Chapter 3

Three point correation for Gausﬂan
|n|t|al condltlons

3.1 Calculating the three point correlation

Here we shall go one step beyond linear perturbations for Gaussian initial conditions. If the
initial perturbations are Gaussian they are completely specified by the one and two point
distribution functions 'f' and 'c’ at some initial instant Ao. All non-zero moments o the
three point distribution function ‘d’;and thefour point distribution function '€ and all other
higher distribution functions can be expressed in termsd momentsd ‘f” and fc’ at Ap. The
distribution function 'd" has no momentsd order €, but it has moments o order ¢*, These
are

< papl >s=< i >1 (a,a;,h0) <P% >2 (a.&, M) (3.1)
and
< papkpepy >a= 3 6% [< pLpg >a< pipd >a + < PUBE >2< PLEE > (3.2)

where the sum is over al possible pairs o particle indicesin the deltafunction. There are
no momentsd '€ of order ¢! or lower. All thisimpliesthat

Fy=Fs=Fg=Fr= f1;(X)=0

and
t5 (Ao) = 17 (Xo) = fo(Ro) =0 (3.3)

to order €. The functions fio and f1; can be expressed in terms of moments of 'c’ using
equations (3.1) and (3.2). Thus, the equation for the three point correlation function to
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order €t is

ot 5 dsS & d?5 |
s 40wGeS§X§C - 401erzl—XB—XC - 127Gp [I\—’_ - 127erS’] ¢
_ 5 [ . ?1 .
Jiz+ fio— fa + ﬁfe + | ~ 33| fu. (3.4)

The terms on the right hand side are all products o two terms o order ¢ and can be
calculated using the equation d the previous chapter. For an © = 1 universe, keeping only
the growing mode, we can write the terms on the right hand side as

3\ 0 .
f(1,2,3,)) = (-AE) f4(1,2,3,%), - (3.5)
)\ 11 | .
f6(1,2,3,)) = (-f) fe(1,2,3,%), (3.6)
’ AO 12 -
fo(1,2,3,2) = (7\-> fs(1,2,3, %), | (3.7)
fo(1,2,3,)) = (7) Fio(1,2,3,%0) (38)
and |
A 12
f2(1,3 )\)=(To) tir (1,2,3,%) . (3.9)

Using these, the equation for the three point correlation function is

g . 608, 12008, 216
T want Y et

_ a_[ g _9_2}
f (/\) fiz+ fro— fs /\ofs /\gf4 Ao’ - (3.10)
which has a solution,
(12,30 = g (32) Do+ o= - 1105
2 ey
- 2Mf], +’ (7) E(1,23) - , (3.11)

- where ‘E’ is some function to be decided by the initial conditions.
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Imposing theinitial condition ¢ (1,2,3, ) = 0 on the solution, we get

6 2 1
(23 = g (3) [(—}-) -y Pita+ fo- £

— 1123 fe — 9222 ﬁ,]Ao . (3.12)

Actually, for acomplete solution d the equations, four initial conditions haveto be given.
However the function E can be neglected if one is concerned only with the fastest growing
part o the three point correlation function that is induced by the two point correlation
function. Written explicitly thisis

.29 = g5 (3)

[12(A°) o (< PP >2 (ho) < P28 > (/\o))
™/ 923022005 0

, ' '
+ 1 du30wz (< 52 >2 (a1, 20) <75 >2 (a,a3,)0))

33X, O°?
n*nmaoztdze / p.c(a, an/\o) c(a;,4, /\o) Xped®ztd'?p

9 (o 53
Inin (m) zg Ozt Az f pirEe (2,91, do) € (8,4, o) Xid*atd%p

_ 1389 (g (a, a3, 20) / g(a;,4,,\9) X;}“d%“)] | (3.13)

a
T 6:1:“

This solution can be further simplified if we use the potentials introduced earlier. Using
the potential and doing the integrals over space by parts we have

ag; (F (a,a1 %) jf (a;,4,Ao) X;ad%.‘*)

vA s w0 ,
= — mAgz— a lv‘ifﬁ (a’al) a_mﬁ'vz¢ (a')a'z)]a (3.14)

1
nn*m 63:”3:1:“

= - 2)\0690;6:1:3 [ng (V2¢ (a,all)) 6?:; (V?¢ (a, a;))J

_/p,,c (a,a,, ) c(a;,4,A) X:°d3m4d12p

- sy [w (ar;) 852 9% (o a;)] , (3.15)
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and

