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Chapter III

Enhancement of Orientational Order Parameter of Nematic

Liquid Crystals in Thin Cells

3.1 Introduction

In the previous chapter we have seen that the application of strong electric fields

on the compounds with both 0>∆ε  as well as 0<∆ε , enhances the orientational order

parameter in the nematic phase and the paranematic-nematic transition temperature is

shifted to higher values. These effects have contributions both from the Kerr effect as

well as from the quenching of director fluctuations under strong fields. Our experiments

on the system with 0<∆ε show that the contribution from the quenching of director

fluctuation is rather strong. We have also discussed the surface induced order at zero

field, whose effect is seen at a temperature slightly higher than that of the bulk transition.

In this chapter we will discuss the effect of confinement on the orientational order

parameter of nematic liquid crystals. Liquid crystals can be confined in different

geometries. In a simple geometry the liquid crystal is sandwiched between two parallel

glass plates, which are pretreated for homogeneous alignment. Such studies on nematic

liquid crystals are important both from fundamental and technological points of view. For

example, nematic liquid crystal is sandwiched between two parallel glass plates for

display (LCD) applications. The typical thickness used for this purpose is ~5µm. In the

reflective mode displays, it is about 2µm. Because of the fluid nature of the medium its

response time is relatively slow and is given by τ =η d2/π2K [1] where η is an effective

viscosity, K an effective curvature elastic constant and d the sample thickness. The

response time can be reduced considerably by reducing the sample thickness.

Furthermore, in bistable displays, which are being investigated in recent years, the

thickness has to be quite small , ~ 2µm [2].

There are several theoretical and a few experimental studies on the confinement

effect on the orientational order parameter of nematic liquid crystals [3-7,9]. Ping Sheng
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has calculated the order parameter profile in thin cells using the Landau de Gennes theory

assuming a surface potential, which enhances the order parameter at the surface. The

dimensionless surface potential g is defined as G/(Aξ0aTNI), where G is the strength of the

surface potential, A is the surface area and a is a Landau coefficient (see section 3.5) and

0ξ  the order parameter coherence length. It was found that within a limited range of

surface potentials a surface transition occurs at a temperature higher than that of the bulk

transition (Fig.(3.1)). Close to the transition point, the surface induced order decays to the

bulk value over a length scale, which is an order of magnitude larger than the order

parameter correlation length 0ξ [3,4]. The order parameter in the nematic phase at the

surface of the substrate as well as in the bulk increases with decreasing cell thickness.

The calculated surface and bulk order parameter profiles are shown in Fig.(3.1).( adapted

from reference [3])

Figure 3.1: Variations of bulk order parameter Sb (dashed curve) and surface order

parameter S0 (solid curve) as functions of temperature ( TNI-T ). The half-cell thickness

(D/ξ0) of the sample is labelled beside each curve. The magnitude of the dimensionless

surface potential g which was defined by Ping Sheng [3] was taken to be 0.008 in the

calculations.

Experimentally Miyano [5] measured the wall -induced birefringence in 5CB

above the N-I transition temperature. It was found that the pretransition birefringence

diverges when the plates were pretreated for homeotropic alignment of the director.

However he did not find any evidence for this in planar alignment. Mada et al [6]
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reported the measurement of surface and bulk order parameters in the nematic as well as

in the isotropic phase as functions of temperature. They used plates, which were

pretreated by oblique evaporation of SiO. The surface order parameter was found to be

~0.15 just above TNI and had finite values even at temperatures further above TNI. In the

nematic phase the surface order parameter was found to be always ~25% higher than the

bulk order parameter. As we have discussed in the previous chapter, the surface induced

order becomes measurable in the compound used at ~0.050C above the bulk transition

temperature and it grows as the temperature is lowered to the transition point.

Experimental measurement of n∆  on 8OCB as a function of temperature at

different cell thicknesses was reported by Marcerou et at [7]. The measurements were

made in cells in which the glass plates were pretreated with polyimide and rubbed

unidirectionally. The birefringence ( n∆  ∝ S, where S is the orientational order parameter)

measured in a thin cell was larger at all temperatures than that in a thick cell . For example

it was ~30 % larger in a cell of thickness 2.6µm than that in 7.2µm thick cell at T≈TNI -

100. They argued that the increase in order parameter was due to an induced biaxial

nematic phase in a relatively thick boundary layer (~0.8µm) even though the medium was

uniaxial in the bulk. However the large enhancement (~30 %) for the cell of thickness

2.6µm may be an experimental artifact [8].

