Chapter VI

Theoretical Estimation of Structural Parameters of Twist

Grain Boundary -A Liquid Crystals

6.1 Introduction

In the previous chapter we have described some experimental studies on twist
grain bounary liquid crystals. In this chapter we will theoretically estimate the
structural parameters, namely the distance between two dislocaions (l,) within a
grain boundry and that between two neighbaing grain boundries ( |p) in TGBa
liquid crystals.

In contrast to the Abrikosov lattice of flux tubes in type-Il supercondictors, a
triangular lattice of screw dislocaions which are parallel in the direct lattice of the
SmA does nat leal to a tenable structure [1]. Renn and Lubensky estimated the lower
criticd chiral strength (the analogue of the lower criticd magnetic field in
superconductors) by comparing the energy gained by twisting the structure to the
energy cost of creaing a single screw dislocaion. This analysis is based on the
surmise that inter-dislocaion spadng near the lower criticd chiral strength is very

large compared to the twist penetration depth. In the extreme type-lI limit (Ginzburg

parameter K, >> y (5) the lower critical strength h, =(dD/4m)in(A, /&), where D

is the wefficient of the mvariant term in the dastic free eergy (see @uation(5.5)),
A> =K, /D, and d is the magnitude of the Burgers vedor of the screw dislocaion.
However, if the interaction ketween dslocations is ignored, the structural parameters
I, and l4 of the TGBA phase canna be determined for chira strengths intermediate
between the lower and the upper criticd chiral strengths. From an analysis which is
valid close to the upper criticd strength h,, (wherethe TGBa phase becomes unstable
to the ddesteric phase), Renn and Lubensky [1] estimated that the ratio ly/lg
increases from a minimum of abou 0.96t01.47 as the ratio K/K, of the splay-bend
elastic constant to the twist elastic constant increases from zero to 1¢ for k, = 0.8.
The structural parameters |, and |4 have been measured in the recent experiments of

Navailles et a [2] on the mmpound 3fluoro-4[(s)-1-methylheptyloxy]- 4 -(4" -
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akoxy-2", 3" -difluorobenzoyloxy) tolane (10F2BTFO1M7 for short) which hes the
following phase sequence SmC’(99.7C) TGB, (102.88C) N, (106.7PC)N" where
deenotes the chira line liquid phese. This TGBa phase has “commensurate”
structure in which the ratio of pitch (P) over |, is arational number. A typical x-ray

diffradion pettern isreproduced in Fig.(6.1) from the reference[2]. The pitch value P

Figure 6.1 Xray diffradion pettern of an aligned TGBA sample. This pattern exhibits
46 spats equispacal dongaring and is the signature of a mmensurate TGBa phase.
(adapted from ref. [2]), (Temperature:101.4°C).

in the TGBA was measured as a function d temperature by opticd experiments. The

ratio of P and the number of Bragg spots gives |, at any temperature. The value of |

was estimated using the relation P = 2rt,|, /d . For example, the values of |, and |,

0 0
a a temperature of 101.4°C are 206 A and 278 A respedively. The ratio I, /1, was
foundto be ~1 at 99.8°C and reduced to ~0.7 at 101.8°C [2,3].

In this paper we acourt for dislocaion interadions in a systematic way to
estimate |, and |4 . Whil e this work was in progress Bluestein et al [3,4] presented an
independent calculation for determining structural parameters of the TGBa phase.
Their cdculations were made in the Fourier space. On the other hand the work
presented in this chapter is a direct generaisation d the Read-Shockley method for
evauating the energy of small-angle grain bourdaries in solids [5]. We dso present
results on the temperature dependences of the structural parameters. This was nat
discussd by Bluestein et a [3,4].
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In what foll ows we first cdculate the dastic free energy per unit area of atwist
grain boundry in type-Il SmA using the linea elasticity theory. Next we calcul ate the
Gibbs free aergy of the TGBa phase. For simplicity we ansider the interadions
between neaest neighbou grain boundries only and caculate the Gibbs free @ergy
and the structural parameters |, and lg. We use the mean-field dependences of
¢ ,A,and D to cdculate the temperature dependences of the structural parameters of
the TGBa liquid crystal.

In order to fadlitate the evaluation d the Gibbs free aergy of the TGBa
phase, we generdize the standard method d cdculating the energy of topdogical
defeds to atype-Il SmA liquid crystal. We first demonstrate this method for a single
screw dislocation, and then useit for the energetics of pure twist grain boundries. We
note that this treament is quite general, and can be used for the energetics of edge- as

well as mixed dslocaions.

