreme case lof the above situation where the initial two point 

correlation is a Dirac delta function and ( ( ' ) ( x )  = 0 for x  > 0. We initially have 

1 
( ( ' ) ( x ,  X O )  = iXOV4g5(x) = & X O A ~ J ( X ) .  

2  (5 .1 )  

Solving for the potential we get 
A 

= - p  ( 5 . 2 )  

and using this in equation (4 .42)  we obtain for x  > 0. 

5 A a  XAO 1 
~ ' ~ ' ( x ,  A )  = 5 7 2  (5 .3 )  

This shows the influence of the small scales on the large scales. 

We next write equation (5 .3 )  in a form that can be compared with a general case where 

the initial two point correlation function has compact support. This is done by introducing 



a quantity M ( X )  which is related to the integral of ( ( ' ) (x ,  A )  over the whole region x 5 xo 
where it is non-zero i.e. 

Expressing A in terms of M we can then write equation (5 .3 )  for x > xo as 

M 2  (4  [ ( 2 )  ( x ,  A )  = 3.264- . 
2 6  

The general case where the initial two point correlation has compact support cannot be 

treated analytically because the integrals in equation (4.42) cannot be done analytically. 

To check whether the conclusions drawn from the case where the initial condition is a 

delta function can be generalised we have considered a situation where ~ 

and 

( x )  = 16 - 1 + x for x 5 2 
-. 

V4q5(x) = 0 for x > 2 .  

This corresponds to the self-convolution of a spheres of unit radius. The corresponding power 1 
spectrum has the form 

Doing the  integrals in equation ( 4.42) numerically we find that for large x i . e . ,  in the interval 

30 5 x 5 40,  the induced two point correlation can be fitted by the form 

M 2 ( X )  ( x ,  A)  = 3.277- . 
2 6  

which is in satisfactory agreement with equation (5 .5) .  For larger values of x the integrals 

could not be reliably evaluated numerically as the numbers involved are extremely small. 

The initial and induced two point correlation are shown in figure 5.1. We,propose that the 

form ( 5 . 5 )  holds for the two point correlation induced are large distances in all cases where 

the initial two point correlation has compact support and a non-zero total integral. 

We next consider the pair current. The initial pair current for the delta function initial 

condition is 

This current is divergence free everywhere except at the origin. Since it does not change 

the correlation at any non-zero separation it may be thought of as matter flowing into 

the overdense regions from infinity and flowing out of the underdense regions to infinity 

(Zel'dovich and Novi kov 1983, section 10.4). 





If we try to calculate the non-linear correction to the pair current for the delta function 

initial condition we get a divergent answer. This is because the integral &"'((2)(y)yady 
diverges. 
" For the other initial condition considered above, i.e. equation (5.6) we find numerically 

that the induced pair current (figure 5.2) has a x-a behaviour at large x. This is the leading 

part of the induced pair current and it too represents the flow of matter from infinity. In 

addition to this divergence-free part, the pair current also has a part that has a behaviour 
at large x and it corresponds to a local redistribution of matter. It is the latter that gives 

rise to the x-' correlation at large x but is swamped by the x-a part in figure 5.2. 

For large separations (x > 2) the pair velocity has the same spatial dependence as the 

pair current. 

5.2 The spatial dependence of the non-linear correc- 
tion. 

The expressions for the contribution to the two point correlation and the pair velocity at 

order c4 are rather complicated. To understand them better we proceed to evaluate them 

numerically for different initial conditions. 

First we consider initial two point correlations such that the corresponding power spec- 

trum has the form P(k) = kne-k. We consider cases where n takes the values n = .5,1,1.5,2 

and 3. These initial conditions have just one length scale which is introduced by the expo- 

nential cut-off which becomes effective for k > 1. In all these cases the correlation function 

has a power law behaviour x-7 for large separations and the corresponding values of the 

index 7 are 7 = 3.5,4,4.5,6 and 6. We also consider the case P(k) = ke-12 which has a 

Gaussian cut-off for the power spectrum at large k instead of the exponential cut-off used in 

all the other cases. 

Figures 5.3 and 5.4 show the function ((I)(?) for the different initial conditions considered. 