 Later Sobha et al [9] reported that n∆  is enhanced by a measurable amount in thin

cells (~1.5µm) compared to that in thick cells (~18µm) in CP7B (p-cyanophenyl p-n

heptylbezoate). Interestingly the nematic-nematic (N-N) transition in CP7B, which occurs

below the ambient temperature in the bulk is found to shift to higher temperatures in thin

cells (~3µm) (Fig.(3.2a)). When the thickness of the cell i s reduced to ~1.9µm, the N-N

transition temperature is increased further by ~40C (Fig.(3.2b)). They argue that the shift

in the N-N transition temperature is a clear consequence of the significant enhancement

of the order parameter as the cell thickness is decreased. Using the Landau de Gennes

theory they describe a uniaxial nematic made of biaxial particles, which gives rise to

relatively large value for the correlation length of the order parameter in a suitable

parameter range [10]. The large correlation length can give rise to a significant

enhancement of the order parameter in thin cells. Recently Manjula et al have confirmed
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that in a binary mixture, in which the N-N transition in the bulk occurs above the ambient

temperature, the transition temperature increases as the thickness is decreased [11].

Figure 3.2: Transmitted intensity as a function of temperature for cells of thicknesses of

3µm and 1.9µm respectively. (Adapted from ref.[9]). Arrows indicate the jump in the

transmitted intensity at the N-N transition. Note that the N-N transition temperature is

enhanced by ~40 in the 1.9µm sample compared to that in the 3µm cell .

Both the compounds 8OCB and CP7B used in the previous studies have

longitudinal dipole moments. In order to check if the enhancement of orientational order

parameter in thin cells is a general feature of nematic liquid crystals we have carried out

such experiments on systems having both longitudinal and transverse dipole moments.

3.2 Experimental

We have chosen a number of compounds, with dipole moments making different

angles with the long axis of the molecule. The chemical structures and phase sequences

are given in Fig.(3.3). The first compound (S1014) is obtained from Merck. It is highly

polar and the direction of the permanent dipole moment makes a large angle with the long

axis and hence the dielectric anisotropy is negative ( 0<∆ε ). The nematic phase occurs

over a wide temperature range and can be supercooled to room temperature. It also has a

smectic-C like short-range order (cybotactic groups) in the entire nematic range [12]. The

3µm 1.9µm
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second compound (PCH-5) also obtained from Merck, is highly polar. It exhibits a

nematic  phase  at room  temperature and is widely used  in display  applications.

Figure 3.3: Chemical structures, phase sequences and the transition temperatures of the

compounds used in thin cell experiments. The transition temperatures are given in degree

Celsius.
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The direction of the permanent dipole moment in this molecule is along the long axis and

hence the dielectric anisotropy is positive ( 0>∆ε ). The third and fourth compounds are

obtained from Prof. B.K. Sadashiva. The third compound is also highly polar with a long

alkyl chain. It exhibits the nematic phase at relatively high temperatures. The direction of

the permanent dipole moment in this molecule is also along the long axis and hence the

dielectric anisotropy is positive ( 0>∆ε ). The fourth compound is made of banana

shaped molecules and is highly biaxial. The mixture with 50:50 wt % of the compounds-3

and 4, gives rise to a uniaxial nematic with positive dielectric anisotropy. This mixture

was studied to explore the effect of molecular biaxiali ty on the order parameter. The last

compound was used in the high electric field experiments reported in the previous chapter

and obtained from Merck. It is highly polar with a negative ε∆ .

The cell i s constructed using two ITO coated glass plates which are etched as

shown in Fig.(1.16) of chapter-I. This electrode pattern is designed to perform

Freedericksz transition experiments on the systems with 0>∆ε . The plates are treated

with polyimide and cured at a temperature of 280 0C for 90 minutes. After curing, the

plates are rubbed for homogeneous alignment of the molecules in the nematic phase.

Glass beads are mixed with epoxy glue, which is spread outside the electrode region to

get the required cell thickness (>2µm). However to make cells of thicknesses < 2µm we

do not use any spacers. The glue used does not affect the liquid crystals and is usually

used for making liquid crystal displays. The thickness of the cell i s measured carefully at

several positions inside the overlapped electrode area (see Fig.(1.16)) using an Ocean

Optic spectrometer (see Fig.(1.18)). Several cells are made at a time and those with

uniform thickness are selected for the experiment. The cell thickness d is found to be

constant within 1%. To test if the cell thickness changes with temperature, we heated the

empty cell up to 150 0C and measured the thickness at several temperatures and found no

noticeable change. The cell i s fill ed with the sample in the isotropic phase by capill ary

action. The experimental setup is shown in Fig.(3.4).  A heating stage (INSTEC HS1) is

used to control the temperature to an accuracy of ~10 mK. The heater is kept on the

rotating stage of a polarizing microscope (Leitz ORTHOPLAN). A helium-neon laser

(ORIEL 3 mW, λ = 632.8 nm) beam is used to ill uminate the sample. A beam splitter

(BS) and a reference photodiode (PD2) are arranged to monitor the stabili ty of the
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reference beam intensity. The laser beam is made to be incident on the sample through a

polariser and the transmitted intensity is passed through an analyser, which is crossed

with respect to the polariser. The transmitted intensity is collected by the photodiode

PD1. The photodiodes are connected to a multimeter. Finally all the instruments are

controlled by a computer (COM). A suitable program is used to run the experiment. This

setup is only used for Freedericksz transition measurements. To measure the threshold

voltage for the Freedericksz transition the temperature is kept fixed and a signal generator

is used to apply an electric field to the cell . The transmitted intensity is measured as a

function of applied voltage. The typical frequency used in the experiment is 3.111 kHz.