1 0°

Tnim? 0z 0zt 0z
8 J o ' 7] ‘
- - 1050 [ s (7 (01)) 50z (74 (a,a,))]

— 8-63;; [V4¢ (a,a’l) a‘g;-vzqs (a, a;)] . (3.16)

f phoic (c,cph) ¢ (c5,4,A) Xicd*atd%p

Using these expressionsin equation (3.13) we get
120\ e[ 0 (o N IV
a3 = g5 (3) %35 (74 (0e) ;v ()
\

2 [0 ,, ny 0 o
+ 2 (5 (7 (01)) 2= (776 @a)] -

u

b

which can also be written as

¢(1,2,3,)) = ﬁ [362z (6 (a., a,ll,)\) < ph>2 (a,a;,A))

1 @ o, -,

e (<F > (et ) <a > (w2)] (318)
uVLy

We have here an expression for the three point correlation function that arises from
perturbations that areinitially Gaussian and haveno three point correlation. Thisexpression
is of order ¢* and is a local function involving only derivatives of the potential ¢ . This
expression is valid as long as terms having higher powers of ¢ may be neglected. It has been
assumed that theinitial perturbation had only thegrowing mode. If other modes are present
¢ represents only the growing part o it. One can introduce two other potentialsfor the two
other modes and the three point correlation function will have terms with all combinations.
The expression calculated is the fastest growing component.

An interesting fact is that for all vaues d the density parameter 2 the three point
correlation function has the same spatial dependence given by

¢(1,2,3,A) = FA()) -6%.- <v4¢ (a,81) %v% (a,a;)>

b n

Al

b0 g (o (P9 (@e) 5 (Vo (@ar)) . @9

0z8 0z \ Oz Oz,

where F* and FPB are some function d X. This is because equation (2.82) which governs
the growth d the three point correlation function is a differential equation in' A alone. The
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functions F4( A) and FB(A) have to be determined by solving equation(2.82) and will be
different for different values o 52 - In what follows we restrict ourselvesto % = 1 and the
fastest growing mode.

3.2 Discussion

To get a better understanding of the three point correlation function calculated in the pre-
vious section it is convenient to express it explicitly in terms o the two point correlation
function ¢ instead of the potential ¢.

Using equation( 2. 60) which defines the potential and the fact that ¢é(z) is a spherically
symmetric function we have

ai V24(a) = (2,\4) Ty / ¢z, \e"de’ = (§§:> z,é(z), | (3.20)

where we have defined £(z), which is the average o ¢(z) over a sphere of radius x, by the
second equality above.

The above equation can be easily understood by an analogy to a spherical mass distri-
bution where the gravitational force on a particle at any point can be found by replacing
al the matter in the sphere between this particle and the center o the distribution by an
equal point mass at the center, and ignoring al the matter outside this sphere. Using this
in equation (3. 17) we obtain

(1,2,3,1) = 7 (5+ 2005%0,) € ()€ (4) + geosbuy 3 (=) v(5)
+ ;1 (1 - 3c0320,y) £(z)E(y) + 6%— (3co.920w - 1) £(v)é(z), (3.21)

where
z = |z° --:z:"; |
y = |a®—a"|,

and

N TulYp
cosd,, = .
zy

We would like to remind the reader that a, a;, and a; are to be summed over the values
shown in the table in the previous chapter . Although the three point correlation function
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appears to be a local function when written in terms o the potential ¢ it is not local in
terms d the two point correlation function ¢é. The three point correlation function ¢ does
not depend only on the values o the two point correlation function ¢ at the separations
occurring in ¢. 1t depends on the two point correlation at all scales smaller than the scales
where the three point correlation function is being evaluated. 1t should also-be noted that
it involves a derivative o the two point correlation function ¢.

An interesting consequenced equation (3.21) arises when the two point correlation func-
tion has compact support i.e.