6.2 Energeticsof a Single Screw Dislocation
In a type-ll SmA layer distortions are screened by the Frank drector. For

small distortionsthe dastic free eergy density is given by [6]
F =J'd3x f,

and f-%( Ju+3n) +5 (DcSn)2 (D><5n)2 (6.1
where u is the displacement field, an is the dewatlon d the Frank drector from its
undstorted equili brium vaue R, (parallel to the unit vedor € aong the z- axis), and

D, K;, and K; are dastic constants (here we have set the twist elastic constant equal to
the bend élastic constant). We write the free aergy density f as

f ——[DD (0,u+an ) - Dud, (Q,u + an, ) + KO, (Bn 0,80, )
+ Kog,, 0, (Bng,,0,0n, )+ Don (O,u + én ) - Kean (0,0, 60, )
+ K25ni( |Jk£kpq|:| D 5n ) ] (62)

and tred the continuows but multivalued dsplacement field u for a screw dislocaion
as a single-valued field, which is discontinuows across a aut surface @ntaining the

dislocaion line. It is important to nae that in this treament there is no topdogicd

constraint on the n field. The on- field merely adjusts itself to lower the dislocation
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energy by screening the topdogically constrained dsplacement field. Using the Euler-
Lagrange ajuations correspondng to the free aergy in equation (6.1) we get,

& :—DD.(Du+5_n’)=o,
ou
%:D(Dman) KD(an)+K OxOxén=0. (6.3
Applying Gauss's theorem, and using equation (6.2) F can be recast in the foll owing
form:
D
=— D u+on
=[S Oura)u
=% d@u+an) (Nu +Nu)L,
C
b

> dx(Diu+6ni)Ni(u+ —u‘) L, (6.9
where C isthe aut line, N; represent the comporents of the normal vedor onthelip of
the aut line (seeFig.(6.2). d=(u’-u) is the magnitude of the Burgers vedor, andL; is
the length of the dislocaion line.

Y

O

N-

X

Figure 6.2 A pictorial representation d the ait surface The dislocaion lineis along

the z axis.

In particular, the energy per unit length for asingle screw dislocationisthen given by

%E Id( O,u+an, ) d (6.5

where £ is the smedic oorrelatlon length, the screw dislocation line is along the z-
axis and the aut line is along the x- axis. Here we have ignored the @ntribution from
the dislocation core energy, which arises from the destruction d smedic order within
a region d order of the smedic correlation length &. For a screw dislocaion
(dislocation line dong the z — axis) at the origin the displacement field and the Frank
diredor field are given by [6]



151

. d
u=_ 4, (6.6)

= du1 pH 14
1= ey Ky o 6.7
2m [{'\2 ' 2 quJ
where ¢ =tan™(y/x), p=+/x*+Yy?, &istheunit vedor inthe ¢ diredion, A, is

the twist penetration degpth and K, (p/A,) in the modified type-1l Bessel function o

order one [7]. Note that the on- fied is divergence-free. We now use these fields in

equation (6.5) to evaluate the energy per unit length of a single screw dislocation:

L
L, 4r 2

where K (é/A,) isthe modified type-Il Bessel function d order zero. For small

arguments K, (£/A,) = -In(£/2,) and we regain the standard result for the energy
of ascrew dislocaionin strongly atype-Il SmA [1, §

Eiészm&, 6.9
L, 4 €&

6.3 Energeticsof a Single Twist Grain Boundary

The method described above can be extended to evaluate the energy per unit

areaof a small-angle twist grain boundry [5]. In order to implement this we need to

caculate the u- and the on fields for a planar array of equally spaced paralléel screw

dislocaion lines. Let us consider a grain boundry made up d screw dislocation lines
paralel to €,in thereference lattice, situated at x= 0,y = v |, where v is an integer
and |, isthe spadng between successve dislocaions. Instead of directly finding the
total displacement field (u),, dueto the grain boundry, it is more @nvenient to find
the locd slope (Ou),, of the smedic layers as a function d the mordinates. For the
linea elasticity theory (see eguation (6.1)) the superpaosition grinciple is applicable

and we merely need to add the wntributions from each dislocation in the array. The

displacanent field is given by uzzitan‘laXE For a single dislocaion the
T OX[C

comporents of the slope of the displacement fields are given by



,u =4y
X 27‘[x2+y
_d_ X
Dyu _27Tx2+y
For the TGBA phase
< _d (y_UId)

O = -—— 6.1
b )TGB u:Zm 21 x? +(y-ul, Y (519

= d X
(O,u)., =S o} 60T (6.12)

We evaluate the sum in equation (6.10) by using results from complex analysis [8]:
S f ()= - Sum of residues of [t cot(Tz) f(2)] at all pales of (2).