The above setup can also be used to measure n∆  from the transmitted optical intensity. In

thick cells the variation of optical intensity shows maxima and minima as a function of

temperature between two crossed polarizers. Using equations (2.43) and (2.44) and using

d instead of 2d, n∆  can be measured. However in thin cells (< 2µm) the variation of

optical intensity shows only one broad maximum and hence it is not possible to calibrate

the intensity  and  hence measure n∆  accurately. Therefore ∆n  values in  all  the cells are

Figure 3.4: Schematic diagram of the experimental setup.  Photodiodes (PD1, PD2).

Polariser (POL), Analyzer (ANL), Multimeter (MUL), Computer (COM). Signal

generator (SIG).
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measured by using a tilti ng compensator (Leitz (5λ)). The measurements are made while

cooling the samples from the isotropic phase.

3.3 Results and Discussion

 The variations of ∆n measured in two cells of thicknesses of 1.5µm and 6.7µm

are shown as functions of temperature for the compound-1 in Fig.(3.5). The ∆n data

measured using the tilti ng compensator in the thick cell compares well with the data of

reference [13] (Fig.(3.6)) in which ne (extraordinary refractive index) and no (ordinary

refractive index) have been measured separately using a goniometer.  ∆n measured in the

thin cell (1.5µm) is larger at all temperatures than that in the thick cell (6.7µm) and at the

lower temperatures, the two curves are roughly parallel (Fig.(3.5)). It should be pointed

out that the compound-1 has also a smectic-C like short range order throughout the

nematic range [12].

          The variations of birefringence (∆n) of the compound-2 measured in two cells of

thicknesses of 1.4µm and 7µm are shown as functions of temperature in Fig.(3.7). Close

to the isotropic to nematic transition point ( 02<− TTNI  ) n∆  measured in the two cells

are comparable. At lower temperature, there is a clear enhancement in ∆n in the thinner

cell . For example, it is ~6% higher than in the thicker cell at 50 below TNI.

Figure 3.5: Variations of ∆n in the compound-1 in 1.5µm (open circles) and 6.7µm (open

squares) thick cells as functions of temperature. Dotted lines are drawn as guides to the

eye.
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Figure 3.6: Comparison of ∆n measured by tilti ng compensator in the thick cell (6.7µm)

(open circles) with the data of ∆n (open squares) from ref. [13] of the compound-1.

Figure 3.7: Variations of ∆n of the compound-2 measured in 1.4µm (open circles) and

7µm (open squares) thick cells as functions of temperature. Dotted lines are drawn as

guides to the eye.

The variations of ∆n as functions of temperature are shown for cells of three

different thicknesses namely 1.5µm, 2.2µm and 14µm for the compound-3 in Fig.(3.8).
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This compound exhibits the nematic phase at high temperatures (105.5 to 154.2 0C).

Again, at a fixed temperature, ∆n increases with decreasing cell thickness (Fig.(3.8)). For

example, at TNI -T =120, ∆n is higher by ~6 % and ~11 % respectively in the 2.2 µm and

1.5µm cells compared to that in the cell of thickness 14µm. For this compound we

analyse the temperature dependence of ∆n, which can be approximated well for nematic

liquid crystals [14] by the formula

                                                      
β







−∆=∆

1
0 1

T

T
nn                                                    (3.1)

where T1 and β are adjustable parameters. Least squares fits to the experimental data of

compound-3 with the equation (3.1) are shown for the three different cell thicknesses in

Fig.(3.8). It is noticed that the fitted birefringence 0n∆ of the completely ordered sample

in 1.5µm is slightly higher ( by ~5%) than that in 2.2 and 14µm cells. The fit parameter T1

Figure 3.8: Variations of ∆n of compound-3 as functions of temperature in cells of three

different thicknesses: 1.5µm (open circles) 2.2µm (open triangles), 14µm (open squares).

Continuous lines are the theoretical fits to the equation (3.1). The relevant fit parameters

are shown in the insets.
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is increased by ~0.10 in the 1.5µm cell than that in the 14µm cell . This indicates that TNI

increases as the thickness is decreased as predicted by the Landau theory (see Fig.(3.1))

and hence T1 which is slightly above TNI  is also increased. However our main interest is

to study the effect of confinement on the orientational order parameter and we have not

carefully measured the enhancement of TNI at reduced thicknesses of the samples. The

value of β is 0.13 in the 1.5µm thin cell and increases to 0.15 in the 14µm thick cell .

Similar values of β are obtained in several other nematics as discussed in the previous

chapter.

The variations of ∆n in the 50:50 wt% mixture of the compounds-3 and 4 are

shown as functions of temperature in Fig.(3.9) for three thicknesses. Close to the

transition temperature the data points are noisy because this mixture exhibits a nematic-

isotropic coexistence range of ~1 0C. Therefore in this mixture ∆n is measured while

heating the sample. Again, at a fixed temperature, ∆n increases with decreasing cell

thickness. For example at TNI-T =120, ∆n is higher by ~6 % and ~13 % respectively in the

2.3 µm and 1.4µm cells compared to that in the cell of thickness 16µm.