£r)=0;r>r, (3.22)
the three point correlation has the form
‘ 6 M?
(1,2,3,8) =5 (3c0s?0zy — 1) 73 (3.23)

in the region where the separation between all the three pointsis more than r1. M isdefined
as
M= /0 "tz )" da' | (3.24)
and the three point correlation function here depends only on the integral o the two point
correlation function over the volumewhereit is non-zero.
Fry (1984) has calculated the three point correlation function for the special case o
power-law initial two point correlation function ,

((x) = AX". (3.25)

The general result obtained by us (equation 3.21) agrees with Fry's result (equation 34 of
Fry 1984) for the power law case when 'n' is less than three. For larger valuesd 'n' the
integral d the two point correlation function diverges and deviations from the power law
behaviour are required at small separations to obtain meaningful results.

If we assume deviations from the power law at small separations for the two point cor-
relation function, keeping a power law behaviour at large x, our formula will give the same
result as Fry's formula at large x if

£e) =
for large z. Whether this happens or not depends crucialy on the behaviour o the two point

correlation function at small separations.
As an illustration o the above point we present two examples where the two point

correlation function has a large z behaviour

£(z) ~ 2t (3.27)

\

2 ~{(z) (3.26)
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but the three point correlation functions are quite different in the two cases.
First we consider

: {(2) = A(fﬁ-u:a)é)a- (3.28)

where A is some normalisation constant and a some length scale. This corresponds to a
Harrison-Zel'dovich power spectrum (~ k') with an exponential decay for large k. Using
this we get ; 3

{(z) = Am |
which satisfies equation (3.26) for large s. In this case wefind that at large separations the
three point correlation matches with the formula derived by Fry.

Next we consider

(3.29)

{(z) = Am

which corresponds to a power spectrum ~ k% with an exponential decay at large k and we

(3.30)

get

z

) | 3.31
tan (;) = 1—(0(255-' . (3.31)

— A
i) = 5o

For large x we have

{=)="717 (3.32)
which does not sgtisfy equation (3.26). In this case the three point correlation function
that we calculate differs, even at large separations, from the expression that Fry has given.
Because ¢(z) behaves as z~* and £(z) behaves as z~2 for large x, ¢(z) falls off much faster
than é(z) and the three point correlation is dominated by the term containing two €s. The \
three point correlation function at large separations then is controlled by the contribution
from the two point correlation at small separations.

Thus we see in the two cases above, though the two point correlation function has the
same power law spatial dependencefor large separations, thethree point correlationfunctions
are quite different.

This is further illustrated graphicaly in figures 3.1 and 3.2 which shows Q(r) versus r
for the two cases discussed above. Here Q(r) is defined as
Q) = €(1,2,3,X)

€(1,2)¢(1,3) +£(2,3)6(2,1) +£(3,1)é(3,2)
where the three points 1, 2, and 3 are located at the three corners o an equilateral triangle
o sidesd sizer.

Next we would like to make some cautionary remarks on the direct application o the

three point correlation function calculated here to interpret observations. The calculation

(3.33)
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Figure 3.1: This shows Q(r) as a function of for the first example considered. There is a

singularity at the point where the value of the two point correlation function is zero.
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Figuré 3.2: This shows Q(r) for the secbnd example considered. For large r we have Q(r) ~

r2,
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that has been done hereisfor the dominant matter component in the universe. If one wishes
to useit to interpret galaxy correlations one should take the possibility that galaxies might
be a biased tracer of matter into account. Secondly, although the galaxy correlations are
small at large length scales, galaxiesare strongly correlated at small length scales. Because of
the non-local nature d the results, one has to check whether the perturbative results can be
used at thelarge lengthscales when the small scalesare strongly non-linear. In addition, even
if the perturbative results are valid at large lengthscales, one cannot make a comparison of
the three point correlation function at some lengthscales with just the two point correlation
function at the same length scales. The three point correlation function is highly dependent
on the shape d theinitial two point correlation function at all scalessmaller than the scales
where the three point correlation is being evaluated.

Finally, the formalism developed here can be applied to test the validity of any scheme
to close the BBGKY hierarchy. Such a scheme involves assuming a relationship between
some moments d the various distribution functions. The validity d these assumptions can
be tested in the weskly non-linear regime using the formalismdeveloped in this chapter. As
an example consider the scheme proposed by Davis & Peebles (1977). They assume that the
three point correlation function has the 'hierarchical’ form, i.e.