This function is defined so that at any instant the two point correlation at order e2 is 

(5.11) 

Figures 5.3 and 5.4 also show the quantity p ( x ) .  This when multiplied by 

the - e2 contribution to t(x, t )  which is defined as 

This is the average of the two point correlation function over a sphere of radius x . All 

of the cases considered here satisfy the relation t(')(x) oc p ( x )  for large x. This is cru- 



Figure 5.2: The linear pair velocity and its lowest order non-linear correction for the case 
where the initial two point correlation corresponds to the self convolution of a sphere. The 
two curves have been given arbitrary displacements along the y axis for convenience of 
displaying. 
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%ure 5.3: The initial two point correlation $')(x) shown by the solid line and it average 
((l)(x) shown by the dotted line for the different initial power spectra considered. This figure 
shows the small x behaviour. 
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cia1 in deciding the behaviour of the induced 'three point correlation function C(1,2,3) at 

large separations and for this class of initial conditions we have ((1,2,3) ((1,2)6(2,3) + 
permutations (chapter 111). 

Figures 5.5 and 5.6 show the function v(')(x) which is related to the radial component 

(the only non-zero component) of the pair velocity at order ea at any instant by the relation 

I 

For all these cases the initial pair velocity too has a power law behaviour a-8 at large 

separations and we have p = 7 - 1 as expected. 

It should be pointed out that the initial conditions when n = 3 differs from the other 

cases. For all the other cases ((')(I) crosses zero only once, it is positive for small x and goes 

over to a negative value at large x where it has the power law fork. The quantities @(x) 

and v(l)(x) do not change sign , the former is positive and the latter is negative. In the case 

when n = 3, ((l)(+) uosses zero twice, and p ( x )  and V(')(X) cross zero once. Thus in this 

case (n = 3) at large x the signs of all the quantities are opposite to the signs in the other 

cases. 

We have calculated the e4 contribution to all of the above mentioned quantities in the 

range 0 < x 5 40. 

We first discuss the large separation behaviour of ((')(x) which is'defined such that the 8 
contribution to the two point correlation is (#I4 ((')(x). This function is shown in figures 

5.7 and 5.8. For all the cases we find that at large separations I(~)(X) has a power law form 

E ( ~ ) ( X )  - 1-7 with q = 7 - 2 i.e. ( x )  v ~ ~ ( x ) .  Motivated by this we investigated 

whether there is any simple relation between ((2)(x) and ((l)(x) which holds for all the cases. 

We looked at the ratio 

at large x for the different cases and we find that the value of Z is nearly the same (-.048 < 
2 < -.049) for all the cases. This relation can also be expressed as 

with R = - 42 x .194. In terms of the power spectrum this may be written as 

where Pl(k) is the initial power spectrum and Pa(k) is the correction to the power spectrum 

at e4. The fact that P(k)dk > 0 tells us that Pa(k) < 0. In real space we can say that 





for the different initial power spectra 
P(k)=0.5 k * e-k 

considered. 







E ( ~ ) ( X )  has the same sign as ( ( ' ) ( I ) .  Based on this numerical evidence we make a hypothesis 

that equation (5 .15)  holds for all initial conditions where the initial power spectrum index 

n satisfies 0 < n. We have not considered any cases where n is negative. Fpr such cases the 

integral in equation (5 .16)  does not converge and we do not expect this relation to hold.. 

One of the factors we believe to be responsible for the spread in the values of R (or Z )  
is that ( ( 2 ) ( x )  goes to the power law form asymptotically and for all the cases we have not ' 

been able to calculate ( ( 2 ) ( x )  to equally large separations. As of now we have no rigorous 

derivation for equation (5 .15) ,  but we give a heuristic interpretation i e  terms of a diffusion - 
process in section 4 .  

Makino et. al. (1992) have analytically calculated P 2 ( k )  for various power law initial 

conditions, of which the case where 

k 
P l ( k )  = A-  for k 5 Ic, 

kc 

and zero elsewhere is of interest to us. In the limit k -+ 0 their analytic expression for P 2 ( k )  
reduces to 

P 4 k )  = - A 2 k 3 .  (5 .18)  
315 ( 2 ~ ) ~  

This can be written as 

which on comparison with equation (5 .16)  gives us R = % or Z = -i ' (2) ,,, = -.0484. 
We see that this matches equation (5.16) and this serves as a test of our hypothesis. . 

At small x the behaviour of ( ( 2 ) ( x ) ,  as shown in figures 5.7 and 5.8 is rather complicated 

and is difficult to generalise. We find that it starts with a positive value at a = 0 ,  which 

falls fast, becomes negative and oscillates around zero a few times before going over to the 

power law form. 