Figure 3.9: Variations of ∆n as functions of temperature of the mixture of compounds-3

and 4 in three different cell thicknesses namely 1.4µm (open circles) 2.3µm (open

triangles), 16µm (open squares). Dotted lines are drawn as guides to the eye.
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Figure 3.10: Variations of ∆n of compound-5 in ~1.5µm (open circles) and ~6.7µm (open

squares) cells as functions of temperature. Note that the separation between the two

curves increases as TAN (smectic to nematic transition temperature) is approached. Dotted

lines are drawn as guides to the eye.

The variations of ∆n as functions of temperature are shown for the compound-5 in

two different cell thicknesses namely 1.5µm and 6.7µm in Fig.(3.10). The high electric

field experiments on this compound described in the previous chapter were conducted

using SiO coated plates to get homogeneous alignment of the sample. In the present

studies rubbed polyimide coated glass plates are used for alignment. Interestingly no

significant difference is noticed between the two curves corresponding to the two

thicknesses in the nematic phase down to TNI-T~200. However, when the nematic to

smectic-A transition temperature (TAN) is approached, ∆n starts to increase in the 1.5µm

cell . There is an enhancement of ∆n in both the cells as the temperature approaches TAN,

and the relative enhancement in the thinner cell also grows. For example, at TAN the n∆

in thinner cell i s ~10% higher than that in the thicker cell .

We summarise the experimental results of ∆n on all the five systems studied in

Table-I. The relative enhancement of (∆n) in thin cells with respect to thick cells is also

shown in Table-I. We notice that in the first four systems ∆n is enhanced considerably in
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addition of biaxial molecules in the mixture, the enhancement of ∆n in thin cells does not

change significantly from that of the compound-3. Thus the effect of molecular biaxiali ty

on the orientational order parameter in thin cells is not significant.

                                                                  Table-I

Compounds Thicknesses of
thin and thick

cells

(TNI – T ) °

thick

thickthin

n

nn

∆
∆−∆

×100

Compound-1 1.5 and 6.7µm 12 15   %

Compound-2 1.4 and 7µm 12 6  %

Compound-3 1.5 and 14µm 12 11  %

Mixture (50:50
wt%)

1.4 and 16µm 12 13  %

Compound-5 1.5 and 6.7µm 12 No significant
difference

We have also measured the threshold voltage for Freedericksz transition of the

materials with positive dielectric anisotropy. The same cell i n which n∆  is measured is

used to measure thV . Typical frequency used for the experiment is 3111 Hz. The

threshold voltage of the Freedericksz transition is given by εεπ ∆= 01 /KVth , where

1K is the splay elastic constant and ∆ε is the dielectric anisotropy.  In the mean field

model the elastic constant, 2
1 SK ∝  where S is the orientational order parameter and the

dielectric anisotropy S∝∆ε . Therefore SV th ∝2 . As we can see from Fig.(3.11), thV 2

is higher in 1.4µm cell than that in 7µm cell of the compound-2. 2
thV , measured in three

different cells of the compound-3 are shown at a few temperatures in Fig.(3.12).

Similarly thV 2  for the mixture are shown at a few temperatures in Fig.(3.13). It is

observed that with decreasing cell thickness thV 2  is increased at a fixed temperature. We

summarise the experimental results of 2
thV  in Table-II.
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Figure 3.11: 2
thV  at a few temperatures of the compound-2. The open circles and open

squares correspond to 1.4 µm and 7µm thick cells respectively. Dotted lines are drawn as

guides to the eye.

Figure 3.12: 2
thV  at a few temperatures in three different cells of the compound-3. Open

circles (1.5µm), open triangles (2.2µm), open squares (14µm),. Dotted lines are drawn as

guides to the eye.
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Figure 3.13: 2
thV  at a few temperatures in three different cells of the mixture. Open circles

(1.4µm), open triangles (2.3µm), open squares (16µm). Dotted lines are drawn as guides

to the eye.

Table-II

Thicknesses of

thin and thick

cells

Compounds (TNI-T)0

thick

thickthin

n

nn

∆
∆−∆

×100

( ) ( )
( )thickth

thickththinth

V

VV
2

22 −

×100

1.4 and 7µm Compound-2 12 6% 16%

1.5 and 14µm Compound-3 12 11% 43%

1.4 and 16µm Mixture (50:50

wt%)

12 13% 30%

In the compound-2, 2
thV  is ~16 % larger in 1.4µm cell than that in 7µm cell at ~120 below