_b-2,) ~. The pdes of f(z) are & z:(yiix)i. The residue &

h flz)=
where (Z) X2+(y_jd) |d

z:(y+ix)|i is given by —%cotﬁz(yﬂx)g and the residue az:(y_ix)li is
d

d d L d

given by —%cotg’l(y—ix)g. Thusthe sum of residues of f(2) is
d

d C
sin%zﬂﬁ
T s
I
¢ cosh X [ cos Y
Id ld
Similarly from equation (6.11) we obtain the sum of the residues as
sinh%ﬂﬁ
Iﬂ d (6.12
¢ cosht ™ B cos Y
Id Id
Using equations (6.10), (6.11) and (6.12a), (6.12b) we get

O __d ' sin(Z{T ylld) .
x“ /1GB 2, COS|”(27T xlld)—COS(ZTT ylld).

. (6.129)

(6.13

and

_d ) sinh(zn x/Id) )
(DVU)TGB ~ 2, cosH2m x/1,)-cod2m y/1,) (614
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It is easy to ched that the dislocaion lines comprising the twist grain
boundry remain perallel to € in the dired lattice To calculate the energy per unit

areaof a grain boundry we need to know the y- comporent of the on field, so that
the generalized version d equation (6.4) for a grain bourdary can be used (see

equation (6.18 below). We naticethat the on —field for atwist grain bourdary can be

obtained viathe Euler-Lagrange equation % =0, whichimplies
Dz(g:l GB _/\;2(5:' GB :AEZ(DU)TGB (6.19
We take alvantage of the fad that the displacement field (Ju),, satisfies the Laplace
equation and make the ansaz
(5ny)ms =(g(x)-1) (Dyu - (6.16
for the particular integral of equation (6.15) to get g(x) = e The (5?),68 and

—

Q, :{ (Ou)rs + (c‘Tn GB}- fields have to satisfy the foll owing bourdary condtions:

() (gn)TGB =0 at the didocation cores, i.e., a x=0, y= v I, where v is any
integer, and

i) Q,={ QU + (o =0 ax= 2.
To satisfy these boundry condtions we ald the gpropriate solution to the

homogeneous version d the Euler-Langrange eguation (6.15) to get

= —[x|/2, 1 d
Q,=e ’ gﬂyu)m +A—2%x| (Dyu)TGB —;—h% (6.17

It is now straightforward to generalise eguation (6.5) to evaluate the twist grain
boundry energy per unit area. With planar cut surfaces parale to the xz-plane

containing the dislocation lines (so that the normals to C, are dong + &, ), the energy

per unit areafor thetwist grain boundry is

. Dd = .
fgb :IImLYﬁOOZ_Ly Z J: Qy.ede, (61&
where L, is the length of the grain boundry along €, and we have ignored the
dislocaion core energy per unit area of the grain boundry. Equation (6.18
generalizes the Read-Shockley method for cdculating the energy per unit area of

small-angle grain boundries in crystals [5] to the cae of smal-angle grain
boundiriesin type-1l SmA.
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6.4 Interacting Twist Grain Boundaries

To estimate the structural parameters of the TGBa phase, it is necessary to
include the inter-grain boun@ry interadions. In what follows we numericdly evaluate
the neaest neighbou grain boundry interadion. This is easily done within the
formulation developed above. We place pardlel screw dislocaions at

x:ily, y=v |, in the reference lattice and superpose the layer displacement

fleld u)TGB as well as the diredor field comporent 6n )T for these two grain
boundries. We emphasize that the superposed field has the @mrred symmetry in the
direct lattice: _(Dyu)ms =+d/l, a X=z00 . The guation (6.18) for the energy per
unit areaof a single grain bourdary is also applicable to the cae of two interading
grain boundries, with the modficaion that the ait lines C, extend from
y=v iy x=1,/2 to +0 and x=-I,/2 to —c. The eergy density for two
interading grain bourdaries can be written as

g;g‘:DdDI Q@H'Vﬁdﬁ J’ Qﬁx I/ﬁdx 6.19

loly &

The chira term favoring twist and the formation d grain boundries in the SmA
phase is given by [6]

Fey =—h[d’x A0 A) (6.20
where h is a pseudoscalar coefficient which measures the dniral strength of the liquid
crystal moleaules. The dhiral energy per unit volumeis given by

F hd
fop =~ = —hk, = ——— 6.2
L R (6.20)

where kg is the wave vector correspondng to the twist. The total energy per unit
volume is obtained by using equations (6.19 and (6.21):

G=fy + fg, (6.29
We numericdly minimize the Gibbs free energy G as functions of |, and l4 for

different values of A,, £ and h/D. A representative variation d the Gibbs free aergy

0 0
for nearest neighbou interadion calculated for d =& =38A and A, =75A
(i.,e.k,=197) is howninFig. (6.3).
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Figure 6.3 A threedimensional plot of free @ergy density as a functions of |, and |4

0 0 0
for k, =197 (A=75 A,d=¢=38A) andh/D =6.5A. The minimum of the energy

0 0
is stuated at 1,=183 A andly= 302A.