€(1,2,3) = Q(£(1,2)€(1,3) +£(2,1)£(2,3) +£(3,1)£(3,2)) , (3.34)

where Q is a constant and that the correlations arose from initially small Gaussian density

perturbations. A comparison d the expression for the three point correlation in equation

(3.34) with the three point correlation function calculated in this chapter shows that it is not

possible to write theinduced three point correlation function in the weakly non-linear regime'
in the form assumed in equation (3.34). Thus, although using this formalism we cannot say

anything about the assumptions made by Davis & Peeblesin the strongly non-linear regime,

we can say that it isinvalid in the weakly non-linear regime.

45



‘Bibliography

[1] Davis, M., & Peebles, P. J. E. 1977 , ApJS, 34, 45

[2] Fry, J. N. 1984, ApJ., 279, 499

46



Chapter 4

Calculating the two point correation
function.

In chapter II we have considered the linear evolution o the two point correlation function.
In this chapter we consider the lowest order non-linear effects in the evolution o the two
point correlation function.

4.1 Notation and the Equations Governing the Two

Point Corrdation.

We present below the equation governing the perturbative evolution o the two point corre-
lation function. This equation (2.41), which was derived in chapter II, is

o3 0 0 0

‘a-)'\gf — 8nGp [Saﬁ + E3Y (Sf)] = fa—fa— gxfl ) (4.1)
where, a
fi(1,2,A) = SGp /4(1 2,3, A) X3z
1{4H 4o 63;" 1<t » 4 (4.2)
2 - .
f2 (1, 2, A) = 2SGn%{;§/ < p; >3 (1,2,3, A) ngd3m3, (43)
1 63 aboc

i3 (1,2,A) = ﬁm < PupuP; >2 (1,2,2) . (4.4)

Here the position indices take values1 and 2 and are to be summed when they appear twice.
For an 2 = 1 universe this becomes
i 24 0 24
aAsg—AzaAs-'. Asé fz f3—_aAf1’) (4'5)
If we are interested in only the linear evolution, we can ignore the terms on the right hand
side o thisequation as they areinitially d a higher order in powersdf e compared to the two
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point correlation function. The initial two point correlation function is of order e* whereas
the terms on the right hand side are o order ¢* or higher. In this chapter we consider the
terms on the right hand side d equation (4.5) and calculate their effect on the evolution o
the two point correlation function.

We separately consider the various terms on the right hand side o equation (4.5). We
first consider equation (4.2). This depends on three point correlation function ¢ which has
been considered in the previous chapter. For Gaussian initial conditions this has a non-zero
vaueonly at order e* and higher. We reproduce the expressionfor the three point correlation
function at order ¢* from chapter III. Thisis

a
a=1 m T

8 3 ) ;
(12,33 = 5 (3) B3 15z (74 (0.6) =778 (0,03

o (s (e o) o (Pe )] 69

In the equation for the three point correlation function thefollowing conventions are used
A. the position indices, e.g. a, take vaues 1,2, and 3 corresponding to the corners o the
triangle for which the three point correlation function is being evaluated. Also, a position
index which appears twice or more should be summed over the alowed values.
B. for afixed value d the position index (e.g. a= 1), a; and a, are to be summed over the
other two values (i.e. a; = 2,a, = 3 and a; = 3,a, = 2). Thisis to be'done whenever such
a combination d three position indices appear.

In some o the equations for the other moments o the three point distribution function,
if indicated, the summation convention A may not hold, but the convention B always holds.

To calculate f; and f; we have to first calculate the following quantities: < p% >3
(1,2,3,A) and 838202 < papip? >2 (1,2, A).. Thesecalciilations arediscussedin thefollowing
two sections. The overall strategy is the same as in chapter Il. We take velocity moments
d the BBGKY hierarchy and retain terms only up to order €*. As a result o this we
.obtain a set o ordinary differential equations in the parameter A. These equations have
complicated spatial dependences. The spatial calculation is ssimplified by taking spatial
derivatives (curl and divergence) and we then obtain a set o equations that can be easily
solved simultaneously. The lowest order at which the functions fi,f2 and f3 have non-zero
valuesfor Gaussian initial condition; ise*. Thus thelowest order at which we have non-linear
corrections to the two point correlation function is e!. Thisresult is presented in the fourth
section o this chapter.
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4.2 Thetriplet momentum.

The triplet momentum < p >3 (1,2,3, A) is defined as the first moment d the three-point
distribution function d (1,2, 3, A).