We next consider the behaviour of f ( x ,  t ) .  At large separations this has a behaviour quite 

similar to ( ( ' ) (x )  as shown in figures 5.7 and 5.8 and we find that % 

- 
( ( 2 ) ( x )  = R [iw ( ( l ) ( y ) y d y ]  ~ V ~ ( X P ( X ) )  x . (5 .20)  

We see that at large separations p i x )  has the same sign as m ( x ) .  The small ;a behaviour 

of p(s) is similar to ~ ( ~ ) ( x ) .  
I 

The behaviour of v ( ' ) (x ) ,  which is defined shch that the e4 contribution to the pair velocity 

is 

v ( ~ ) ( x , ~ )  = (5 .21)  



is shown in figures 5.9 and 5.10. For large values of x the behaviour can be described by 

We see that v ( ~ ) ( x )  too has the same sign as v ( ' ) ( x )  at large x .  At small x the function 

v ( ~ ) ( x )  starts from zero and rises fast and then falls off and changes sign a few times before 

going over to the power law form. We see that at very small scales the d contribution acts 

to increase the correlation, whereas at intermediate scales it can act to increase or decrease 

the correlations. 

We next consider a case where the initial power spectrum has the form Pl(lc) = e-he The 

two point correlation function has the form ( ( ' ) ( x )  -. x-' for large x but p ( x )  does not 

have the same behaviour and we have p ( x )  N x - ~  instead (figure 5.11).  Because of this, 

at large separations the three point correlation function exhibits a.behaviour which is quite 

different from the one exhibited by the cases considered previously and in this case the three 

point correlation, as discussed in chapter 111, does not have the 'hierarchical form'. We find 

that the large x behaviour of ( ( l ) ( x )  too is somewhat different as compared to the previous 

cases. Although we find that ( ( 2 ) ( x )  cc v 2 ( ( ' ) ( x )  the factor relating the two is different from 

that found for the previous cases and if we fit a formula like equation (5 .16 )  we get R x .496 

instead of .194. 

We next consider the large x behaviour of p ( x ) .  We see that it has a behaviour of 

the form x-' as compared with the initial function p i x )  which has the form x - ~  i.e. a 

difference of three in the power law index. This is different from the previous cases where 

there was a difference of two between the index for the linear function and the non-linear 

correction as seen in equation (5 .20) .  This can be easily understood by noting that if we 

try to relate p ( x )  with p ( x )  using an expression like equation (5 .20)  we find that the 

fact that p ( x )  xm3 implies that the right hand side is zero. We then deduce that, in - 
addition to a part that behaves as x - ~ ,  ( ( l ) ( x )  has part that behaves as At large x the 

value of p ( x )  is determined solely by the former term as the latter falls off much faster, 

but the behaviour of the non-linear correction p ( x )  is determined by the latter as the first 

term does not contribute. We find that equation (5 .20)  gives a good fit for R x .496 which 

is consistent with the fit for $ 2 ) ( x ) .  At large x the behaviour of v ( ' ) (x )  is similar to the 

behaviour of p i x ) .  

At small x both E ( ~ ) ( x )  and p i x )  start off with positive values which fall off fast. At 

intermediate values ( ( ' ) (x )  changes sign twice and goes over to the power law form at large 

x whereas p i x )  changes sign only once and hence the two quantities have opposite signs at 

large x .  The behaviour of v ( ~ ) ( x )  is similar to the behaviour of p ( x )  except that it starts 

from the value zero. 
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Figure 5.10: The non-linear correction to 
spectra considered. 
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5.3 The temporal behaviour. 
j 

Here we would like to investigate the evolution of the correlation function and the pair 

velocity. It is generally believed that the linear results should hold at some length scale 

until the density contrast averaged over that length scale is of the order of unity. Having 

calculated the lowest order non-linear term we 'can see when this becomes of the order of 

the linear term. This would be a different criterion for determining when the linear results 

would no longer be applicable. Here we wish to compare these two criteria and investigate 

whether they are the same. 

Before proceeding further we should remind the reader that we are working in the con- 

tinuum (or fluid ) limit and the initial conditions are such that the perturbative treatment 

is valid at all length scales. As a result of this there is a growth of clustering even at the 

smallest scales. 