We have cdculated I and |, as functions of h/D for various values of k,. The
variations of |, and |, as functions of h/D are shown for «,=1 in Fig.(6.4), and for
K,=1.44and 1.97in Fig.(6.5) and Fig.(6.6) respedively. We find the lower criticd
vaueof (h,/D) for different valuesof k, at which the Gibbs free aergy becomes

250

200 4

100

24 2.6 2.8 3.0 3.2
h/D (A%

0 0
Figure 6.4 Variations of |, and |4 as functions of h/D for k, =1 (A,=38A, {=38A

0
andd=38A). Verticd arrow denotes the lower critical value of h, /D = 2.46.
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Figure 6.5 Variations of I, and Iy as functions of h/D for Kk, =1.44 (A, = 55A, ¢

0 0
=38A andd =38 A). Vertical arrow denactes the lower criticd valueof h, /D =4.0.

positive. In Fig.(6.4), (6.5) and (6.6) the lower criticd values of h,/D areindicaed

by verticd arrows. We note that in each figure nea h,/D the two curves intersed.

Further, I, deaeases more rapidly than |y with increasing values of h /D. With

increasing values of k, the valuesof h,/D asoincrease. Fixingthevalueof I,

h /D aso incresses with k, (e.g. compare Fig.(6.4), (6.5) and (6.6)) .
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Figure 6.6 Variations of |, and |4 as functions of h/D for k, =1.97 (A, = 75A,

0 0
¢ =38A and d = 38A). Verticd arrow denotes the lower criticd value of
h,/D=55.



In order to find the temperature dependences of |, and |y we need to know the

temperature dependences of the input parameters A,, &, h, and D. X-ray scdtering

studies show that &7 t™° where t:(TAN _T% . v, is system—dependent, and
AN

varies between 0.45to 0.6[9]. In the @ove, T,, isthe SmA to TGB, transition
temperature. We have asumed that £ and aher parameters have simil ar dependences
in the SmMA and TGBA phases. Measurements on several systems show that the

compression modulus BOt*, x = 0.4, wheress mean field theory predicts that

B,DO |t,u|2 Ot, where ¢ is the smedic order parameter. Further, K, is temperature

independent, and A,,& Ot™°° within the mean field theory. Assuming that h is
independent of temperature, cdculations based onthe mean field theory show that Iy,

deaeases faster than |4 with increasing temperature. Theratio I,/ 14 as well asthe pitch

o - 21,

deaease with temperature (Table-1). All these results are in accordance

with the experimental trends. However, these cdculations $ow that the stability
range of the TGBa phese is about 1°C which is relatively small. Several experimental
systems are known in which the TGB, phase is gable over arange of 10 °C or more.
Following the experimental results, even if we @wume that D Ot°°there is no
significant increase in the stabili ty range of the TGBa phase. The wide range of TGBa
phase suggests that the Ginzburg parameter k, may itself be temperature dependent.

Table-l
Tan-T 0 0 K h 0 0
G (A A)EA) T ynegem) | B(A) [ la(A)
1.66 75 38 197 |0.1 345 345
1 96.5 49 197 |01 70 335

In optical experiments on relatively short-pitch TGBA systems a seledive
reflection band is observed [10], whereas in large-pitch systems no seledive reflection
is e [11]. These gparently conflicting observations can be explained by examining

the aurvature of the Gibbs free energy (as afunction d I, and lg) at its minimum. We
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2 2 2
find that alf is always greater than g ?.Further %I? for h/D=7.1 (short-pitched
d b b

system) and «, =1.97 is about 30 times that for /D =5.7 (large-pitched systems).

This indicaes that the shallow nature of G as a function d |, nea its minimum may

smea out the selective band for large pitched systems at finite temperatures.

6.5 Conclusions

We have used the linear elasticity theory of type-ll SmA to calculate the
structural parameters of the TGBa phaese. It is perhaps relevant to nae that in contrast
to the cae of supercondictors, there ae two dstinct kinds of vortices (edge- and
screw dislocdions) in the smectic-A phase. In our cdculation we have ignored the
edge-like fluctuations of the screw didocaion lines. We speaulate that these
fluctuations may give rise to long—range interactions needed to explain the possble
commensurate structure of the TGB, phase.

Further work to include interadion between all grain boundries with a view
to criticdly compare and contrast our methodwith that of Bluestein et al isdesirable.
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