/ Pad(1,2,3,0) d*pd*pPd’p® = n® < g, >5 (2,22 2% ) (4.7)

It is a function o three positions 1,2 and 3, and theindex'a’ in < p§ >3, which indicates
at which vertex o the triangle we are considering the momentum, can refer to any one of
them.

We want to calculate-this quantity to order €. Thisisthe lowest order for which it has
non-zero value for Gaussian initial conditions.

The evolution o the triplet momentum is governed by the first moment o the third
equation d the BBGKY hierarchy (2.64)

1
5y <P s t—z5 < Pipd >3 (1,2,3,))
v

- SmGp / ¢ (a. 4) Xd*z* — SmGp / x(1,2,3,4) X;}“d%‘*

- SmGpé€ (a,a;) /£ (a;,4) Xp*d’z* =0. , (4.8)

To evaluate < pj; >3 we separately consider both its curl and divergence with respect to z*
and use these to construct it. All the equations given below for the curl and divergence are
vaid only to order ¢* and in all o them the summation convention A does not hold. In all
these equations the indices a, b and c refer to the three different corners o the triangle that
we are considering i.e. a # b # c.

The curl of equation (4.8)is

| 9 a 1 ab
it g;' Gs
5 A 10
m 0 axr4 ' av72 ' _ 4.
+ - (7) €8uy [B“V ¢(a,a1) GV ¢(a,a2)] =0 (4.9)
where,
Fg(1,2,3,}) = egu 0 < pj >3 (4.10)
and
G5(1,2,3,A) = €020, < PSPl >3. (4.11)

49



and we have used the fact that for Gaussian initial conditions to order e*
~ )
< pupy >3=< Pp >2 (a,’ a;) <py >3 (a, a,;)

to evaluate G§*.
The divergence o equation (4.8) is

8 ., 1 " MY [ 3 N
6AJ +m'§’K +m('3‘—) £E9(4)+§9(G)J—0
where , )
J“(1,2,3,,\)=6;<p:>3,
K®(1,2,3,)) = 838, < pip, >3

~ and,

gla) = '5v4¢(a,a;)v4¢(a,a;) +702v%¢ (a, ;) a:v4¢ (a,a;)

+28205V7¢ (a,0;) 0202V2 (a,a;) .

(4.12)

(4.13)

(4.14)
(4.15)

(4.16)

We have used equation (4.13) to evaluate K2 and equation, (4.6) for the three point

correlation function.

Next we consider the second moment d the three point distribution function

0 10  .pe. |
'5'): < P,;Pf, >3 +Eamg < pppgpd >3 (172’3, >‘)

SM’G
_ 57:'(" ] (53“"1;.': + S:f,p:) f(c)d (c",3) Xziediztd?p

SmZGJ(

3 4 12

n3

Sm2G

- S [ (6l +65p) e(1,2,3,4) Xrd'atdPp = 0.

We use this to get an equation for G;,"

0
ax

6
X
+ ZA%'O a 2 aav4
5m? Sresw [0°0V? (a,D) V9 (a,c)
+ 82V4¢(a,5)82V?¢(a,c)| =0.

1 abe. +

ab

Fg

where
Habc - aéabaé < p? b e >
ﬂ - eﬂpv uave pllpapc 3

50

st t62p2) c(ercr) ¢ (e d) XE¥d’s"d

(4.17)

(4.18)

(4.19)
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We have used the fact that for Gaussian.initial conditionsto order e*

<pAPRP >3 = < pipd >a(a,b) < pg >3 (a,c)
+ <piph >a(a,b) < p% >a (a,c) (4.20)

s

to evaluate Hg* whend =aor d=h.
By taking divergencesd equation (4.17) we obtain

aXK""+ L“"°+6m(J"+J")+m——-[g(a) g(b)]=0 (4.21)

where
be = 6;636‘ < prﬂpﬁ >3 . (4.22)

Finally we havethe third moment d theequation for the three point distribution function
/

6 a C 1 a a C
35 < PAPPS >3 +—5g —r < pppﬁp,p';‘ >3(1,2,3,2) (4.23)

. Sm'G / (6",’,pf’,p§ + 62 pips +65pint) f(e)d (e, )X“da "

n3

SmiG b < el cec.a ) '
= === [ (snnles tanaiet T 6oniel) c(e.er) ¢ (e, 4) XiooPd¥%p

szG ea C 3 a, . C ec .G e
— 20T [ (s + 62 pun + nint) €(1,2,3,4) Xiedstdp = 0.