TNI whereas ∆n is ~6% larger at the same temperature. In the compound-3, 2
thV  is ~43%

larger in 1.5µm than that in 14µm cell whereas ∆n is ~11 % larger at the same

temperature. Similarly in the mixture 2
thV  is 30% larger in 1.4µm cell than that in 16µm

cell whereas ∆n is ~13% larger at the same temperature. These discrepancies can be

explained as follows. All the samples have ionic impurities. The transit time (t = d2/µV,
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where µ, is the mobili ty) of the impurity ions in the thin cells is small and hence the ions

can easily reach the appropriate electrodes when the field is reversed, producing a space

charge. The space charges screen the external electric field. Therefore the effective field

inside the thin cells is decreased. The large excess value of 2
thV  in thin cell arises due to

the screening effect of the space charge apart from the enhancement of S. It is also

noticed from the Table-II that in the compound-2 and in the mixture the enhancement of

2
thV  in thin cells is ~2.5 times larger than that of n∆  whereas this is ~ 4 times larger in

compound-3. In this compound the nematic phase occurs at high temperatures

(105.5-154.20C). The density of ions increases with the increase of temperatures and as a

result the screening effect is increased. In the next chapter we will discuss the effect of

space charge polarisation in thin cells in detail .

The orientational order parameter in thin cells in the first four systems studied is

considerably larger compared to that in the thick cells irrespective of the molecular

structure, temperature range and orientation of the permanent dipole moments in the

molecules. Compound-5 has no aromatic rings and also does not exhibit any significant

dependence of n∆  on the thickness.

To understand the enhancement of the orientational order parameter in thin cells

two possibiliti es can be invoked: (a) suppression of the thermal fluctuations of the

director in thin cells can enhance the order parameter compared to the thicker cell ,

( b) larger effect of surface-order increasing the measured n∆  in thin cells. First we will

discuss the effect of thermal fluctuations of the director on the magnitude of the scalar

order parameter in thin cells.

3.3.1 Quenching of Director Fluctuations in Thin Cells

In the nematic phase there are thermal fluctuations of the director as discussed in

the previous chapter. In the one elastic constant approximation the fluctuation amplitude

is given by [1]

( ) 2

2

VKq

Tk
qn B=                                                             (3.2)
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where kB is the Boltzmann constant, T the temperature, V the volume, and K is the elastic

constant. The wave vector q
�

, can be decomposed into zq , along the z axis and ⊥q , which

is in the xy plane (Fig.(3.14)). A pictorial representation of a few fluctuation modes with

allowed values of zq  are shown in Fig.(3.14). Any mode which has wavelength( )zq/2π

larger than twice the cell thickness d is not allowed, due to the confinement along the z

direction. We have discussed in the previous chapter that a stabili zing electric field also

quenches the director fluctuations. In that case the fluctuation amplitude is reduced but

the number of modes remain the same. In the present situation the number of modes are

reduced when the thickness is decreased.

Figure 3.14: Schematic representation of a few allowed fluctuation modes between the

two plane surfaces.

In principle, to calculate the r.m.s. fluctuation in real space, we have to sum over

the allowed modes along the z direction (Fig.(3.14)) [15]. However, as the smallest gap d

used in our experiment is >1µm which is much larger than the intermolecular distance

a (≈2×10-7cm), we will replace the summation by an integration over the appropriate

limits. In real space the fluctuation amplitude is given by
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                                               (3.3)

where  aq /2max π≈ ,is the cut off wave vector. Integrating over ⊥q we get,

d

G lass p la te

G lass p la te

X

Z

q

q⊥⊥

qZ



94

                                     ( ) z
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As d ≈1µm, 3
max 10≈dq . We use this to simplify the above integral to get
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It is noticed from equation (3.5) that the fluctuation amplitude is reduced with the

reduction of the sample thickness. Using equation 22 21 ⊥−= nnz , and 



 −=

2

1

2

3 2
znS

we get the order parameter in a finite thickness cell d as ( ) 2
31 rnSd ⊥−= . Using

equation(3.5) the order parameter dS can be written as
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Using K=5×10-7 dynes, a = 10
0

A , and T=373K, we find that the order parameter increases

by ~0.1% in 1µm cell compared to that in 10µm cell . On the other hand experimentally

we find in the first four compounds (see Table-I) the enhancement of order parameter in

thin cells (~1.4µm) is nearly 6 to13% compared to that in the thick cells (~10 -15µm). As

such the enhancement of order parameter due to the partial quenching of the director

fluctuations in thin cells can not explain our experimental result.

Now we consider the effect of confinement on the order parameter of nematic

liquid crystals due to the alignment at the walls. We have discussed in section 3.1 that

using the Landau de Gennes theory Ping Sheng calculated the order parameter profile in

thin cells [3,4]. He restricted the calculation between TNI -0.120 to TNI +0.360. We extend

the calculation to few degrees below TNI to see the effect of confinement on the order

parameter.
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3.3.2 Landau de Gennes Theory of a Nematic Liquid Crystal Confined

Between Two Plane Parallel Plates with a Large Surface Orientation

Potential

We consider a nematic liquid crystal confined between two plane parallel surfaces

separated by d. The solid-liquid crystal interfaces are defined by z = 0 and z = d

(Fig.(3.14)). The sample is assumed to be uniform in x and y directions. The substrates

are treated such that the molecules experience a uniaxial aligning potential in a particular

direction. For example let us assume that the alignment direction is along the x-axis