We only discuss the case with Pl(k) a Iceqk here. We find that the other cases considered 

have a similar behaviour. 

The smaller scales go non-linear first. We first consider the evolution of ((0, t) which ik 

the mean square density fluctuation (figme 5.12) . We find that the non-linear correction 

enhances the growth of the correlation. We also find that the linear term is equal to the 

correction when ((0, t ) is of the order of unity. This is as expected ,and here it happens at 

S(t) = 0.121. At S(t) = 0.053 the correction is one tenth of the linear term and we may 

expect that the other higher order corrections not considered here will not contribute before 

this epoch Next we consider the separation x = 0.1. Figure 5.13 shows the evolution of the 

various quantities of interest. There is no qualitative difference here with x = 0 except that 

at x = 0 the pair velocity is zero. When x = 1 (figure 5.14), there is a qualitative difference. 

Previously the effect of the non-linear terms was to increase the correlation and now it tends 

to decrease it, but here too p ( x , t )  and p i x ,  t) are equal when they both are of order 

unity. At very large separations e.g. z = 20 (figure 5.15) we find that p ( x ,  t )  and F ( x ,  t )  

are equal when t (x ,  t) N 0.01. The correlation function and the pair velocity show a similar 

behaviour too. Hence it appears that at this scale the linear theory is breaking down much 

before one would expect it to. 

Actually it may not be so because this happens at a very large value of S(t) (- 10) 

and the perturbative approach has broken down much earlier on the small scales. The 

correction ((2)(x) is non-local and the contribution from the small scales keeps on growing in 

our calculation. In reality the clustering saturates at the small scales because of virialization. 

This saturation means that at late times (c(x, t) > 1) the perturbative results overestimate 

the contribution from the small scales to the large scales. Thus we see that for small and 





Figure 5.13: The solid curves show the two point correlation function ( ( a ,  t )  = ((l)(z, t )  + 
( (2 ) (x ,  t ) ,  its average t ( x ,  t )  and the pair velocity v ( x ,  t )  at x = .1 as a function of the scale 
factor S( t ) .  The dotted line shows just the linew contribution to these quantities. 
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intermediate lengthscales the perturbative results are valid until t(x,  t )  w 1 whereas at large 

separations the perturbative treatment seems to break down much before t (x , t )  1. This 

is because of a relatively large contribution to m ( x , t )  from the small scales through the 

C(l)(y, t)ydy which appears in p ( x ,  t). 

Peebles (1980) has shown that once virialized objects have formed on some small scales, 

those small scales have no influence on the evolution of the large scales. In our calculation 

clustering happens at all scales and we find a strong influence of small scales on large scales. 

The latter situation might be a better description of the early stages of structure formation , 
which goes over to the former situation once bound objects have formed. The question as 

to how much the small scales influence the correlation on the large scales before the small 

scales get virialized has to be still be answered. Since virialization typically occurs when 

f - 10 (Hamilton et. al. 1991) this effect may be quite significant. 

5.4 Scaling relations. 

Hamilton et. al. (1991) have suggested that in an = 1 universe the evolution of the 

two point correlation function can be described by a simple universal relation whose exact 

form they have obtained by fitting N-body simulations. More recently Nityananda and 

Padmanabhan (1994) have examined the possible origin of this universal scaling relation. 

The scaling relation can be based on the conjecture that the dimensionless pair velocity 

h(a, x) = -- depends on S(t) and x through t(x,  t) alone. This conjecture is valid in the 
s ( t ) x  

linear regime, Here we perturbatively test this conjecture at the lowest order of non-linearity. 

We look at the behaviour of h(x, t) and t (x ,  t) in some range where we are reasonably 

sure that the perturbative approach gives a good description of the clustering. Since the 

smallest scales go non-linear first, the criterion is based on the properties at x = 0 and we 

restrict our analysis to the epoch when [(2)(0, t) 5 0.1[(~)(0, t). Because of this conservative 

criterion we find that h(x, t )  differs very little from thd linear value of $t(x, t). To look at 

the nature of this small deviation we consider the ratio H. Figure 5.16 shows this ratio 

as a function of t(x,  t )  for different S(t) for the initial condition Pl(k) o; ke-*. We find that 

for a fixed value of t (x ,  t) the ratio has a spread of values. Although this spread is not large 

(5 percent), it is comparable to the largest deviation of mean square density from the linear 

prediction (ten percent). We also find that this ratio has a systematic behaviour which can 

be understood by looking at the same quantity as a function of x for different S(t)  (figure 