This can be used to obtain the equation for Hg”‘

a al ac
a)\H + —,\T(G b+ G )
10
+ 10m8 (:\\12) €8uv [3°V2¢ (a b) 85V (a,c)
+ 92V*4(a,b)8:V?¢(a,c)] =0 C(4.24)

To obtain this equation we have used the fact that for Gaussian initial conditions to order

64
< PppSpopS, >a=< pipb >2< plpS >3 +permutations. (4.25)

Taking divergenced equation (4.24) we obtain

] 6 AL ,
aAL°“+-:\'-;‘-(K°"+K"=+K°°)+2Zm (,\lz)g(p)—O (4.26)
&=
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The equations (4.9),(4.18) and (4.24) can be simultaneously solved to obtain

R = *?(%& o 0276 (a.20) 83V (a,2)] (4.27)

Gy = (il cow [0V4 (3,0,) V76 (3,3))] (4.28)

Hg* = 2m? (’A\:) epw [02V*6 (a,0,) B2V?¢ (a,2;)] (4.29)
Simultaneously solving equations (4.13),(4.21) and (4.26) we have

7= () ot@) + o9+ (0] 4a30)

k=2 () pota) + 20 o] (831)

e = 22 (3) (o) + )+ o041 )

Using these we obtain the triplet momentum as
< Pz >3 (11213’ A) Ag [2 V2¢ (a a‘l) V ¢ (a “z)
1 '
T o (Ve (aa) 8V faa;))
5 ’ 1 ! a '
+20iV?¢ (a,a) Vi (ar,0) T 58180 V26 (a,0) VP4 (a a3)

%a;agiqs (a,) 5 V4 (o, ) + 205050546 (0, 1) 853055 V24 (a1, a3
- o [ Xias (0V7g (4,21) VA4 (4,2)) XY (4.33)

and we also obtain for a# b

o] a 4
88 < pipb >3 (1,2,3,)) = 2:\\0[73V’¢5(aa)§7¢(aa)

202 (82V24 (a,;) 0224 (a,a;)) T2082V78 (a,5) V46 (b, )

10022 (a,c) Vg (b,c) T 148205 V29 (a,b)0EV24 (b,c)

1482854 (a,b)0EV4¢ (b,¢) T 78205V ¢ (a,c) B V4 (b, c)

79°854 (a,C) 0V 44 (b,c) T 80208084 (a,b) 00054 (b, c)

4028054 (a,c) 02054 (b, c)

- L% J x5} (04v24 (4,;) V¥4 (4,a;)) d%‘] (4.34)

+ + + + +
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43 The third moment of the two point distribution
function.

In this section the position indices takes the values 1 and 2, and they are to be summed

whenever they appear twice or more. .
The third moment d the two point distribution function is governed by the equation

7 a b c 1 0 b d

— < PuPuPe >2 +E%§ < papPepy > (1,2,2)

SmZG ea b ¢ eb _a & ec,a,b ' de ;3 3
- = / (6,ypvp, + 85,0805 + 6,Wp“p,,) f(e)e (e ,3) X dz d°p

szG eabc+ ebac+ ec. a,b 3e ;3_3
‘_ n2 (6'yupvp¢ 6‘7vpp,pa' Svupppu) d(l’ 2) 3) X-y, d'z dgp =0,
i

If we take divergence with respect to al the three sets o free indices we have

0 s b e |
oy 0u0.0; < Pupp; >2 +—030,0,0] < purpesty >3
T 1275mGp [< plipl >1 62056 (1,2, A) T 8505 < plps >2 (1,2,))]

(7]

~ 35mGpasdto; f X% <piph >3(1,2,3,A)d%* =0. (4.35)

For Gaussian initial conditions the terms in this equation have non-zero values only at
order ¢* and higher. To order €* there are two unknown functions in the equation i.e.
830505 < pplpt >2 and < pipt >;. We need one more equation to self-consistently
solve this equations. This equation is obtained from the second moment o the two point

distribution function

4 a 0 abec
o < Ep>a(L,22)+ ams < PabuPe >2 (12)3)
m2GS ca & a , .
T TR / (5@1’3 + 5.;!;1’,.) fle)c (c ,3) X d*s*d®p
m2GS 2\ e ‘
- / (62208 + 82 p5) d(1,2,3) X2d*2*dp = 0. (4.36)