(Fig.(3.14)). The surface potential felt by each molecule can be expressed in general as

[3]

                      [ ].).........(cos)(cos)(cos)(),( 642 θθθδθυ cPbPPzGz ++−=                    (3.7)

where θ is the angle between the long axis of the molecule and n̂ . G is a constant which

denotes the strength of the surface potential, nP2  are the even order Legendre

polynomials, and b, c are expansion coeff icients for the angular part of the surface

potential [3]. In equation (3.7) it is assumed that the surface potential is short range as

indicated by the delta function. For simplicity of the calculation the series expansion of

the potential can be restricted to the first term and the macroscopic potential averaged

over many molecules over a small volume is given by

  ( ) ( ) ( ) ( )SzGPzGzV δθδθυ −=−== cos, 2                                                  (3.8)

where the angular brackets represent a local average. As we have experimentally found

that the enhancement of order parameter in thin cells is very substantial, we assume the

surface potential is so large that there is perfect order at the surface i.e. ( ) ( ) 10 == SdS .

Selinger et al [16] calculated the variation of order parameter from the surface to the bulk

assuming a strong surface potential (VS=10V0, where V0 is the Maier-Saupe orientation

potential between the molecules) as discussed in the last chapter. It was found that at the

surface the order parameter is saturated i.e. ( ) 10 =S (see Fig.(2.31)). However, they did

not extend the molecular theory to the nematic phase.

The Landau-de Gennes free energy density is given by [4]

                                         
2

)( 



+=

dz

dS
LSfϕ                                         (3.9)
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            where                    432*

43
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2
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STT

a
Sf +−−= .                                 (3.10)

)(Sf  is the bulk free energy density and a, T* B, C are material parameters. L is the bare

elastic constant. For a given ϕ, the total free energy per unit area ( )A/Φ  is obtained

directly by integrating over z:

                                         dz
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The Euler–Lagrange equation for the minimization of ( )A/Φ is given by
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Using equations (3.9) and (3.10) we get,
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Equation (3.13) can be integrated once to get

                                        ( ) CSf
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



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2

                            (3.14)

where C is an integration constant and can be determined by the following boundary

conditions [4]

                                         S=1       at      z=0,d

                                       ,0
2

=





=dzdz

dS
   and   ( ) mSdS =2 ,                                       (3.15) 

mS  is the minimum order parameter which is obtained at the mid-plane of the sample.

Using the above boundary conditions in equation (3.14) we get,

                                        ( ) ( )mSfSf
dz

dS
L −=







2

.                                                    (3.16)

Dividing both sides by aTNI, we get a dimensionless equation, which is given by

                                       ( ) ( )mSFSF
dz

dS −=






2
2
0ξ                                                     (3.17)
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where ,0
NIaT

L≡ξ  is the bare correlation length and ( ) ( )
NIaT

Sf
SF =  and ( ) ( )

NI

m
m aT

Sf
SF = .

 The S(z) profile can be obtained easily by integrating equation (3.17)

                                            
( )

dS
SFSF

z

zS m
∫ −

=
1

0 )()(

1

ξ
.                                       (3.18)

The material parameters a, B, C for compound-2 are assumed to be a = 0.10 J/cm3-K,

B = 1.5 J/cm3, C = 3.8 J/cm3, T* = 327.2 K, TNI = 328.5 K. The first three coefficients are

of the same order as in other nematics [3]. The elastic constant L, is found by using the

formula [18]

                                                  



 ++= 2

321

32

1

S

KKK
L                                                 (3.19)

where K1, K2 and K3 are the splay twist and bend elastic constants and taken from

reference [19]. L is estimated to be ~3×10-13 J/cm. The estimated bare coherence length

ξ0~10
0

A . Using these parameters we have numerically calculated S(z) profile for half the

cell thickness at a few temperatures in the nematic phase. The variation of calculated

( )zS  at TNI –10 is shown as a function of 0/ξz  in Fig.(3.15). It is noticed that the surface

order parameter decays to the value of Sm in z/ξ0 ~50. The thickness averaged order

parameter is calculated by integrating ( )zS ,

                                                 ( ) dzzS
d

S
d

∫=
0

1
.                                                          (3.20)

We can introduce an additional elastic term 
2





′

dz

dS
SL  in equation (3.9) where L′ is also

an elastic constant. This term is also allowed by the symmetry of the medium. Following

a procedure similar to that given above and assuming LL ′= , we find

                                               
( )

dS
SFSF

Sz

zS m
∫ −

+=
1 2

0 )()(

1

ξ
.                                    (3.21)

Using the same material parameters a, B, C, T* we calculate the variation of order

parameter ( )zS *  at a few temperatures. The order parameter, ( )zS *  profile which is

calculated at 01−NIT  including ( )2/ zSSL ∂∂ term in equation (3.9) is shown by a dotted



98

line in Fig.(3.15). We notice that the over all variation of ( )zS * is similar to that of ( )zS .

The order parameter ( )zS * is somewhat higher between 0/ξz =0 to 50 than that of ( )zS .