5.17). We see that there are points where the corrections to the pair velocity v ( ~ ) ( x )  and 

also to p ( x )  are both zero and h(x, t )  and f(x, t )  there (figure 5.16) continues to follow 

.the linear evolution. If we consider the first such point, then for smaller values of x (larger 



vaiues of t(x,  t)) the deviation is positive with respect to the linear value. For larger values 

of x (smaller values of C(x, t)) the deviation is negative with respect to the linear value. At 

large x (beyond the second zero crossing of the correction to the pair velocity) the deviation 

again becomes positive, but this is not seen in figure 5.16 because the whole range of x gets 

mapped to a very small range of Z(x, t)  between 0 and some very small value. Based on this 

we draw the conclusion that we cannot express h(x, t)  as a function of .t(x, t)  alone. We 
have carried out this exercise for all the different initial conditions discussed earlier and they 

too exhibit a similar behaviour. 

As was discussed earlier, equations (5.20) and (5.22) give a good description of p ( x )  

and d2)(x)  at large x for a large set of initial conditions of the form ((')(I) oc x-7. Using 

these and the fact that = - we have 

and 

This also show that h(x, t)  is not a function of t(x,  t)  alone. 

5.5 An interpretation based on diffusion. 

In the previous section we saw that for a certain class of initial conditions equation (5.15) 

gives a good fit for ((2)(x) in terms of ((')(a). In this section we provide a possible interpre- 

tation for this equation. The cosmic energy equation (Irvine 1961; Dimitriev & Zel'dovich 

1964; Peebles 1980)) which is the second moment of the first equation of the BBGKY hi- 

erarchy, allows us to relate the integral that appears in equation (5.15) to the mean square 
momentum. In our notation the cosmic energy equation can be written as 

, where x =I x1 - x2 I. 
Instead of looking at the evolution of < (P ' )~  >, we consider the motion of the particles 

as a function of the growing mode which in this case is the scale factor S(t). We define a 

velocity 
dx, 1 dA 

U P = = - -  d~ rndsPp (5.26) 

and < u2 > (S(t)) is the mean square of this velocity. In terms of this the cosmic energy 
equation is, 

d 3s a O0 - [s' < 3 >] = -- ((x, S)xdx d s  2 as (5.27) 
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which in the linear regime gives us 
/ 

1 00 
2 < u >= - 1 ((l)(x)xdx, (5.28) 

i.e. < u2 > does not change, Note that in this equation we have not explicitly shown the 
. superscript ( 1 )  over u to indicate that it the linear part of u. Henceforth we shall use u for 

the linear part of the same quantity. Using equation (5.28) we can write equation (5.15) as 

where the coefficients in front of V 2  look like a diffusion coefficient. It is in light of this that 

we interpret equation (5 .15) .  
Consider a particular realisation of the Gaussian density fluctuation field. We consider 

two points x1 and x 2  where the density fluctuations are A(xl,  t )  and A(x2, t )  respectively. 

The A(x, t )  of the fluid element at any point x grows according to linear theory and the fluid 

I element moves according to some random velocity u, which is assumed uncorrelated to the 

velocity at any other point. We then have 

2 

A(x , i )  = (3) A(x+Su, to )=  

+ s ( ~ ) u , ~ , A ( x ,  to) + ~ U , u v a , a v ~ ( x ,  to) I . (5.30) 

Using this and taking an ensemble average we have 

2 

6 - x t = < A ( x ~ ,  ~ ) A ( x ~ ,  t )  >= ($$) (($1 - x 2 ,  to) 

1 1 

+ f 2 ( t )  < ,,‘a > (m) v2[(x1 - z2,  to) (5 .31)  
S(t0) 

where 
b v  < u,uv >= - < u2 > . (5 .32)  
3 

The first term on the right hand side corresponds to the linear growth and the second term is 

the lowest non-linear correction. We see that by this process we have a non-linear correction 

which matches with equation (5.29) except for the numerical factor R. This difference can 

be attributed to the fact that we have kept the velocity u, constant and this is only valid in 

the linear regime. In the non-linear evolution this is not true. Based on equation (5.31) we 

suggest that the simple diffusion process described above gives a description of the evolution 

of the two point correlation at the lowest order of non-linearity for large separations. Thus, 



when we are looking at the correlation at a large separation x ,  we can consider the initial 

perturbation field to bedgrowing linearly, but there is one more effect to be taken into account. 