From equation (4.36) we get

a. a na a.a l aqb a_b_c

ﬁaua,, < Pupy >2 +m3“3u3: < puBP, >2
2 a .. a a Na a a

t 5020202 < plpleS >2 ~25mGpoz0; [<m>s Xt =0,  (437)
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Simultaneously solving equations (4.35) and (4.37) we obtain

a c 3 a na a,a 5A a c a (4
0p0,0; < Purlw; >1= 50,0007 < pplpl >2 +5o—050,0;07 < Frlwiry >
45m ‘ a_a ana 2Tm? a na a a
+ Sy <PLE >1 0006 (1,2,0) - S 06 / <Pl >3 XPd |
45m ., b oc a .
- mayafa,r / < pipl, >3 X¥d®s® , (4.38)

All the terms on the left hand side d equation (4.38) are known to order e*. Writing it in
terms o ¢ we have

820882 < pPplpt >o= A [—EV%(I 2) V24 (0)
1O 0s < PuPyPy -2 Al 7 !

240 816 |
"77"_ a,l;v4¢(172) a;l;vz‘ﬁ(l:z) .

V4 (1,2) V4 (1,2) + -
+ 960L0LV?6(1,2) 1OLVA8(1,2) + - OLOLOLV (1, 2) B30L6L6 (1,2)
+ 480100V*6(1,2) 304 (1,2) + - 550304354 (1,2) BL6103046 (1,2)
= 0 [ X (36397 (1,8) V4 (2,3) + 0L02V76(1,3) %6 (2,3)

45
+ 002 (1,3) 62V*6(2,3) + 9603036 (1,3) B8V (2, 3)) d3w3] (4.39)

4.4 The two point correlation.

Using the results derived in the two previous sections we can calculate f, and f3. Wefirst
consider only the A dependence d €. Equation (4.5) may be written as

® 248, 24 o\
_Sgerne= () [ao0- a0+ 2a00], @40
This has a solution
1 Al 10
§(L2,2) =058 [fz(%) — fa(do) + X;f‘(’\")] . (4.41)

Using equations (4.2),(4.3) and (4.4) we calculate the spatial dependence d the right hand
side. Thisgives us
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€3 (1,2,2) = séz (ér;) [~3274(1,2) V% (0) - 14V44(1,2) V44 (0)
900 ’

—7—v4¢ (1,2) V*(1,2) + 3606;V4¢.(1, 2)0,V?4(1,2)

1
—67£2-a;agv2¢ (1,2) 816124 (1,2) + 144016261 V4 (1,2) 0152614 (1, 2)

‘ 144 :
12600, V46 (1,2) 8364 (1,2) + 0, 8.6.4(1,2) ,0,64654 (1,2)

1 3 2 0< N2
- o Ix (Gavie19) 85104 (2,9) T SOAEV(1,3) 04000V° (2.3)

+ o+ o+

1
v D51016(1,3) 92020274 (2,3) + 30104034 (1,3) Q2020306 (2,3)
- 15V(1,3) BV(2,3) - %a:ku,s)aﬁang(z,a)) &) (4.42)

This is the two point correlation function at order e*,

We do a Fourier transform o (4.42) and compareit with the result obtained in the single
stream approximation (Makino et. d 1992) and find that the two match.

The algebra involved in deriving equation (4.42) was checked using the mathematical
package MATHEMATICA and the Fourier transform was done using this package.

4.5 Discussion

The calculation presented here, which is based on the equations d the BBGKY hierarchy,
has the effects d multistreaming, if any, at the lowest order d non-linearity i.e. e*. This
matches with the results obtained in the single stream approximation which does not take
into account any effect d multistrearning. Hence we conclude that there are no effects o
multistreaming at this order d non-linearity. The equivalence between the two calculations
at this order become clear only at the final stagei.e. after we have done the calculation. and
one does not obtain the HD equations as an intermediate step.

In chapter VI we discussif we can study the effects d multistreaming by going to higher
orders d the perturbative expansion or whether it isalimitation d the perturbative treat-
ment that it does not dlow us to study the transition from a single streamed to a multi-
streamed flow.