We summarise the calculated enhancement of order parameter in the 1µm cell at a few

temperatures in Table-II I.

Figure 3.15: Variations of the calculated order parameter ( )zS (continuous line) and

( )zS * (dotted line) as functions of z/ξ0 for half-cell thickness in the thin cell . Variations

are shown only up to z/ξ0=60 for clarity. [1µm corresponds to 1000/ 0 =ξz ]

S  in the 1µm thin cell at 02.0−NIT is found to be ~0.310 ( see Table-III), whereas the

calculated order parameter ( bS ) in the bulk is ~ 0.297. Thus in the 1µm thick cell the

order parameter is ~4.4% higher than the bulk value at 02.0−NIT . The calculated

enhancement is reduced at lower temperatures. The enhancement is ~2.7% and 0.9% at

TNI -10 and 05−NIT respectively. The thickness averaged order parameter *S at

02.0−NIT is ~5.2% higher than the bulk value. *S  is slightly higher (~0.8%) than S at the

same temperature. The calculated enhancement is again reduced at lower temperatures. It

is ~3.2% and 1.1% at TNI -1
0 and 05−NIT  respectively.
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                                                             Table-III

Temperature Sb S *S
100×−

b

b

S

SS
100

*

×−

b

b

S

SS

02.0−NIT 0.297 0.310 0.313 4.4% 5.2%

01−NIT 0.373 0.383 0.385 2.7% 3.2%

05−NIT 0.566 0.571 0.572 0.9% 1.1%

On the other hand, experimentally, we find that the enhancement is not so

drastically reduced at lower temperatures (see Table-I). The Landau de Gennes theory for

uniaxial nematic can thus only partially account for the enhancement of order parameter

in thin cells (~1µm) close to the nematic- isotropic transition temperature.

 Now we discuss the effect of weak biaxiali ty in the thin cell due to asymmetric

director fluctuations.

3.3.3 Confinement Induced Biaxiality

As we have discussed, in thin cells the director fluctuations are partially

suppressed in a plane (yz) perpendicular to the plates (Fig.3.14).  But the fluctuations in

the plane (xy) of the plates remain unaffected. The asymmetric director fluctuations in the

two different planes could lead to a weak biaxiality in the medium [15] if the three elastic

constants are different. We use the tensor order parameter to be able to describe this.

Considering up to the fourth order term in the expansion, the Landau-de Gennes free

energy densities Fb and Fk, [20] can be written as

                                      432
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F ++=                                           (3.22)
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where A (= a (T-T* )), B, C are the Landau coeff icients, which will be numerically

different from those in equation (3.10). L1, L2, L3 are the elastic constants and the
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summation convention is assumed. The order parameter Qij is given by a traceless

symmetric tensor

                                                  























+−

−−

=

S

PS

PS

Qij

00

0
2

0

00
2

                                   (3.24)

where S is the usual order parameter and P is the biaxial order parameter. Using

equations (3.22), (3.23) and (3.24) we get

                     ( ) ( ) ( )42242322 69
164

3
4

PPSS
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Fb +++−++= .               (3.25)

We assume that the order parameters depend only on z,  and L1 =L and L2+L3=3L [19]

then equation (3.23) can be simpli fied as,
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The total free energy density energy is given by

                                                kbt FFF += .                                                                (3.27)

The Euler-Lagrange equations for minimization of tF are given by
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From equation (3.28a) and (3.28b) we get two coupled differential equations
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Dividing both sides of equation (3.29a) by 9 NIaT  and equation (3.29b) by NIaT we get
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where NIaTL /2
0 =ξ . We assume the following boundary conditions:

                                                   ( ) 10 =S  at z=0                                                          (3.31)

                                                    0=
dz

dS
 at z=d/2

                                                   ( ) 5.00 =P  at z=0

                                                    0=
dz

dP
 at z=d/2.

The surface treatment is assumed to lead to a very strong biaxial alignment of the

molecules at the surface. Using the above boundary conditions, equations (3.30a) and

(3.30b) are solved numerically. The material parameters are rescaled as a = 0.07 J/cm3-K;

B = -2.0 J/cm3; C = 1.7 J/cm3 and 
0

0 11~ Aξ . The variation of ( )zS  and ( )zP  at TNI -1
0 is

shown in Fig.(3.16). It is noticed from the Fig.(3.16) that the induced biaxial order

parameter ( )zP  decays to zero within 0/ξz ~5. Calculating the area under the curve of

( )zS  we find that the enhancement of orientational order parameter is ~ 3% at

01−NIT and ~1% at 05−NIT . Therefore the effect of induced biaxiali ty on the measured

order parameter is not significant.
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Figure 3.16: Variations of S(z) and P(z) as functions of  z/ξ0 at TNI-1
0 (only up to z/ξ0=40

is shown for clarity).

We recall that in the compound-5 there is no significant enhancement of order

parameter. There is no aromatic core in this compound and the surface potential appears

to be extremely small on the polyimide coated surface and hence the enhancement of

order parameter at the surface is not significant. However as TAN is approached from the

nematic phase the smectic li ke short-range order appears and the order parameter

increases in both the cells. In thin cell the large enhancement of order parameter close to

TAN  might reflects on the enhancement of smectic short-range order in thin cells.