This effect is the local rearrangement of matter on small scales and this may be thought of as 

being random. The local rearrangement is on a lengthscale L - ~(t).\/- and we expect 

this picture to be valid when L << x .  When the mean displacement becomes comparable to 

the separation (i.e. L x )  we can longer treat the displacements as random and this picture 

is not valid. 

5.6 Discussion and Conclusions. 

To study the influence of small scales on the large scales we have considered two cases where 
. 

the two point correlation is initially zero at large separations(i.e. t ( l ) ( x )  = 0 for x  > xo ) .  

One of the cases has been treated analytically and the other numerically. We find that at 

large separations the induced two point correlation function has the form t ( 2 ) ( x )  oc x - ~ .  We 

also find that in both the cases the constant of proportionality is the same functional of the 

initial two point correlation function. 

We have numerically investigated some cases where the initial two point correlation has 

a power law form x-7 at large x .  The cases we have studied have a power spectrum of the 

form kn with 0 < n < 3 at small k and have an exponential or Gaussian cut off at large k. 
The cut off introduces a length scale and we find that at scales much smaller than this scale 

the non-linear term enhances the growth of clustering. At intermediate scales we find that 

the non-linear term changes sign more than once and it can act both ways i.e. to increase 

or decrease the clustering. 

At large scales we find that the behaviour of the non-linear term depends on the condition 

whether m ( x )  a ( ( ' ) ( x )  or not. For the cases where this condition is satisfied we find that 

equation ( 5 . 1 5 )  gives a good fit to the lowest ordernon-linear correction ( ' ( 2 ) (x )  to the two 

point correlation. We find similar equations for the average of the two point correlation - 
( ' ( 2 ) (x )  and the pair velocity V ( ~ ) ( X )  too. We have interpreted equation ( 5 . 1 5 )  in terms of a 

simple diffusion process. For all the quantities the non-linear term has the same sign as the 

corresponding linear term. 

For the case where p ( x )  is not proportional to <( ' ) ( I )  we find that we obtain an equation 

similar to equation ( 5 . 1 5 )  with a different numerical coefficient. The quantities p ( x )  and 

v ( ~ ) ( x )  also have a similar behaviour, but for both of them it is not the leading linear part 

that contributes. 

In all the cases equation ( 5 . 1 5 )  shows the effect of the various scales on the large scales. 

Equation (5.15) has an integral of the initial two point correlation over all scales, and for 



see that at the lowest order of non-linearity the small scales effect the large scales. 

Hansel et a1 (1985) have studied the effect of large scales on the small scales and they 

find that in the weakly non-linear regime the small scale perturbations get modulated by 

the large scale perturbations. This effect is like a diffusion in Fourier space because the 

effect of the disturbances at small k is to spread out the power spectrum at large k. It is 

very interesting that the effect of small scales on the large scales is a diffusion process in 

real space and the effect of the large scales on the small scales is like a diffusion process in 

Fourier space. 

It is believed that perturbation theory is valid at a certain scale until t(x, t) at that scale 

is of the order of one. Another criterion for the applicability of perturbation theory is that 

the second order term should be smaller than the linear term. We have compared these two 

criteria and we find that the two break down at nearly the same epoch at small scales. At 

large scales we find that the second order term becomes of the same magnitude as the linear 

term at an epoch when t(x,t) < 1. This happens because the second order term at  large 

scales is influenced by the small scales. This happens at an epoch which is much later than 

the epoch when the perturbative treatment breaks down at small scales and because of the 

coupling of scales the second order term may be an overestimate of the actual non-linear 

effects at late times at large scales. 

We have tested the hypothesis that the pair velocity v(x, t )  is an universal function of 

the average of the two point correlation t(x,t). We find that the pair velocity cannot be 

expressed as a function of the average of the two point correlation function and hence the 

scaling relations are not valid in the weakly non-linear regime. The scaling relations are 
* 

based on the underlying idea that there exists a one to one map connecting any length scale 

in the non-linear regime to an unique length scale in the linear regime In the weakly non- 

linear regime the evolution can be thought of in terms of diffusion processes and hence there 

is no unique relation between the length scales. We propose that this is the reason why the , 
scaling relations do not hold in the weakly non-linear regime. 
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