Given the initial two point correlation function ¢®)(z, A), to evaluate the non-linear
correction at order €* we solve the equation

V2 (V4(2)) = 5@, o) ey
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toobtain V2¢(z) and then solvefor ¢(z) and usethesein eqUation (4.42). These calculations
aresimplified alot if we usethefact that é(z, o) is spherically symmetric. Equation (4.43)
does not uniquely determine the functions V23¢(z) and ¢(z). If V3¢(z) is a solution of
equation (4.43) then so is V2$(x) T C where C is some constant. Under this transformation
we also have ¢(z) — ¢(z) T <. If we consider al the terms in equation (4.42) that are
affected by this

~ 32V%4(1,2) V3¢ (0) T 1260195 V4 (1,2) 850%4(1,2)
- o [ XS0i04(1,3) L0202V (2,3) s (4.44)

we find that the correction to the two point correlation function is unchanged by such
transformations and independent of C. Similarly, we can add a constant to ¢(z) but this
obviously does not have any affect as only derivatives d ¢(z) appear in equation (4.42).
Hereafter we shall use the boundary condition that V2¢(z) should vanish as x goes to
infinity tofix the constant C.

At this stage we should point out that it such a choiced C is not always convenient.
For exampleif theinitial two point correlation issuch that the power spectrum has theform
P(k) a k™ with n < —1 at small k, then the boundary condition stated above implies that

V24(0) = —dx /0 ” P(k)dk | (4.45)

isinfinite. Although V2¢(0) isinfinite and this quantity appearsin the non-linear correctian
to the two point correlation function ¢()(z, t), we may still get a finite ¢()(z, t) for certain
initial conditions. This is because now ¢(® is the difference of two infinite large quantities
which cancel out to give a finite result. The same problem is encountered if one does the
analysis in Fourier space where for —1 > n > —3 the correction to the power spectrum is
a finite quantity which is the difference d two divergent integrals (Vishniac 1983). In real
space this situation is easily handled by changing the boundary condition used to calculate
V2¢(z). If weusetheboundary condition V2¢(0) = 0 tofix theconstant C than thesituation
discussed above does not occur and it is possible to calculate ¢2)(z, t) solely in termsd finite
quantities. Here we shall only dea with situations where the former boundary condition (
lim,—,00 V2$(x) = 0) can be applied.

4.6 The pair velocity

We next calculate the first moment o the two point distribution function, < p? >, (1, 2), to
order ¢! . Thisis a function d two positions and the index a indicates at which d the two
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positions the momentum is being considered. We use the pair conti nuity eguation

S5, (1,2,0)=0. (4.46)

1
m O0zg
to obtain
<Pl >3 (1,2,)) = 87 / o (Iy—;yl) 66,\'5(3/')43?/" (4.47)
where

vi=ap -l
end & refers to the complement o a (e.g. if a=1, d& =2). Using the two point correlation at
order €* calculated in the previous section we get at order &

AIO

<pi> = e [ / [ 32V6¢(m)V2¢(0)——14V4¢(m)V4¢(0)

+ %’va( YV44(z) + 3608, V4¢()8, V24(z)

+ @a 8,V9(2)8,0,7*6(a) + 1443,8,0.V9(2)3,0,0a8(z)

+ 1260,0,V%(2)0,0,$(z) + Ta,.a,aaa,,gs(m)a,,a-,aaapqs m)] *do
-3 X3 [lag'vqu (o',3) 6205027 (a,3)

+ I 85 02 V24 (a',3) 82930°9%4 (a.3)

+ -a,, o ¢ (a',3) 82030202V24 (a,3)

- 020502 05 6 (a',3) 50203054 (,3)

— 5V4 (a',3) 8205V?4(a,3)

- ;ag'vw (@,3) 9285024 (2,3)] 7] . (4.48)

A quantity related to the first moment o the two point distribution function is the pair
current , |
. <py>2—<p,>
ju(@A) = ——— (4.49)
whose divergencegives the rate at which the correlation at any separation is growing. We
use this to calculate the pair velocity which is the ensemble average d the relative peculiar
velocity between any two particles at a comoving separation x at timet (or A).

In terms d the pair current thisis
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_ >dA ju(w’)‘) i
vu(z, t) = S'a-t- [m] | ' (4.50)

Some consequences of the expressions for the lowest order non-linear corrections to the
two point correlation function and the pair velocity are investigated in the next chapter.
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