3.4 Conclusions

Our experiments confirm that the orientational order parameter of nematic liquid

crystals in thin cells is enhanced considerably with respect to that in thick cells in all the

compounds with aromatic cores. This probably means that the surface orientating

potential in these cases is quite strong. Quenching of director fluctuations in thin cells

enhances the order by a very small amount ~0.1%. The usual Landau de Gennes theory

for the uniaxial medium partially accounts for the enhancement of the order parameter if

the surface potential produces perfect order. The predicted enhancement is  ~5% at

02.0−NIT . However, at lower temperatures the calculated enhancement is reduced

drastically. In compound-2, which has only one phenyl ring, the relative enhancement is
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smaller than in the other compounds with more than one phenyl ring. Indeed in

compound-5, which has no phenyl rings in the molecular structure, the surface potential

on the aromatic polyimide coating can be expected to be very small . This accounts for the

absence of any enhancement in this case. Induced biaxiali ty also does not improve upon

the uniaxial results. Further theoretical study is required to understand the large (~10%)

enhancement of order parameter in thin cells even at 010−NIT .

References:

[1] P. G. de Gennes and J. Prost, “ The Physics of Liquid Crystals.,” 2nd ed. (Clarendon,

Oxford, 1993).

[2] T. Z. Qian, Z. L. Xie, H. S. Kwok and P. Sheng, “ Dynamic flow and switching

bistabili ty in twisted nematic liquid crystal cell .,” ,  Appl. Phys. Lett. 71, 596 (1997).

[3] P. Sheng, “Boundary-layer phase transition in nematic liquid crystals.,” Phys. Rev. A,

26, 1610 (1982).

[4] P. Sheng, “Phase transition in surface aligned nematic.,” Phys. Rev. Lett. 37, 1059

(1976).

[5] K. Miyano, “Wall -induced pretransitional birefringence: a new tool to study boundary

aligning forces in liquid crystals.,” Phys. Rev. Lett. 43, 51 (1979).

[6] H. Mada and S. Kobayashi, “ Surface and bulk order parameter of a nematic liquid

crystal.,” Appl. Phys. Lett. 35 (1), 4 (1979).

[7] F. Beaubois and J. P. Marcerou, “ Biaxial nematic and smectic-A boundaries in thin

planar samples of 8OCB aligned by rubbed polyimide.,” Europhys. Lett. 36, (2), 111

(1996).

[8] Personal communication from J. P. Marcerou.



104

[9] R. W. Sobha, D. Vijayaraghavan and N. V. Madhusudana, “Evidence for a nematic to

nematic transition in thin cells of highly polar compound.,” Europhys. Lett. 44, (3), 296

(1998).

[10] W. Sobha, “Electrooptic and dielectric investigation on some liquid crystals.,”

(thesis, Raman Research Institute, 1998).

[11] V. Manjuladevi, N. V. Madhusudana, to be published. (Raman Research Institute).

[12] B. S. Srikanta and N. V. Madhusudana, “Effect of skewed cybotactic structure on the

dielectric constants and conductivities of some binary mixtures exhibiting the nematic

phase.,” Mol. Cryt. Liq. Cryst. 103, 111 (1983).

[13] L. Moodithaya, “Optical and elastic properties of liquid crystals.,” (thesis, Raman

Research Institute, 1981).

[14] I. Haller, H. A. Huggins, H. R. Lilienthal, T. R. McGuire, “Ordered-related

properties of some Nematic Liquids.,” , J. Phys. Chem. (USA) 77, 950 (1973).

[15] D. A. Dunmur, and K. Szumilin “Field quenching of director fluctuations in thin

films of nematic liquid crystals.,” Liq. Cryst. 6, 449 (1989).

[16] J. V. Selinger and D. R. Nelson, “Density functional theory of nematic and smectic-

A order near surfaces.,” Phys. Rev. A, 37, 1736 (1988).

[17] D. A. Dunmur, A. Fukuda and G. R. Luckhurst, “Liquid Crystals: Nematics.,” (An

Inspec Publication), pp-100. ( R. Seelinger, H. Haspeklo, F. Noaek, Mol. Phys. (UK) 49,

1039 (1983); L. G. P. Dalmolen, S. J. Picken. A. F. de Jong, W. H. de Jeu, J. Phys

(France) 46, 1443 (1985).



105

[18] E. F. Grasmbergen, L. Longa and W. H. de Jeu, “Landau theory of the isotropic-

nematic phase transitions.,” Phys. Rep. 135, 195 (1986).

[19] U. Finkenzeller, T. Geelahaar, G Weber and L. Phol “Liquid Crystalli ne reference

compounds.,” Liq. Cryst. 5, 313 (1989).

[20] N. Schopohl and T. J. Sluckin, “Defect core structure in nematic liquid crystals.,”

Phys. Rev. Lett. 59, 2582 (1987).


